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Abstract—Interval valued bipolar neutrosophic sets is a new 

generalization of fuzzy set, bipolar fuzzy set, neutrosophic set 

and bipolar neutrosophic set so that it can handle uncertain 

information more flexibly in the process of decision making. In 

this paper, an algorithm for finding minimum spanning tree 

(MST) of an undirected neutrosophic weighted connected 

graph (UNWCG) in which the  edge weights is represented by 

a  an interval  valued bipolar neutrosophic number is presented. 

The proposed algorithm is based on matrix approach to design 

the MST of UNWCG. A numerical example is provided to show 

the effectiveness of the proposed algorithm. Lastly, a 

comparative study with other existing methods is proposed. 

 
Index Terms—Score function, interval valued bipolar 

neutrosophic sets, Neutrosophic sets, Spanning tree problem. 

 

I. INTRODUCTION 

In 1998, Smarandache [1] explored the concept of 

neutrosophic set (NS) from the philosophical point of view, 

to represent uncertain, imprecise, incomplete, inconsistent, 

and indeterminate information that are exist in the real world. 

The concept of neutrosophic set is a generalization of the 

concept of the classic set, fuzzy set, intuitionistic fuzzy set 

(IFS). The neutrosophic sets are characterized by a 

truth-membership function (t), an indeterminate-membership 

function (i) and a false-membership function (f) 

independently, which are within the real standard or 

nonstandard unit interval ]
−
0, 1

+
[. To apply the concept of 

neutrosophic sets (NS) in science and engineering 

applications, Smarandache [6] introduced for the first time, 

the single valued neutrosophic set (SVNS). Later on, Wang et 

al. [2] studied some properties related to single valued 

neutrosophic sets. The neutrosophic set model is an important 

tool for dealing with real scientific and engineering 

applications because it can handle not only incomplete 

information but also the inconsistent information and 

indeterminate information. Some more literature about the 

extension of neutrosophic sets and their applications in 

various fields can be found in the literature [17].  
In classical graph theory, there are common algorithms for 

solving the minimum spanning tree including Prim and  
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kruskal algorithm. By applying the concept of single valued 

neutrosophic sets on graph theory, a new theory is developed 

and called single valued neutrosophic graph theory (SVNGT).  

The concept of SVNGT and their extensions finds its 

applications in diverse fields [6]-[16]. Very recently few 

researchers have used neutrosophic methods to find 

minimum spanning tree in neutrosophic environment. Ye [4] 

proposed a method to find minimum spanning tree of a graph 

where nodes (samples) are represented in the form of SVNS 

and distance between two nodes which represents the 

dissimilarity between the corresponding samples has been 

derived. Kandasamy [3] proposed a double-valued 

Neutrosophic Minimum Spanning Tree (DVN-MST) 

clustering algorithm, to cluster the data represented by 

double-valued neutrosophic information.Mandal and Basu [5] 

presented a solution approach of the optimum spanning tree 

problems considering the inconsistency, incompleteness and 

indeterminacy of the information. The authors consider a 

network problem with multiple criteria which are represented 

by weight of each edge in neutrosophic setsThe approach 

proposed by the authors is based on similarity measure. 

Recently Mullai [18] solved the minimum spanning tree 

problem on a graph in which a bipolar neutrosophic number 

is associated to each edge as its edge length, and illustrated it 

by a numerical example.  

The principal objective of this paper is to propose a new 

version of Prim‘s algorithm based on matrix approach for 

finding the cost minimum spanning tree of an undirected 

graph in which an interval valued bipolar neutrosophic 

number [19] is associated to each edge as its edge length.  

The rest of the paper is organized as follows. Section 2 

briefly introduces the concepts of neutrosophic sets, single 

valued neutrosophic sets and the score function of interval 

valued bipolar neutrosophic number. Section 3 proposes a 

novel approach for finding the minimum spanning tree of 

interval valued bipolar neutrosophic undirected graph. In 

Section 4, an illustrative example is presented to illustrate the 

proposed method. In section 5, a comparative study with 

other existing methods is provided. Finally, Section 6 

concludes the paper. 

 

II. PRELIMINARIES 

Some of the important background knowledge for the 

materials that are presented in this paper is presented in this 

section. These results can be found in [1], [2], [19]. 

Definition 2.1 [1] Le     be an universal set. The 

neutrosophic set A on the universal set  categorized in to 

three membership functions called the true  AT (x), 
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indeterminate 
AI (x) and  false 

AF (x) contained in real 

standard or non-standard subset of  ]
-
0, 1

+
[  respectively. 

