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In order to process the vagueness in vibration fault diagnosis of rolling bearing, a new correlation coefficient of simplified
neutrosophic sets (SNSs) is proposed. Vibration signals of rolling bearings are acquired by an acceleration sensor, and a
morphological filter is used to reduce the noise effect. Wavelet packet is applied to decompose the vibration signals into eight
subfrequency bands, and the eigenvectors associated with energy eigenvalue of each frequency are extracted for fault features. The
SNSs of each fault types are established according to energy eigenvectors. Finally, a correlation coefficient of two SNSs is proposed
to diagnose the bearing fault types. The experimental results show that the proposed method can effectively diagnose the bearing
faults.

1. Introduction

A rolling bearing is an important rotating part in a mechan-
ical equipment, and its quality decides the operation per-
formance of the equipment. A faulty bearing may cause the
whole equipment to operate abnormally. Bearing faults must
be effectively diagnosed to avoid catastrophic mechanical
failures and significant economic losses.

The vibration signals of rolling bearings often indicate
some fault information. When the fault occurs in rotating
bearings, different characteristic frequencies of vibration
signals can be generated periodically [1]. Actually, for the
original vibration signals, many useful fault features are
usually hidden in noise, and the relationship between fault
symptoms and causations is very complex, so it is difficult
to make accurate and quantitative analysis for fault types.
In recent years, many studies have been devoted to the fault
diagnosis of rolling bearing. There are two critical issues for
diagnosing bearing faults from vibration signals. One issue is
how to extract fault features from vibration signals. Another
one is how to analyze fault features and recognize fault types
according to these features.

In order to extract useful fault features from vibration
signals, many techniques such as time domain, frequency

domain, and time-frequency domainmethods are extensively
investigated [2]. In the time domain method, key parameters
can be extracted directly from the original vibration signals,
such as root mean square (RMS), crest factor, peak, and
probability density function [3]. In addition, time domain
signals can be transformed into frequency domain by Fourier
transform. However, Fourier analysis may cause information
loss during the transformation, particularly for nonstationary
signals. The vibration of a rolling bearing is typically non-
stationary, so it is difficult to extract accurate and complete
fault features when adopting the traditional analysis only in
the time or frequency domain. In time-frequency domain,
thewavelet can revealmore complete information for nonsta-
tionary signals [4]. Many research results show that a wavelet
packet is an effective tool to extract features from vibration
signals for bearing fault diagnosis [5–8].

The next key issue is to recognize fault types of bearings
according to the extracted fault features from vibration
signals. To solve this problem, various approaches such as
expert systems [9, 10], neural networks [3, 11, 12], and fuzzy
approaches [13–15] have been developed for fault diagnosis
over the past few years. Fuzzy theory has attracted increasing
attention in bearing fault diagnosis, and many researches
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show that fuzzy theory is an effective tool to diagnose bearing
faults.

Fuzzy sets (FSs) theory was proposed by Zadeh (1965)
for handling uncertain information using single membership
degree function [16]. The fuzzy sets were extended to intu-
itionistic fuzzy sets (IFSs) [17] and interval valued intuitionis-
tic fuzzy sets (IVIFSs) [18] by usingmembership degree func-
tion, non-membership degree function, and degree function
of hesitation simultaneously. FSs, IFSs, and IVIFSs have been
widely applied in various fields. However, FSs, IFSs, and
IVIFSs cannot deal with some types of uncertainties such as
the indeterminate information and inconsistent information
in real physical problems. Furthermore, Smarandache [19]
proposed neutrosophy theory from philosophical point of
view. Neutrosophic sets (NSs) are characterized by a truth-
membership function, an indeterminacy-membership func-
tion, and a falsity-membership function.The functions ofNSs
take the value from real standard or nonstandard subsets of]−0, 1+[ [19], andNSs are difficult to be applied in engineering
areas. For the real engineering applications, neutrosophic
sets (NSs) can be described as simplified neutrosophic sets
(SNSs) [20] with the normal standard real unit interval[0, 1]. One major advantage of SNSs is the ability to perform
analysis problems involving imprecise, undetermined, and
inconsistent data. Recently, SNSs have been applied in many
different fuzzy problems, such as medical diagnosis problems
[21, 22], decision making problems [20, 23], and image
processing [24].

