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Mobile cloud computing (MCC) has attracted extensive attention in recent years. With the prevalence of MCC, how to select
trustworthy and high quality mobile cloud services becomes one of the most urgent problems. Therefore, this paper focuses on
the trustworthy service selection and recommendation in mobile cloud computing environments. We propose a novel service
selection and recommendation model (SSRM), where user similarity is calculated based on user context information and interest.
In addition, the relational degree among services is calculated based onPropFlow algorithmandweutilize it to improve the accuracy
of ranking results. SSRM supports a personalized and trusted selection of cloud services through taking into account mobile user’s
trust expectation. Simulation experiments are conducted on ns3 simulator to study the prediction performance of SSRM compared
with other two traditional approaches. The experimental results show the effectiveness of SSRM.

1. Introduction

Mobile cloud computing (MCC) is a new computing model
where cloud computing (CC) is integrated into mobile
computing environments. The new computing model breaks
through the resource limitation of mobile terminals by
moving data processing and storage from mobile device to
cloud service platforms via wireless networks. Rich mobile
applications can be easily created and accessed just based on
web browser on the mobile devices [1]. The architecture of
MCC is shown as in Figure 1. Internet content providers in
Figure 1 put video information, games, and news resources
in appropriate data centers in order to provide users with
more rich and efficient content services. Mobile users use
the wireless connections to access the data centers of public
clouds over the Internet. Data centers of public clouds are dis-
tributed in different locations and provide users with elastic
and scalable computing or storage services. In addition, some
mobile users with the demand for higher privacy protection,
lower network latency, and energy consumption can connect
to cloudlets via local area networks. A cloudlet located at the
edge of the Internet is a mobility-enhanced small-scale cloud

datacenter, which extends cloud computing infrastructure
[2].

MCC is derived from cloud computing; thus it inher-
its the advantages of cloud computing such as dynamic
development of mobile applications, resource scalability,
multiuser sharing, and multiservice integration. But, quite
apart from that, it has also some problems including resource
limits, weak battery strength, user mobility, and low network
coverage. With the prevalence of MCC, more and more
Internet users from mobile devices use cloud computing
services through wireless interface (e.g., GPRS/3G/WiFi). As
shown in Figure 1, there exit abundant functionally similar
cloud services provided by different cloud service providers.
Therefore, how to select appropriate cloud services formobile
users becomes one of the most urgent problems.

To address the problem of cloud service selection and rec-
ommendation, researchers have done many notable works in
cloud computing literature [3–7]. The most of existing meth-
ods mainly depend on ranking Quality-of-Service (QoS) to
select an optimal cloud service from a set of functionally
equivalent cloud services. Quality-of-Service (QoS) usually
describes nonfunctional performance of cloud services. QoS
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Figure 1: Architecture of mobile cloud computing.

values of cloud services provide valuable information to assist
decision-making [3].

The challenge here is to recommend an optimal mobile
cloud service based on dynamic QoS properties. In real-
world applications, QoS inMCC is referring to dynamic QoS
properties (packet loss ratio, end-to-end throughput, delay,
etc.), which are affected by the user context information [8].
Context information includes location, time, resource ability
(processing power, memory, or battery capacity), bandwidth,
and status (online or offline). For example, limited bandwidth
and resource ability can make the values of QoS proper-
ties degrade. Naturally, consumers hope to select the most
trustworthy cloud service among abundant candidates by
considering the dynamic context information over multiple
time periods. However, the works done for cloud computing
rarely focus on investigating the influence of user context
information on service selection. User mobility in MCC can
lead to the dynamic changes of user context information.The
selection results of mobile user may vary according to the
changes of user context information. Therefore, user context
information plays an important role when designing such
selection and recommendation algorithms.

Moreover, the existingmethods always assume that cloud
services are independent and ignore the fact that the relation
among cloud services has important effect on the accuracy of
recommendation results.The related serviceswill be probably
selected by the same user based on the intuition [9]. For
example, in tourism service scenario the users purchasing
airplane ticket service probably prefer to purchase car rental
service in the future.

To attack this critical challenge, the algorithm for MCC
is expected not only to satisfy the required service level by
user, but also to adapt to dynamic changes of user context

information. In the paper, wemake use of user-based collabo-
rative filtering method to propose a novel context-aware
service selection and recommendationmodel (SSRM), which
combines the user context information, user interest, histori-
cal service usage experiences (QoS value or customer rating)
of cloud services, and the relation among cloud services to
rank the cloud services. Collaborative filtering technologies
[10] in the field of online recommendation system offer us a
strong theoretical foundation to deal with the service selec-
tion and recommendation problem. Recently, they have been
successfully applied to predict themissingQoS value in cloud
computing. Collaborative filtering technologies are catego-
rized as user-based collaborative filtering approaches, item-
based collaborative filtering approaches, and their fusion
approaches. In addition, SSRM only selects trusted mobile
cloud service as candidates for mobile users. Different users
have different trust requirement, the personalized service
selection and recommendation method is thus required by
different users [3]. To support personalized selection of
cloud services, SSRM takes into account mobile user’s trust
expectation through using a trust threshold.

Within the SSRM, there are a fewmodules. Figure 2 shows
the system architecture of SSRM, which supports personal-
ized selection and recommendation of cloud services.

A user requesting service selection and recommendation
is called target user in the model. A user providing historical
service usage experiences is called training user. Our aim is
to get the service ranking results from SSRM by predicting
the missing service usage experiences for target user. SSRM
involves the following key steps:

Step 1. A target user requests service selection and recom-
mendation.
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Figure 2: Architecture of SSRM.

Step 2. User similarities between target user and training
users are calculated based on context similarity and user
interest similarity.

Step 3. Based on the similar values, a set of similar users are
identified.

Step 4. The basic service ranking results are obtained by
taking advantages of the past service usage experiences of
similar users.