 
          −

0   sup AT  (x) + sup AI  (x)   + sup AF  (x)   3
+
   (1)     

 

Definition 2.2 [2] Let   be a universal set. The single 

valued neutrosophic sets (SVNs) A on the universal    is 

denoted as following 

                A = {x: 
AT (x), AI  (x), AF  (x) x }     (2) 

 

The functions AT (x)   [0. 1], AI (x)   [0. 1] and AF  (x) 

  [0. 1] are named degree of truth, indeterminacy and falsity 

membership of x in A, satisfy the following condition: 

 

                   0   AT   (x) + AI  (x) + AF  (x)   3               (3) 

 

Definition 2.3 [4]. An interval valued bipolar neutrosophic 

set A in X is defined as an object of the form 

A={<x, 

, , , , , , , ,

, , ,

p p p p p p n n
L M L M L M L M

n n n n
L M L M

T T I I F F T T

I I F F

       
       

    
   

>: x 

  X}, where 
p

LT , 
p

MT  
p
LI , 

p
MI ,

p
LF , 

p
MF :X  [0, 1] 

and  
n

LT , 
n

MT  
n
LI , 

n
MI ,

n
LF , 

n
MF : X   [-1, 0] .The 

positive interval membership degree where 
p

LT , 
p

MT  
p
LI , 

p
MI ,

p
LF , 

p
MF  denotes the lower and upper truth 

membership, lower and upper indeterminate membership and 

lower and upper false membership of an element   X 

corresponding to a bipolar neutrosophic set A and the 

negative interval membership degree 
n

LT , 
n

MT  
n
LI , 

n
MI ,

n
LF , 

n
MF : denotes the lower and upper truth membership, lower 

and upper indeterminate membership and lower and upper 

false membership of an element   X to some implicit 

counter-property corresponding to an interval valued bipolar 

neutrosophic set A. 

Deli et al.  [19], introduced a concept of score function. 

The score function is applied to compare the grades of 

IVBNS. This function shows that greater is the value, the 

greater is the interval valued bipolar neutrosphic sets and by 

using this concept paths can be ranked 

Definition 2.4 [19]. Let 

, , , , , , , ,

, , ,

p p p p p p n n
L M L M L M L M

n n n n
L M L M

A T T I I F F T T

I I F F

       
       

    
   

be an 

interval valued bipolar neutrosophic number, Then, the score 

function ( )s A , accuracy function ( )a A and certainty 

function ( )c A of an IVBNN are defined as follows: 

(i) 

1 1 1
1

( ) 1 1
12

1

p p p p
L M L M

p p n
L M L

n n n n n
M L M L M

T T I I

s A F F T

T I I F F

       
  

       
   

       

      (4) 

(ii) ( )
p p p p n n n n

L M L ML L L Ma A T T F F T T F F             (5)                                                              

(iii) ( )
p p n n

L ML Mc A T T F F                                   (6)  

                                                   
Comparison of interval valued bipolar neutrosophic 

numbers 

Let 1 1 1 1 1 1 1

1 1 1 1 1 1

, , , , , ,

, , , , ,

p p p p p p
L M L M L M

n n n n n n
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, , , , , ,

, , , , ,

p p p p p p
L M L M L M

n n n n n n
L M L M L M

A T T I I F F

T T I I F F

     
     

      
     

be two interval 

valued bipolar neutrosophic numbers then 

If 1 2( ) ( )s A s A
, then 1A

 is greater than 2A
, that is, 1A

is 

superior to 2A
, denoted by 1 2A A

 

If  1 2( ) ( )s A s A
,and  1 2( ) ( )a A a A

then 1A
 is greater 

than 2A
, that is, 1A

is superior to 2A
, denoted by 1 2A A

 

If  1 2( ) ( )s A s A
, 1 2( ) ( )a A a A

, and 1 2c( ) ( )A c A
 then 

1A
 is greater than 2A

, that is, 1A
is superior to 2A

, denoted by 

1 2A A
 

If  1 2( ) ( )s A s A
, 1 2( ) ( )a A a A

, and 1 2c( ) ( )A c A
 then 

1A
 is equal to 2A

, that is, 1A
is indifferent to 2A

, denoted by 

1 2A A
 

 

III. MINIMUM SPANNIG TREE ALGORITHM OF IVBN- 

UNDIRECTED GRAPH 

In this section, a neutrosophic version of Prim’s algorithm 

is proposed to handle minimum spanning tree in a 

neutrosophic environment. In the following, we propose an 

interval valued bipolar neutrosophic minimum spanning tree 

algorithm (IVBNMST), whose steps are described below: 

Algorithm: 

Input: The weight matrix M = ij n n
W


   for the undirected 

weighted neutrosophic graph G. 

Output: Minimum cost Spanning tree T of G. 

Step 1: Input interval valued bipolar neutrosophic 

adjacency matrix A. 

Step 2:Translate  the IVBN-matrix into score 

matrix ij n n
S


    by using score. 

Step 3: Iterate step 4 and step 5 until all (n-1) entries 

matrix of S are either marked or set to zero or other words all 

the nonzero elements are marked. 

Step 4: Find the score matrix S either columns-wise or 

row-wise to find the unmarked minimum entries 
ijS ,which 

is the weight of the corresponding edge 
ije in S. 