For vibrational fault diagnosis of rolling bearing, there
is no direct accurate and quantitative relationship between
fault vibration characteristics and fault types. Therefore, the
fault-diagnosis process has certain vagueness. This paper
mainly focuses on the fault diagnosis of rolling bearings
based on vibration signals and SNSs. In this work, a morpho-
logical filter and wavelet packet decomposition are applied
to preprocess the original vibration signals, and the SNSs
of each fault type will be established according to energy
eigenvectors. The fault types will be diagnosed using a new
correlation coefficient of SNSs.

The rest of the paper is organized as follows. Section 2
gives the experimental system. Section 3 gives the data
preprocessing techniques including morphological opening-
closing operation and wavelet packet decomposition. In
Section 4, some basic concepts of SNSs and a new correlation
coefficient are introduced firstly, and then the fault-diagnosis
method is presented based on SNSs. Conclusions of this work
are summarized in Section 5.

2. Experimental Setup

This study was carried out with the experimental apparatus
shown in Figure 1. The principal axis is driven by an AC
motor, and the vibration signals of bearings are acquired by
an acceleration sensor and a data acquiring card NI USB-
6251.The vibration signals will be processed using a computer
and displayed by an oscilloscope. Some vibration signals are
acquired by the experimental device of Jiliang University in
China [25], shown in Figure 2. In this experiment, the type
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Figure 1: Diagram of experimental system. (1)Motor, (2) driver, (3)
principal axis, (4) bearing, (5) core axes, (6) acceleration sensor, (7)
acquisition data card, (8) oscilloscope, and (9) computer.

Figure 2: Experimental device.

Table 1: Bearing parameters.

Parameters Values (mm)
Outer race diameter 35
Inner race diameter 15
Ball diameter d 7.5
Thickness 11
Number of balls 7
Pitch diameter D 25
Contact angle 𝛼 0

of bearings is NSK 6202 deep groove ball bearing whose
specifications are listed in Table 1.

In order to diagnose the fault of bearings, four types of
bearings are used: healthy, outer race fault, inner race fault,
and ball fault bearings.The core axis is driven at the rotational
speed of 25Hz. NI Labview Signal Express will be applied for
data acquisition with 10KHz sampling frequency and 0.2 s
sample time.

When a fault exists in a bearing, vibration impulses will
happen at a specific frequency. Theoretically, when a bearing
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Vibration signals acquisition

Data preprocessing by
morphological filtering

Decompose the vibration signals
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Figure 3: Block diagram of diagnosis for fault bearing using
neutrosophic sets.

rotates at a constant speed, the fault frequencies can be
calculated by the following [26]:

𝐹𝑂 = 𝑁𝐵2 (1 − 𝑑
𝐷 ⋅ cos𝛼) ⋅ 𝐹𝑟,

𝐹𝐼 = 𝑁𝐵2 (1 + 𝑑
𝐷 ⋅ cos𝛼) ⋅ 𝐹𝑟,

𝐹𝐵 = 𝐷
𝑑 [1 − ( 𝑑

𝐷 ⋅ cos𝛼)2] ⋅ 𝐹𝑟,

(1)

where 𝑑 is the diameter of the rolling elements,𝐷 is the pitch
diameter, 𝐹𝑟 is the rotational speed of the shaft, 𝑁𝐵 is the
number of rolling elements, and 𝐹𝑂, 𝐹𝐼, and 𝐹𝐵 represent the
fault frequencies of outer race fault, inner race fault, and ball
fault of a bearing, respectively.

According to (1), we can calculate the fault frequencies𝐹𝑂 = 61.25Hz, 𝐹𝐼 = 113.75Hz, and 𝐹𝐵 = 75.83Hz in this
experiment.