Step 5. Relational degree among cloud services is evaluated.
Through utilizing relational degree to improving the accuracy
of ranking results, we succeed in obtaining the ultimate
service ranking results.

Step 6. SSRM only selects trusted mobile cloud services as
candidates based on trust filter module.

Step 7. The ranking prediction results are provided to the
active user.

This paper targets the research task of accurately making
QoS ranking prediction, with consideration of user context
information and the relation among cloud services, according
to the requirements of different application scenarios. This
paper makes the following contributions:

(1) This paper focuses on the trustworthy service selec-
tion and recommendation inmobile cloud computing
environments. We propose a novel service selection
and recommendation model (SSRM), where similar-
ity is calculated based on user context information
and interest.

(2) SSRM calculates the relational degree among services
based on PropFlow algorithm and utilizes relational
degree to improve the accuracy of ranking results.

(3) SSRM supports a personalized and trusted selection
of cloud services through taking into account mobile
user’s trust expectation.

(4) Simulation experiments are conducted on ns3 simu-
lator to study the prediction performance of SSRM
compared with other two traditional approaches:
item-based CF approach (IBCF) and user-based CF
approach (UBCF).The experimental results show the
effectiveness of SSRM.

This paper is organized as follows. Section 2 describes
related work. In Section 3, the proposed SSRM is discussed.
Section 4 describes the test scenario and simulation results.
Finally, we conclude with a summary of our results and
directions for new research in Section 5.

2. Related Work

Mobile cloud computing (MCC) has attracted extensive
attention in recent years, since it provides real-time access
to real-time information through the applications on mobile
devices. The rapid advancements of mobile cloud technology
have been the prime reason for significant expansions in this
market, where there exist abundant functionally similar ser-
vices provided by cloud vendors including Amazon, Google,
Inc., Apple, Inc., and Microsoft Corporation. Markets and
Markets [11] forecast the global mobile cloud market will
grow to over $46.90 Billion by 2019. The exponential growth
of mobile cloud market makes it hard for users to select



4 Wireless Communications and Mobile Computing

the most suitable mobile cloud service. Therefore, how to
select trustworthy and high quality mobile cloud services
becomes one of the most urgent problems. A number of
works have been carried out on cloud service selection issue
including rating-oriented collaborative filtering methods [4,
5], ranking-oriented collaborative filtering methods [3], and
some other methods.

Rating-oriented or ranking-oriented collaborative filter-
ing methods can produce QoS prediction or service rank-
ing using collaborative filtering technology. Rating-oriented
collaborative filtering methods rank the cloud services based
on the predicted QoS values. QoS presents the nonfunctional
properties of cloud services including security, availability,
throughput, and response-time properties. Based on the
service QoS measures, various approaches are proposed for
service selection. Pan et al. [4] propose a trust-enhanced
cloud service selection model based on QoS analysis. In the
model, trust is utilized to find similar neighbors and predict
themissingQoS values. Ding et al. [5] propose a personalized
cloud service selection method to make experience usability
and value distribution to measure the service similarity.
Rating-oriented collaborative filtering approaches first pre-
dict the missing QoS values before making QoS ranking.
The target of rating-oriented approaches is to predict QoS
values as accurate as possible. However, accurate QoS value
prediction may not lead to accurate QoS ranking prediction
[3].

Compared with rating-oriented methods, ranking-
oriented methods predict the QoS rankings directly.
Different from the previous ranking-oriented methods,
Zheng et al. [3] propose a comprehensive study of how to
provide accurate QoS ranking for cloud services. Although
ranking-oriented methods can be used to make optimal
cloud service selection from a set of functionally equivalent
service candidates, these methods ignore the changes of
QoS. QoS in MCCmight vary largely, even for the same type
of mobile cloud services. QoS in MCC are affected by the
user context information. The rating-oriented collaborative
filteringmethods and ranking-oriented collaborative filtering
methods both can help user to predict missing QoS value,
but they did not consider the dynamic QoS properties in
MCC.

Other types of service selection approaches are also
widely examined. The most employed approaches include
multicriteria decision analysis-based service selection [7, 12–
14], reputation-aware service selection [15], adaptive learn-
ing mechanism-based service selection [8, 16], economic
theoretical model-based service selection [17, 18], service
level agreement-based service ranking [6], visualization
framework for service selection [19], and trust evaluation
middleware for cloud service selection [20]. Though these
approaches can efficiently measure service quality, the imple-
mentation of some approaches is time-consuming and costly.

Ma et al. [7] propose a time-aware service selection
approach by using interval neutrosophic set. In the paper, the
strategy for selecting trustworthy services from an abundant
field of candidates involves formulating the problem of time-
aware service selection with tradeoffs between performance-
costs and potential risk as a multicriterion decision-making

(MCDM) problem that creates a ranked services list using
interval neutrosophic set (INS) theory. The experimental
results demonstrate that the proposed approach can work
effectively in both the risk-sensitive service selection mode
and the performance-cost-sensitive service selection mode,
but the approach ignores the changes of user context infor-
mation in MCC environments.

Whaiduzzaman et al. [12] identify and synthesize several
multicriteria decision analysis (MCDA) techniques and pro-
vide a comprehensive analysis of this technology for general
readers. In addition, this paper presents a taxonomy derived
from a survey of the current literature. The results show that
MCDA techniques are indeed effective and can be used for
cloud service selection but that different techniques do not
select the same service.

This paper [14] presents a cloud service selectionmethod-
ology that utilizesQuality-of-Service history of cloud services
over different time periods and performs parallel multicri-
teria decision analysis to rank all cloud services in each
time period in accordance with user preferences before
aggregating the results to determine the overall rank of
all the available options for cloud service selection. This
methodology assists the cloud service user to select the best
possible available service according to the requirements. The
main disadvantages are that the framework proposed in this
paper deals with service selection in the preinteraction period
only. Work on postinteraction service migration decisions is
needed, and several other important factors such as the cost
of migration in terms of service disruption and data transfer
also need to be included in the decision-making process.