Step 5: If the corresponding edge 
ije  of selected 

ijS produce a cycle with the previous marked entries of the 

score matrix S then set 
ijS = 0 else mark

ijS . 
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Step 6: Construct the graph T including only the marked 

entries from the score matrix S which shall be desired 

minimum cost spanning tree of G. 

Step 7: Stop. 

 

IV. NUMERICAL EXAMPLE 

In this section, a numerical example of IVBNMST is used 

to demonstrate of the proposed algorithm. Consider the 

following graph G= (V, E) shown in Figure 2, with fives 

nodes and fives edges. The different steps involved in the 

construction of the minimum cost spanning tree are described 

as follow: 

 

 
Fig. 2. Undirected IVBN- graphs. 

 

e Edge length 

  

 

  

 

  

 

 <  

 

  

 

  

 

  

 

 

The IVBN- adjacency matrix A is given below: 

 

=  

 

Thus, using the score function, we get the score matrix 

 

S =  

Fig. 3. Score matrix. 

 

According to the Fig. 3, we observe that the minimum 

entries 0.358 is selected and the corresponding edge (1, 4) is 

marked by the brown color. Repeat the procedure until the 

iteration will exist. 

According to the Fig. 4 and Fig. 5, the next non zero 

minimum entries 0.408 is marked and corresponding edges (3, 

5) are also colored 

 

             
Fig. 4. The marked edge (1,4) of G in next iteration. 

 

S =  

                Fig. 5. The marked next minimum entries 0.408 of S. 

 

 
                   Fig. 6. The marked edge (3,5) of G in next iteration. 

 

S=  

                    Fig. 7. The marked next minimum entries 0.433 of S  

 

According to the Fig. 7, the next minimum non zero 

element 0.433  is marked.  

 

          Fig. 8. The marked edge (1, 2) of G in next iteration. 

 

According to the Fig. 9. The next minimum non zero 

element 0.442 is marked, and corresponding edges (3, 4) are 

also colored 
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S =  

Fig. 9. The marked next minimum entries 0.442 of S. 

 
            Fig. 10. The marked edge (3, 4) of G in next iteration. 

 

According to the figure 11. The next minimum non zero 

element 0.5 is marked. But while drawing the edges it 

produces the cycle. So we delete and mark it as 0 instead of 

0.5 

S =  

          Fig. 11. The marked next minimum entries 0.5 of S. 

 

The next non zero minimum entries 0.525 is marked it is 

shown in the Fig. 12. But while drawing the edges it produces 

the cycle. So, we delete and mark it as 0 instead of 0.525 

S  =  

            Fig. 12. The marked next minimum entries 0.525 of S. 

 

According to the Fig. 13. The next minimum non zero 

element 0.583 is marked. But while drawing the edges it 

produces the cycle so we delete and mark it as 0 instead of 

0.583. 

 

S   =  

Fig. 13. The marked next minimum entries 0.583 of S. 

 

After the above steps, the final path of minimum cost of 

spanning tree of G is portrayed in Fig. 14. 

 

Fig. 14. Final path of minimum cost of spanning tree of G. 

 

Using the above steps described in section 4, hence,  the 

crisp minimum cost spanning tree is 1,641 and the final path 

of minimum cost of spanning tree is{2,1},{1, 4},{4, 3},{3, 

5}. 

V. Comparative STUDY 

In order to illustrate the rationality and effectiveness of the 

proposed method, we apply the algorithm proposed by Mullai 

et al. [18] on our IVBN-graph presented in Section 4. 

Following the setps of Mullai’s algorithm we obtained the 

results 

Iteration 1:   

Let ={1} and  ={2, 3,4 ,5} 

Iteration 2:  

Let ={1,4} and  ={2, 3 ,5} 

Iteration 3: 

Let ={1,4, 2} and  ={3, 5} 

Iteration 4:  

Let ={1,4, 2, 3} and  ={5} 

Finally, IVBN minimal spanning tree is  

 

Fig. 15. IVBN minimal spanning tree obtained by Mullai’s algorithm. 

 

So, it can be seen that the IVBN minimal spanning tree {2, 

1},{1, 4},{4, 3},{3, 5}obtained by Mullai’s algorithm, After 

deneutrosophication of edges’weight using the score function, 

is the same as the path obtained by proposed algorithm. 

The difference between the proposed algorithm and 

Mullai’s algorithm is that our approach is based on Matrix 

approach, which can be easily implemented in Matlab, 

whereas the  Mullai’s algorithm is based on the comparison 

of edges  the in each iteration of the algorithm, which  leads to 

high computation. 

 

VI. CONCLUSION 

This paper deals with minimum spanning tree problem  on 

a network where the edges weights are represented by an 

interval valued bipolar neutrosophic numbers. This work can 

be extended to the case of directed neutrosophic graphs and 

other types of neutrosophic graphs . 
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