3. Vibration Signal Data Preprocessing

The framework of diagnosing process is shown in Figure 3.
The original vibration signals of bearings are usually

ridden with noise. It is difficult to extract the fault features
directly from original vibration signals. In order to remove
the strong noises and detect the effective signals for bearing
faults diagnosis, data processing algorithms are necessary

to be performed. In this experiment, a morphological filter
is used to remove high frequencies noise from the original
vibration signals firstly, and then wavelet packet is applied to
decompose the signals into the individual frequencies.

3.1. Morphological Filter. A morphological filter is a nonlin-
ear signal processing and analysis tool in time domain, and
it can be composed of several morphological operations [27].
The basic morphological operators include dilation, erosion,
opening, and closing. Assume that 𝑥(𝑛) and a structural
element 𝑦(𝑛) are discrete signals defined in𝑋 = {0, 1, . . . , 𝑁−1} and𝐵 = {0, 1, . . . ,𝑀−1}, respectively, and𝑁 ≥ 𝑀, the four
basic operators of 𝑥(𝑛) on 𝑦(𝑛), are defined as follows:

Dilation

𝑥 ⊕ 𝑦 = max
𝑚=0,1,...,𝑀−1

{𝑥 (𝑛 + 𝑚) + 𝑦 (𝑚)} ,
(𝑛 = 0, 1, . . . , 𝑁 + 𝑀)

(2)

Erosion

𝑥 ⊖ 𝑦 = min
𝑚=0,1,...,𝑀−1

{𝑥 (𝑛 + 𝑚) − 𝑦 (𝑚)} ,
(𝑛 = 0, 1, . . . , 𝑁 + 𝑀) (3)

Opening

𝑥 ∘ 𝑦 = (𝑥 ⊖ 𝑦 ⊕ 𝑦) (4)

Closing

𝑥 ∙ 𝑦 = (𝑥 ⊕ 𝑦 ⊖ 𝑦) (5)

Morphological opening-closing filter as follows:

𝐹oc = (𝑥 ∘ 𝑦 ∙ 𝑦) (6)

In this experiment, the morphological opening-closing
filter 𝐹oc was used to remove the strong noises.

Figures 4–6 show the signals of rolling element bearings
with outer race, inner race, and ball fault, respectively [25].
In these figures, the fault signals have distinguishing peak
value features at the fault frequencies. The results in Figures
4–6 indicate thatmorphological filter is an effective denoising
technique for vibration signals of ball bearings.

3.2. Wavelet Packet Decomposition. According to the struc-
ture of wavelet decomposition, the input vibration signal can
be decomposed into low-frequency and high-frequency parts
for each step.The selection of a suitable level for the hierarchy
depends on the signal, experience, and actual needs [4, 7].
The wavelet packet was applied to decompose the vibration
signals into eight subfrequency bands in the practical appli-
cation [2, 6]. Based on review of earlier researcher, in this
work, 3-level wavelet packet decomposition is considered for
bearing fault diagnosis, and experimental results show that
the bearing fault feature can be extracted effectively from the
decomposed signals.
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(b) Fast Fourier transform after morphological filter

Figure 4: Signals of rolling bearing in outer race fault.
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(b) Fast Fourier transform after morphological filter

Figure 5: Signals of rolling bearing in inner race fault.

In this experiment, the vibration signals of bearing are
preprocessed firstly by a morphological filter and then are
decomposed using 3-level wavelet packet.

Assume that 𝑥(𝑡) is a vibration signal; 𝐿(⋅) and 𝐻(⋅) are
quadrature mirror filters, representing low-pass and high-
pass wavelet filters, respectively. These filters associate with
the scaling function and wavelet function and satisfy the
condition 𝐻(𝑛) = (−1)𝑛𝐿(1 − 𝑛). Then, the signal 𝑥(𝑡)
can be decomposed into a set of high- and low-frequency
components by the following recursive relationships:

𝑥𝑗,2𝑘 = ∑
𝑛

𝐿 (𝑛) ⋅ 𝑥𝑗−1,𝑘,
𝑥𝑗,2𝑘+1 = ∑

𝑛

𝐻(𝑛) ⋅ 𝑥𝑗−1,𝑘,
(7)

where 𝑥𝑗,2𝑘 denotes the wavelet coefficients at the𝑗th level and2𝑘th subband.
The diagram of 3-level wavelet packet decomposition is

shown in Figure 7. In Figure 7, the frequency intervals of each
band can be computed by ((𝑘 − 1)𝑓𝑠/24, 𝑘𝑓𝑠/24], where 𝑓𝑠 is
sampling frequency. In this work, 𝑓𝑠 = 10 kHz and 𝑓𝑠/24 =
625Hz. The frequency intervals are given in Table 2.