Fan et al. [15] propose a multidimensional trust-aware
cloud service selection mechanism based on evidential rea-
soning approach which aggregates multidimensional trust
feedback ratings to form the reputation values of the cloud
service providers.Though the experimental results show that
this approach is effective in cloud systems, it can be only used
to recommend an optimal cloud service which satisfies the
key QoS requirements for users.

Wang et al. [16] propose a dynamic cloud service selection
method by using an adaptive learning mechanism, which
involves incentive, forgetting, and degenerate functions that
can realize the self-adaptive regulation for optimizing next
service selection according to the status of current service
selection. To assist users to efficiently select their preferred
cloud services, a cloud service selection model adopting the
cloud service brokers is given in the paper. However, in
the paper the brokerage scheme on cloud service selection
typically assumes that brokers are completely trusted and do
not provide any guarantee over the correctness of the service
recommendations. It is then possible for a compromised
or dishonest broker to easily take advantage of the limited
capabilities of the clients and provide incorrect or incomplete
responses.

Do et al. [17] propose a dynamic service selectionmethod
which provides a price game in heterogeneous cloud market.
The paper studies price competition in a heterogeneous cloud
market, where users can identify benefit and cost of cloud
service application and choose the best one through ana-
lyzing market-relevant factors. But this paper only considers
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one service. In real-world applications, there are many cloud
services in the practical cloudmarket. Additionally, this paper
has not considered service level agreement issues that are also
important for cloud users.

The visualization framework for service selection [19]
takes into cognizance the set of cloud services that matches
a user’s request and based on QoS attributes, users can
interact with the results via bubble graph visualization to
compare and contrast the search results to ascertain the best
alternative. Although the result from the experiments shows
that visualization framework simplifies decision-making, the
use of bubble graph introduces additional complexity for the
user when making a suitable service selection.

The authors [20] discuss themethod of enhancing service
trust evaluation and propose a trustworthy selection frame-
work for cloud service selection, named TRUSS. Aiming
at developing an effective trust evaluation middleware for
TRUSS, this paper proposes an integrated trust evalua-
tion method via combining objective trust assessment and
subjective trust assessment. Simulation-based experiments
validated the performance of the proposed method, but the
method assumes that the majority of service users are honest
and a dishonest user gives more unfair ratings than fair
ratings. This assumption is unrealistic.

Cloud computing and mobile cloud computing are quite
different.Themobile cloudpays attention to services available
through mobile network operators (MNOs like Verizon and
AT&T). While a great number of researchers have focused
on the service selection and recommendation in cloud
computing, little attention has been devoted to trustworthy
service selection in mobile cloud computing. Different from
these existing approaches, our work focuses on how to select
trustworthy and high quality cloud services formobile user in
MCC, which is an urgently required research problem.Thus,
we propose a context-aware cloud service selection method
for mobile cloud computing environments, which considers
user context information and interest in order to calculate
user similarities and utilize relational degree among cloud
services to improve the accuracy of service ranking results.

3. SSRM

In this section, we present a detailed discussion of the
proposed novel service selection and recommendationmodel
(SSRM). Firstly, user similarities are calculated and the
basic personalized service ranking results are obtained in
Section 3.1. Secondly, relational degree is calculated and used
to improve the accuracy of ranking results in Section 3.2.

3.1. User Similarity Computation. Given𝑚users and 𝑛mobile
cloud services, the user-service matrix (USM) for predicting
the missing service usage experiences is denoted as

[[[[
𝑟𝑢1 ,mcs1 ⋅ ⋅ ⋅ 𝑟𝑢1 ,mcs𝑛... d

...𝑟𝑢𝑚 ,mcs1 ⋅ ⋅ ⋅ 𝑟𝑢𝑚 ,mcs𝑛

]]]]
, (1)

where 𝑟𝑢𝑚 ,mcs𝑛 expresses historical service usage experiences
(QoS value or customer rating) of mobile cloud service mcs𝑛
made by user 𝑢𝑚. “𝑟𝑚,𝑛 = null” states that 𝑢𝑚 did not
invoke mcs𝑛 yet. In order to get the ranking results, we firstly
calculate user similarity.The user similarity is measured with
the following equation:

sim𝑈 (𝑢𝑥, 𝑢𝑦) = 𝜆 ∗ sim𝐶 (𝑢𝑥, 𝑢𝑦)
+ (1 − 𝜆) sim𝐼 (𝑢𝑥, 𝑢𝑦) , (2)

where 𝑢𝑥 and 𝑢𝑦 denote two users. sim𝐶(𝑢𝑥, 𝑢𝑦) and
sim𝐼(𝑢𝑥, 𝑢𝑦), respectively, express context similarity and user
interest similarity between 𝑢𝑥 and 𝑢𝑦. 𝜆 is defined to deter-
mine how much similarity measure relies on context and
interest. 𝜆 is in the interval [0, 1].
3.1.1. Context Similarity Computation. Cloud service selec-
tion of a user in a context (e.g., a laptop with enough battery)
may bemuch different from that of another user in a different
context (e.g., a smart phone without enough battery). Hence,
cloud service selection can be significantly affected by user
context. To evaluate the context similarities between target
user and training user, we provide the definition of context.
The definition from [21] is referenced by us. Let 𝑟𝑢𝑥 ,mcs𝑗 be
usage experience of cloud service mcs𝑗 made by user 𝑢𝑥.
Definition 1 (context). Context 𝐶𝑢𝑥 ,mcs𝑗 is any information
that can be used to characterize the situation where usage
experience 𝑟𝑢𝑥 ,mcs𝑗 of cloud service mcs𝑗 is made by user 𝑢𝑥.