The vibration signal 𝑥(𝑡) can be expressed as follows:

𝑥 (𝑡) = 2
3−1∑
𝑘=0

𝑥3,𝑘 (𝑡) , 𝑘 = 0, 1, . . . , 7, (8)

where 𝑘 represents eight subfrequency bands and𝑥3,𝑘(𝑡) is the
wavelet coefficient at the 3-level and 𝑘th subfrequency band.

Table 2: Frequency intervals of eight subfrequency bands.

Signals Frequency (Hz)
𝑥3,0 (0, 625]
𝑥3,1 (625, 1250]
𝑥3,2 (1250, 1875]
𝑥3,3 (1875, 2500]
𝑥3,4 (2500, 3125]
𝑥3,5 (3125, 3750]
𝑥3,6 (3750, 4375]
𝑥3,7 (4375, 5000]

After the decomposition, the energy in each subfrequency
band can be defined as

𝐸𝑘3 = ∫ 󵄨󵄨󵄨󵄨𝑥3,𝑘 (𝑡)󵄨󵄨󵄨󵄨2 𝑑𝑡 =
𝑁∑
𝑖=0

󵄨󵄨󵄨󵄨𝑥3,𝑘 (𝑖)󵄨󵄨󵄨󵄨2 , 𝑘 = 0, 1, . . . , 7, (9)

where 𝑥3,𝑘(𝑖) is the 𝑖th discrete point amplitude of wavelet
coefficient (𝑥3,𝑘(𝑡)) and𝑁 is its discrete point number in each
subfrequency.

The faults of rolling bearings will greatly influence the
wavelet packet energy of vibration signals, so it is very
useful to extract the energy eigenvalue for diagnosing bearing
faults. In this experiment, an eigenvector based on energy
eigenvalue of each frequency can be constructed as follows:

𝑇 = {𝐸03, 𝐸13, 𝐸23, 𝐸33, 𝐸43, 𝐸53, 𝐸63, 𝐸73} . (10)
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(b) Fast Fourier transform after morphological filter

Figure 6: Signals of rolling bearing in ball fault.

Table 3: Energy interval ranges at the eight subfrequency bands.

Fault types Energy in each frequency band
𝐸∗03 𝐸∗13 𝐸∗23 𝐸∗33 𝐸∗43 𝐸∗53 𝐸∗63 𝐸∗73𝐴1 (healthy) [0.76, 0.80] [0.95, 1.00] [0.11, 0.15] [0.64, 0.71] [0.04, 0.06] [0.00, 0.02] [0.01, 0.05] [0.00, 0.03]

𝐴2 (outer race fault) [1.00, 1.00] [0.24, 0.39] [0.02, 0.03] [0.13, 0.22] [0.00, 0.01] [0.00, 0.01] [0.01, 0.01] [0.01, 0.01]
𝐴3 (ball fault) [0.82, 0.93] [1.00, 1.00] [0.11, 0.16] [0.65, 0.74] [0.06, 0.08] [0.00, 0.04] [0.02, 0.06] [0.00, 0.01]
𝐴4 (inner race fault) [1.00, 1.00] [0.49, 0.55] [0.06, 0.10] [0.20, 0.24] [0.00, 0.00] [0.02, 0.03] [0.03, 0.05] [0.03, 0.06]

HL

H HL

H H H HL L L L

L

Vibration signal x(t)

x1,0

x2,0

x3,0 x3,1 x3,2 x3,3 x3,4 x3,5 x3,6 x3,7

x2,1 x2,2 x2,3

x1,1

Figure 7: Diagram of 3-level wavelet packet decomposition (L: low-
pass filter, H: high-pass filter).