Context information has different properties which
include location, resource ability, and status. Let V be the type
of context property of 𝐶𝑢𝑥 ,mcs𝑗 .

The context 𝐶𝑢𝑥 ,mcs𝑗 is denoted as

𝐶𝑢𝑥 ,mcs𝑗 = (𝐶nor
𝑢𝑥,mcs𝑗 (1) , 𝐶nor

𝑢𝑥,mcs𝑗 (2) , . . . ,
𝐶nor
𝑢𝑥,mcs𝑗 (V)) , (3)

where 𝐶nor
𝑢𝑥,mcs𝑗(V) is the normalized property value.

Pearson Correlation Coefficient (PCC) has been success-
fully employed to obtain the numerical distance between
different users for similarity calculation [4, 5]. Let 𝑢𝑥 and 𝑢𝑦
be two users; then PCC is applied to calculate the context
similarity between 𝑢𝑥 and 𝑢𝑦 over service mcs𝑗 by

sim𝐶mcs𝑗
(𝑢𝑥, 𝑢𝑦) = ∑V

𝑠=1 (𝐶nor
𝑢𝑥 ,mcs𝑗 (𝑠) − 𝐶nor

𝑢𝑥,mcs𝑗 (𝑠)) (𝐶nor
𝑢𝑦,mcs𝑗 (𝑠) − 𝐶nor

𝑢𝑦,mcs𝑗 (𝑠))√∑V
𝑠=1 (𝐶nor

𝑢𝑥,mcs𝑗 (𝑠) − 𝐶nor
𝑢𝑥,mcs𝑗 (𝑠))2√∑V

𝑠=1 (𝐶nor
𝑢𝑦,mcs𝑗 (𝑠) − 𝐶nor

𝑢𝑦 ,mcs𝑗 (𝑠))2 , (4)
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where sim𝐶mcs𝑗
(𝑢𝑥, 𝑢𝑦) expresses the context similarity

between 𝑢𝑥 and 𝑢𝑦 and it is in the interval of [−1, 1], and𝐶𝑢𝑥 ,mcs𝑗(𝑠) and 𝐶𝑢𝑦 ,mcs𝑗(𝑠) stand for the average values of
context.

3.1.2. Interest Similarity Computation. In mobile cloud com-
puting environments, each user lives in a large network of
friends which is called social network. It has been reported
that user interests’ similarity can be leveraged to support
services and products recommendation [22]. A user prefers
to choose the items recommended by other users with
similar interest in a social network. Exploring those users
of a high interest similarity with the existing clients could
efficiently enlarge client groups for cloud service providers
[22].

Here, we use cosine similarity to compute interest similar-
ity, similar to [22]. Interest similarity between users 𝑢𝑥 and 𝑢𝑦
is then defined as the cosine distance between their respective
cloud service invocation sets:

sim𝐼 (𝑢𝑥, 𝑢𝑦) = 󵄩󵄩󵄩󵄩󵄩󵄩𝐼𝑢𝑥 ∩ 𝐼𝑢𝑦󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐼𝑢𝑥󵄩󵄩󵄩󵄩󵄩 ⋅ 󵄩󵄩󵄩󵄩󵄩󵄩𝐼𝑢𝑦󵄩󵄩󵄩󵄩󵄩󵄩 , (5)

where ‖𝐼𝑢𝑥‖ = √𝑙𝑢𝑥 (𝑙𝑢𝑥 is the number ofmobile cloud services
which have been invoked by 𝑢𝑥) and ‖𝐼𝑢𝑥 ∩𝐼𝑢𝑦‖ is the number
of mobile cloud services which have been coinvoked by 𝑢𝑥
and 𝑢𝑦. If 𝑙𝑢𝑥 = 0 or 𝑙𝑢𝑦 = 0, sim𝐼(𝑢𝑥, 𝑢𝑦) is undefined.

Cloud service invocation is an important factor to deter-
mine the interest of users [5]. For example, user 𝑢𝑥 has
invoked mobile cloud services mcs1, mcs3, mcs6, and mcs7,𝑢𝑦 has invoked mcs6 and mcs7, and 𝑢𝑧 has invoked mcs1 and
mcs2. Though 𝑢𝑥, 𝑢𝑦, and 𝑢𝑧 do not know each other in real
world, and 𝑢𝑥 and 𝑢𝑦 have a high interest similarity than 𝑢𝑥
and 𝑢𝑧, as they both invoked mcs6 and mcs7 [4].

3.1.3. Getting Initial Ranking Results. We first predict the
missing value 𝑟𝑢𝑥 ,mcs𝑗 of mobile cloud service mcs𝑗 made
by user 𝑢𝑚 before making initial ranking results. For every
mobile cloud service, only the Top-𝑘 similar training user
is selected to make missing value prediction. Based on the
sim𝑈(𝑢𝑥, 𝑢𝑦) values, a set of the Top-k similar training users𝑁𝐶mcs𝑗

(𝑢𝑥) over service mcs𝑗 is identified for target user 𝑢𝑥
by

𝑁𝐶mcs𝑗
(𝑢𝑥)

= {𝑢𝑦 | 𝑢𝑦 ∈ TS𝑢𝑥 , sim𝑈 (𝑢𝑥, 𝑢𝑦) > 0, 𝑢𝑥 ̸= 𝑢𝑦} , (6)

where TS𝑢𝑥 is a set of the Top-k similar training users to target
user 𝑢𝑥 and sim𝑈(𝑢𝑥, 𝑢𝑦) > 0 excludes the dissimilar user
with negative similar values. The value of sim𝑈(𝑢𝑥, 𝑢𝑦) in (6)
is calculated by (2). The missing value 𝑟𝑢𝑥,mcs𝑗 is predicted as
follows:

𝑟𝑢𝑥,mcs𝑗= 𝑟𝑢𝑥
+ ∑𝑢𝑦∈𝑁𝐶mcs𝑗

(𝑢𝑥)
(𝑟𝑢𝑦 ,mcs𝑗 − 𝑟𝑢𝑦) sim𝑈 (𝑢𝑥, 𝑢𝑦)∑𝑢𝑦∈𝑁𝐶mcs𝑗
(𝑢𝑥)

sim𝑈 (𝑢𝑥, 𝑢𝑦) ,
(7)

where 𝑟𝑢𝑥 and 𝑟𝑢𝑦 are the average value of service usage
experiences (QoS value or customer rating) of mobile cloud
service made by users 𝑢𝑥 and 𝑢𝑦, respectively. As different
QoS properties have different dimensions and range of values,
we first ensure predicted missing values in the range of [0, 1].
In [5], QoS properties are classified into two categories: “cost”
and “benefit.” For “cost” property (response-time), the lower
its value is, the greater possibility that a user would choose
it becomes. In SSRM, all QoS properties are considered
as “benefit” attribute. Normalized missing value 𝑄𝑢𝑥 ,mcs𝑗 is
computed as follows:

𝑄𝑢𝑥 ,mcs𝑗

=
{{{{{{{{{{{{{{{

𝑟𝑢𝑥,mcs𝑗 − min (𝑟𝑢𝑥)
max (𝑟𝑢𝑥) − min (𝑟𝑢𝑥) , 𝑟𝑢𝑥,mcs𝑗 ∈ “benefit”

max (𝑟𝑢𝑥) − 𝑟𝑢𝑥,mcs𝑗

max (𝑟𝑢𝑥) − min (𝑟𝑢𝑥) , 𝑟𝑢𝑥,mcs𝑗 ∈ “cost”,
(8)

where min(𝑟𝑢𝑥) and max(𝑟𝑢𝑥) denote the minimum and
maximumQoSproperty value for user𝑢𝑥 and they are subject
to the following constraints:

min (𝑟𝑢𝑥) = min (𝑟𝑢𝑥,mcs𝑗 | 𝑗 = 1, . . . , 𝑛)
max (𝑟𝑢𝑥) = max (𝑟𝑢𝑥 ,mcs𝑗 | 𝑗 = 1, . . . , 𝑛) . (9)

𝑄𝑢𝑥 ,mcs𝑗 is in the range of [0, 1]. The larger its value is,
the more possibility that user 𝑢𝑥 would be satisfied with the
service becomes. Finally, the cloud services are ranked for 𝑢𝑥
in the order of decreasing 𝑄𝑢𝑥,mcs𝑗 values for cloud service
selection, similar to [4].The basic ranking algorithm is shown
in Algorithm 1. The basic ranking algorithm is similar to [3].
Compared with [3–5], in our ranking algorithm, the user
similarity is measured based on user context information
and user interest. In addition, the basic ranking algorithm is
enhanced in Section 3.2. In the enhanced ranking algorithm,
we calculate the relational degree among cloud services and
utilize it to improve the accuracy of ranking results.

The basic algorithm ranks the employed mobile cloud
service in 𝐸 based on the observed historical service usage
experiences. The ranking results are stored in 𝑅𝑒(𝑡) which is
in the interval [1, |𝐸|]. A smaller value shows a higher rank.𝑡 expresses a mobile cloud service. For every cloud service
mcs𝑗, normalized value 𝑄𝑢𝑥 ,mcs𝑗 is calculated. Services are
ranked from high to low by picking up the service 𝑡 that has
the maximum 𝑄𝑢𝑥,mcs𝑗 value.
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Input:
an employed service set 𝐸;
a full service set 𝐼;
an employed similar training user set 𝑁𝐶mcs𝑗

(𝑢𝑥);
observed service usage experience values 𝑟𝑢𝑦 ,mcs𝑗 (𝑢𝑦 ∈ 𝑁𝐶mcs𝑗

(𝑢𝑥))
Out:
a service ranking �̂�𝐹 = 𝐸;
while 𝐹 ̸= Ø do𝑡 = argmaxmcs𝑗∈𝐹𝑄𝑢𝑥 ,mcs𝑗 ;𝑅𝑒(𝑡) = |𝐸| − |𝐹| + 1;𝐹 = 𝐹 − {𝑡};
end
foreach mcs𝑗 ∈ 𝐼 do

𝑄𝑢𝑥 ,mcs𝑗 =
{{{{{{{{{

𝑟𝑢𝑥 ,mcs𝑗 − min(𝑟𝑢𝑥 )
max(𝑟𝑢𝑥 ) − min(𝑟𝑢𝑥 ) , 𝑟𝑢𝑥 ,mcs𝑗 ∈ “benefit”

max(𝑟𝑢𝑥 ) − 𝑟𝑢𝑥 ,mcs𝑗

max(𝑟𝑢𝑥 ) − min(𝑟𝑢𝑥 ) , 𝑟𝑢𝑥 ,mcs𝑗 ∈ “cost”

end𝑛 = |𝐼|;
while 𝐼 ̸= Ø do𝑡 = argmaxmcs𝑗∈𝐼𝑄𝑢𝑥 ,mcs𝑗�̂�(𝑡) = 𝑛 − |𝐼| + 1;𝐼 = 𝐼 − {𝑡};
end

end

Algorithm 1: Basic ranking algorithm.