Furthermore, assume that 𝐸3max is the maximum value of
the energy eigenvalue in the 3-level subfrequency band, and
then the eigenvalues can be normalized as follows:

𝐸∗𝑘3 = 𝐸𝑘3𝐸3max
, 𝑘 = 0, 1, . . . , 7. (11)

By the above normalization, the energy eigenvalue of the
wavelet packet energy of vibration signals was bounded to

[0, 1], and then the normalized eigenvector can be described
as follows:

𝑇∗ = {𝐸∗03 , 𝐸∗13 , 𝐸∗23 , 𝐸∗33 , 𝐸∗43 , 𝐸∗53 , 𝐸∗63 , 𝐸∗73 } . (12)

The normalized energy eigenvalues of vibration signals
are shown in Figure 8.

For diffident type faults of bearing, the eigenvalue of
the wavelet packet energy has the distinguishing distribution
at the individual subfrequency band. According to a lot of
experimentation and data comparison, we extract the lower
bound and upper bound of the energy eigenvalues for typical
faults of bearing and establish the energy interval ranges as
shown in Table 3, and the energy interval ranges can be used
to diagnose fault types of rolling bearings in the next step.

4. Fault Diagnosis of Rolling Bearing
Based on SNSs

In this section, we briefly introduce basic concepts of simpli-
fied neutrosophic sets (SNSs) and propose a new correlation
coefficient of two SNSs, which will be needed in the following
analysis.Then, we establish the fault SNSs of bearings accord-
ing to energy features. Finally, we present the method for
fault diagnosis of rolling bearing according to the correlation
coefficient of SNSs.

4.1. Simplified Neutrosophic Sets (SNSs)

Definition 1 (see [19]). Let𝑈 be a universe of discourse; then,
the neutrosophic set (NS) 𝐴 is defined by

𝐴 = {⟨𝑥, 𝑇𝐴 (𝑥) , 𝐼𝐴 (𝑥) , 𝐹𝐴 (𝑥)⟩ , 𝑥 ∈ 𝑈} , (13)
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Figure 8: Energy histogram of rolling bearing.

where the functions 𝑇𝐴(𝑥), 𝐼𝐴(𝑥), and 𝐹𝐴(𝑥) represent a
truth-membership function, an indeterminacy-membership
function, and a falsity-membership function of the element𝑥 ∈ 𝑈 to the set 𝐴, respectively, with the conditions𝑇𝐴(𝑥), 𝐼𝐴(𝑥), 𝐹𝐴(𝑥): 𝑈 →]−0, 1+[ and −0 ≤ sup𝑇𝐴(𝑥) +
sup 𝐼𝐴(𝑥) + sup𝐹𝐴(𝑥𝑖) ≤ 3+.

The above concept of a neutrosophic set (NS) is presented
from philosophical point of view, and it takes the value from
real standard or nonstandard subsets of ]−0, 1+[. It will be
difficult to apply ]−0, 1+[ in scientific and engineering areas.
For the real applications, a simplified neutrosophic set (SNS)
is introduced by Ye [20] as the following definition.

Definition 2 (see [20]). Let 𝑈 be a space of points (objects)
with generic elements in 𝑈 denoted by 𝑥. A simplified
neutrosophic set (SNS) 𝐴 in 𝑈 is characterized by a truth-
membership function 𝑇𝐴(𝑥), an indeterminacy-membership
function 𝐼𝐴(𝑥), and a falsity-membership function𝐹𝐴(𝑥). For
each point 𝑥 in 𝑈, 𝑇𝐴(𝑥), 𝐼𝐴(𝑥), and 𝐹𝐴(𝑥) are singleton

subintervals/subsets in the real standard [0, 1], such that𝑇𝐴(𝑥), 𝐼𝐴(𝑥), 𝐹𝐴(𝑥) ∈ [0, 1]. Then, a simplified neutrosophic
set (SNS) is denoted by