3.2. Improving Accuracy of Ranking Results. Through calcu-
lating the similar relation among users, the missing value𝑟𝑢𝑥,mcs𝑗 is successfully predicted in Section 3.1. However, the
relation among cloud services is no doubt an important
evaluation factor of missing value prediction. The related
services will be probably selected by the same user based on
the intuition [9].Therefore, we calculate the relational degree
and utilize it to improve the accuracy of missing value 𝑟𝑢𝑥,mcs𝑗
computation in the section. The relational degree between
service mcs𝑗 and service mcs𝑖 is denoted as 𝑑𝑗𝑖. In the paper,
PropFlow [23] is used to calculate 𝑑𝑗𝑖. PropFlow algorithm
computes the information flow between services, where a
larger value indicates tighter relation. In order to calculate𝑑𝑗𝑖, we firstly describe the formal definition of service relation
graph.

Definition 2 (service relation graph). Given a set of services
MCS and a totally ordered domain of weights 𝑊, a service
relation graph is a weighted undirected graph 𝐺 = (MCS, 𝐸).
The edge (mcs𝑖;mcs𝑗; 𝑤𝑖𝑗) in the set 𝐸 ∈ 𝑈 × 𝑈 × 𝑊 encodes
the link weight𝑤𝑖𝑗 (𝑤𝑖𝑗 ≥ 0) between service mcs𝑖 and service
mcs𝑗. An edge depicts the direct link relationship between
mcs𝑖 and mcs𝑗. As 𝐺 is undirected, 𝑤𝑖𝑗 = 𝑤𝑗𝑖.

Equation (10) shows how to calculate 𝑑𝑗𝑖.
𝑑𝑗𝑖 = Input𝑗 ∗ 𝑤𝑗𝑖∑𝑘∈𝑁(𝑗) 𝑤𝑗𝑘 , (10)

Ｇ＝Ｍℎ

Ｇ＝ＭiＧ＝Ｍl

Ｇ＝Ｍe

Ｇ＝Ｍf

Ｇ＝Ｍj Ｇ＝Ｍk

wkl = 1 wli = 5

wle = 1

wie = 1wke = 1

wkℎ = 2

wjk = 3

wjf = 1

Figure 3: An example of service relation graph.

where initial input is regarded as 1 and 𝑁(𝑗) is the set of
neighbors of mcs𝑗.

Figure 3 shows an example of relation degree computa-
tion, where there are six kinds of mobile cloud services. mcs𝑖
and mcs𝑗 are indirectly linked. We assume mcs𝑗 is starting
node.

Four paths can reach mcs𝑖 from mcs𝑗, but only two
paths are considered for computation based on PropFlow
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algorithm. They are mcs𝑗 → mcs𝑘 → mcs𝑙 → mcs𝑖 and
mcs𝑗 → mcs𝑘 → mcs𝑒 → mcs𝑖.

First, we compute 𝑑𝑗𝑘. The sum of link weights of mcs𝑗
and its neighbor is 4. 𝑑𝑗𝑘 is computed as

𝑑𝑗𝑘 = 1 ∗ 3(1 + 3) = 1 ∗ 34 = 34 . (11)

𝑑𝑘𝑙 is computed as

𝑑𝑘𝑙 = 𝑑𝑗𝑘 ∗ 1(1 + 1 + 2) = 34 ∗ 14 = 316 . (12)

With the same method, 𝑑𝑗𝑖 is computed as

𝑑𝑗𝑖 = 𝑑𝑙𝑖 + 𝑑𝑒𝑖 = 𝑑𝑘𝑙 ∗ 55 + 𝑑𝑘𝑒 ∗ 11 = 38 . (13)

More details of calculating 𝑑𝑗𝑖 are shown in [24].
Next, we assume service mcs𝑖 is invoked recently by user𝑢𝑥. 𝑑𝑗𝑖 is incorporated into (7), and then, the missing value𝑟𝑢𝑥,mcs𝑗 is computed with (14) in basic ranking algorithm.

Finally, the ultimate ranking results are got

𝑟𝑢𝑥 ,mcs𝑗 = (𝑟𝑢𝑥
+ ∑𝑢𝑦∈𝑁𝐶mcs𝑗

(𝑢𝑥)
(𝑟𝑢𝑦 ,mcs𝑗 − 𝑟𝑢𝑦) sim𝑈 (𝑢𝑥, 𝑢𝑦)∑𝑢𝑦∈𝑁𝐶mcs𝑗
(𝑢𝑥)

sim𝑈 (𝑢𝑥, 𝑢𝑦) )
⋅ (1 + 𝑑𝑗𝑖) .

(14)

In SSRM, we only select trusted mobile cloud service
as candidates. Therefore, a set of trusted candidates are
identified for 𝑢𝑥 by

MCS𝑥 = {mcs𝑗 | trustmcs𝑗 > 𝜇𝑥, 𝑗 = 1, . . . , 𝑁} , (15)

where trustmcs𝑗 denotes the trustworthiness of mobile cloud
service mcs𝑗 and 𝜇𝑥 expresses the trust threshold decided
by user 𝑢𝑥. Many existing methods [4–6] can be applied to
compute trustmcs𝑗 . Here, how to compute trustmcs𝑗 is not to
be discussed. We omit the details for brevity.

4. Experimental Study

In this section, in order to evaluate the effectiveness of
SSRM, a series of test scenarios are developed. To study
the prediction performance, we compare SSRM with other
two traditional approaches: item-based CF approach (IBCF)
and user-based CF approach (UBCF). SSRM, IBCF, and
UBCF are rating-oriented methods, which rank the cloud
services based on the predicted QoS values. Since there is
no suitable real data supporting mobile cloud computing
simulation, we use ns3 simulator to generate the experimental
dataset. Firstly, we generated cloud service invocation codes

by Axis2 [25], a Java-based open source package for cloud
services. Then we simulate mobile cloud service on ns3
[26] based on the invocation codes. On ns3, the creation
of servers, mobile users, and service model was easier than
with other network simulators. In the simulating process of
dataset, the real-world web service QoS dataset from WS-
DREAM team [3] is referenced by us.The detailed real-world
QoS values are publicly released online [27], which makes
our experimental evaluations reproducible. We simulate 100
mobile users, 25 servers, and 300 services. The value of link
weight between two services is randomly generated, which is
in the range of [1, 5]. In order to conduct our experiments
realistically, the changes of user context information are
simulated. Three types of context are considered including
bandwidth, memory, and battery capacity. The bandwidth
value of a mobile user is in the range of 4M–8M.The values
of memory and battery capacity will decline over time.These
values are in the range of 100000000–2100000000MB and
0.5–2KVA.

We normalize the context information by

𝐶nor
𝑢𝑥,mcs𝑗 (V) = 𝑎 tan (𝐶𝑢𝑥 ,mcs𝑗 (V)) ∗ 2𝜋 , (16)

where 𝐶nor
𝑢𝑥,mcs𝑗(V) denotes the normalized context value of

user 𝑢𝑥 over cloud service mcs𝑗. Inverse tangent function is
applied to normalize the raw data 𝐶𝑢𝑥 ,mcs𝑗(V). Then, these
normalized property values are used to calculate context
similarity with (4). Once the context simulation is finished,
the target user 𝑢𝑥 will obtain context similarity results for
each cloud service.

Similar to [3], QoS properties include throughput and
response-time that are in the range of 0–1000 kbps and 0–20
second, respectively. Most of the throughput and response-
time values fall between 5–40 kbps and 0.1–0.8 seconds. In
order to simply the experimental process, 200 service QoS
records are randomly selected and two 100 × 200 user-service
matrices are constructed. The two matrices include through-
put and response-time, respectively.User-servicematrices are
separated into two parts: training set (80% historical usage
experiences in the matrix) and test set (the remaining 20%
usage experiences). Each entry in the matrix is the QoS
value (e.g., response-time or throughput) of a mobile cloud
service observed by a user. The experiments employ the QoS
values of response-time and throughput to rank the services
independently. Table 1 shows descriptions of the obtained
practical cloud service QoS values and context information.

We use Mean Absolute Error (MAE) and Root Mean
Square Error (RMSE) as the metric to evaluate prediction
performance of the proposed approach in comparison with
other approaches. MAE and RMSE are defined as

MAE = ∑𝑢𝑥 ,mcs𝑗

󵄨󵄨󵄨󵄨󵄨󵄨𝑟act𝑢𝑥,mcs𝑗 − 𝑟pre𝑢𝑥,mcs𝑗
󵄨󵄨󵄨󵄨󵄨󵄨𝑙pre ,

RMSE = √ ∑𝑢𝑥 ,mcs𝑗 (𝑟act𝑢𝑥,mcs𝑗 − 𝑟pre𝑢𝑥 ,mcs𝑗)2𝑙pre ,
(17)
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Figure 4: Impact of weighting factor 𝜆.

Table 1: Mobile cloud service QoS dataset and context information
descriptions.

Statistics Value
Number of mobile cloud service
invocations 180,000

Number of service users 100
Number of mobile cloud services 200
Minimum response-time value 0.004 s
Maximum response-time value 20 s
Mean of response-time 1.10 s
Standard deviation of
response-time 2.26 s

Minimum throughput value 0.1 kbps
Maximum throughput value 1000 kbps
Mean of throughput 25.46 kbps
Standard deviation of throughput 48.03 kbps
Bandwidth 4M–8M
Memory 100000000MB–2100000000MB
Battery capacity 0.5 KVA–2KVA

where 𝑟act𝑢𝑥,mcs𝑗 and 𝑟pre𝑢𝑥,mcs𝑗 denote the actual QoS value
and predicted value, respectively. 𝑙pre is the number of
predicted QoS values. Smaller values of MAE and RMSE
indicate better results.

4.1. Impact of 𝜆. 𝜆 is weighting factor in (2). 𝜆 determines
how much similarity measure relies on context and interest.
In the experiment, we vary the weighting factor 𝜆 from 0 to 1
in increment of 0.1. The Top-k is set to 5. Matrix density is set
to 10%. Matrix density means the percentage of selected QoS
entries that are used to predict the missing QoS value. The
experimental results are shown in Figure 4. As the value of 𝜆
increases, MAE firstly decreases and then quickly increases.
When 𝜆 = 0.4, our results have the best value. As shown in
Figure 4(b), RMSE presents similar trend.

4.2. Performance Comparison of SSRM, IBCF, and UBCF.
To compare the performance of SSRM, IBCF, and UBCF
similarity computation methods, we implement IBCF and
UBCF methods.

Item-Based CF Approach (IBCF). We apply PCC to calculate
similarities between users and predicted QoS values based on
similar users. The user similarity is calculated by

sim (𝑢𝑥, 𝑢𝑦) = ∑mcs𝑗∈mcs𝑢𝑥,𝑢𝑦
(𝑟𝑢𝑥 ,mcs𝑗 − 𝑟𝑢𝑥) (𝑟𝑢𝑦 ,mcs𝑗 − 𝑟𝑢𝑦)

√∑mcs𝑗∈mcs𝑢𝑥,𝑢𝑦
(𝑟𝑢𝑥,mcs𝑗 − 𝑟𝑢𝑥)2√∑mcs𝑗∈mcs𝑢𝑥,𝑢𝑦

(𝑟𝑢𝑦,mcs𝑗 − 𝑟𝑢𝑦)2 , (18)
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where mcs𝑢𝑥,𝑢𝑦 is the set of mobile cloud services that have
been coinvoked by 𝑢𝑥 and 𝑢𝑦. 𝑟𝑢𝑥and 𝑟𝑢𝑦 are average QoS
values of cloud service invoked by 𝑢𝑥 and 𝑢𝑦, respectively.

User-Based CF Approach (UBCF). We apply PCC to calculate
similarities between services and predicted QoS values based
on similar services. The service similarity is calculated by

sim (mcs𝑗,mcs𝑖) = ∑𝑢𝑥∈𝑢mcs𝑗,mcs𝑖
(𝑟𝑢𝑥,mcs𝑗 − 𝑟mcs𝑗) (𝑟𝑢𝑥 ,mcs𝑖 − 𝑟mcs𝑖)

√∑𝑢𝑥∈𝑢mcs𝑗,mcs𝑖
(𝑟𝑢𝑥,mcs𝑗 − 𝑟mcs𝑗)2√∑𝑢𝑥∈𝑢mcs𝑗,mcs𝑖

(𝑟𝑢𝑥,mcs𝑖 − 𝑟mcs𝑖)2 , (19)

where 𝑢mcs𝑗,mcs𝑖 is the set of users who have invoked the cloud
services mcs𝑗 andmcs𝑖. 𝑟mcs𝑗 and 𝑟mcs𝑖 are average QoS values
of cloud services mcs𝑗 and mcs𝑖 made by 𝑢𝑥.

In the experiments, trustworthiness of cloud service has
no influence on similarity computation and service decision
in the experiments. In order to simplify the experimental
process, we consider all cloud services are trustworthy.
Weighting factor 𝜆 is set to 0.4. We firstly study the effect
of neighbor size 𝑘. Matrix density is set to 10%. We change𝑘 from 5 to 30 in increment of 5. Figure 5 shows the
experimental results for response-time and throughput.

As shown in Figure 5, the prediction performance of
SSRM outperforms other two approaches. The performance
of IBCF is similar to UBCF. As the values of 𝑘 increase, better
accuracy can be achieved. This indicates that more similar
neighbor records can provide more information for missing
value prediction. However, when 𝑘 is larger than 25, MAE
and RSME fail to drop with the value of 𝑘 increasing. The
main reason is the limited number of similar neighbors. The
observations also show that RMSE has the similar trend, but
with larger fluctuations.

Next, we investigate the impact of matrix density. The
matrix density varies from 10% to 50% in increment of
10%. Similar user size k is set to 5 in this experiment.
Figure 6 shows the experimental results for response-time
and throughput.

As presented in Figure 6, the prediction performance is
also enhanced with the value of matrix density increasing.
The main reason is that denser user-service matrix provides
more information for missing value prediction. NARM has
the better performance than LBCF and UBCF under all
experimental setting consistently, since NARM considers
context similarity and the relational degree among cloud
services. The experimental results of LBCF and UBCF are
similar in this experiment, since these two similarity compu-
tation methods are similar to each other and are both rating-
oriented.

4.3. Performance Comparison with Other Popular Approaches.
To study the prediction performance of SSRM, we com-
pare SSRM with three existing QoS properties prediction
approaches: CloudRank2 [3], TECSS [4], and JV-PCC [5].

The size of Top-𝑘 similar service is an important factor
in CF approach, which determines how many neighbors’
historical records are employed to generate predictions [5].
Therefore, the impact of matrix density is not considered in

the experiments. We set the density to 10%. We vary 𝑘 from 5
to 30 in increment of 5. In order to simplify the experimental
process, we consider all cloud services are trustworthy.
Figure 7 shows the experimental results for response-time
and throughput. Under the same simulation condition, SSRM
significantly outperforms CloudRank2, TECSS, and JV-PCC.
The observations also suggest that better accuracy can be
achieved by our model when more historical records are
available in the service selection study.Themain reason is that
computing context similarity can improve the performance of
prediction evaluation in MCC environments.

Figures 7(a) and 7(b) depict the MAE fractions of SSRM,
CloudRank2, TECSS, and JV-PCC for response-time and
throughput, while Figures 7(c) and 7(d) depict the RMSE
fractions. It can be observed that SSRM achieves smaller
MAE and RMSE consistently than other approaches for both
response-time and throughput.

5. Conclusions and Future

In the paper, we propose a novel service selection and recom-
mendation model (SSRM) for mobile cloud computing envi-
ronments.When calculating user similarity, context informa-
tion and interest are considered. Through utilizing relational
degree to improve the accuracy of ranking result, our service
selection and recommendation method succeed in obtaining
the ultimate service ranking results. In addition, SSRM only
selects trusted mobile cloud service as candidates. Therefore,
a set of trusted candidates are identified for target user. The
experimental results show that our approach significantly
improves the prediction performance as comparedwith other
two traditional approaches: item-based CF approach (IBCF)
and user-based CF approach (UBCF).

There are some disadvantages in our SSRM. Firstly, we
exploit node distance to compute context similarity. There
is an underlying assumption in this exploitation: each of
the two adjacent nodes has equal semantic distance or
granularity of nodes in each level is identical.This underlying
assumption is not true in some scenarios and it deteriorates
the performance of similarity evaluation. Secondly, the trust
threshold is used to select trusted mobile cloud service as
candidates. However, it cannot detect and exclude malicious
QoS values provided by users. Thirdly, in our experiments
there are only three types of context information that are
considered.

Therefore, in the future, we will study the methods to
improve context similarity measurement. We will study how
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Figure 5: Impact of neighbor size 𝑘 comparison with SSRM, IBCF, and UBCF.
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Figure 6: Impact of matrix density comparison with SSRM, IBCF, and UBCF.
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Figure 7: Impact of neighbor size 𝑘 comparison with other popular approaches.
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to select themost trustworthy cloud service of certain type for
the active users based on multidimensional trust evidence.
We also will conduct more experimental investigations that
deal with the impact of different context changes on service
selection. Moreover, we will improve the ranking accuracy
of our approaches by exploiting additional techniques (com-
bining rating-oriented approaches and ranking-oriented
approaches, matrix factorization, intelligent optimization
algorithms, etc.).
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