𝐴 = {⟨𝑥, 𝑇𝐴 (𝑥) , 𝐼𝐴 (𝑥) , 𝐹𝐴 (𝑥)⟩ | 𝑥 ∈ 𝑈} . (14)

Obviously, a simplified neutrosophic set (SNS) is a sub-
class of the neutrosophic set (NS) and satisfies the conditions𝑇𝐴(𝑥), 𝐼𝐴(𝑥), 𝐹𝐴(𝑥): 𝑈 → [0, 1] and 0 ≤ 𝑇𝐴(𝑥) + 𝐼𝐴(𝑥) +𝐹𝐴(𝑥) ≤ 3.
4.2. Correlation Coefficient for SNSs. Correlation coefficient
is an important tool for determining the correlation degree
between fuzzy sets. Therefore, a new correlation coefficient
of two SNSs is proposed by the following definition.

Definition 3. Assume that there are two SNSs 𝐴 = {⟨𝑥𝑖,𝑇𝐴(𝑥𝑖), 𝐼𝐴(𝑥𝑖), 𝐹𝐴(𝑥𝑖)⟩ | 𝑥𝑖 ∈ 𝑈} and 𝐵 = {⟨𝑥𝑖, 𝑇𝐵(𝑥𝑖), 𝐼𝐵(𝑥𝑖),𝐹𝐵(𝑥𝑖)⟩ | 𝑥𝑖 ∈ 𝑈} in the universe of discourse 𝑈 = {𝑥1,
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𝑥2, . . . , 𝑥𝑛}, 𝑥𝑖 ∈ 𝑈. A correlation coefficient between SNSs is
defined as follows:

𝑀SNS (𝐴, 𝐵) = 1
𝑛
𝑛∑
𝑖=1

min [𝑇𝐴 (𝑥𝑖) , 𝑇𝐵 (𝑥𝑖)] +min [𝐼𝐴 (𝑥𝑖) , 𝐼𝐵 (𝑥𝑖)] +min [𝐹𝐴 (𝑥𝑖) , 𝐹𝐵 (𝑥𝑖)]
√𝑇𝐴 (𝑥𝑖) 𝑇𝐵 (𝑥𝑖) + √𝐼𝐴 (𝑥𝑖) 𝐼𝐵 (𝑥𝑖) + √𝐹𝐴 (𝑥𝑖) 𝐹𝐵 (𝑥𝑖)

, (15)

where the symbol “min” is the minimum operation.

According to the above definition, the correlation coeffi-
cient of SNSs 𝐴 and 𝐵 satisfies the following properties:

(P1) 0 ≤ 𝑀SNS(𝐴, 𝐵) ≤ 1.

(P2) 𝑀SNS(𝐴, 𝐵) = 𝑀SNS(𝐵, 𝐴).
(P3) 𝑀SNS(𝐴, 𝐵) = 1 if and only if 𝐴 = 𝐵.
If we consider the weights of 𝑥𝑖, a weighted correlation

coefficient between SNSs 𝐴 and 𝐵 is proposed as follows:

𝑀SNS (𝐴, 𝐵) = 𝑛∑
𝑖=1

𝑤𝑖min [𝑇𝐴 (𝑥𝑖) , 𝑇𝐵 (𝑥𝑖)] +min [𝐼𝐴 (𝑥𝑖) , 𝐼𝐵 (𝑥𝑖)] +min [𝐹𝐴 (𝑥𝑖) , 𝐹𝐵 (𝑥𝑖)]
√𝑇𝐴 (𝑥𝑖) 𝑇𝐵 (𝑥𝑖) + √𝐼𝐴 (𝑥𝑖) 𝐼𝐵 (𝑥𝑖) + √𝐹𝐴 (𝑥𝑖) 𝐹𝐵 (𝑥𝑖)

, (16)

where 𝑤𝑖 ∈ [0, 1] and ∑𝑛𝑖=1 𝑤𝑖 = 1 for 𝑖 = 1, 2, . . . , 𝑛.
4.3. Bearings Neutrosophic SetsModels Based on Energy Eigen-
vectors. The SNSs models of rolling bearings can be built
according to the energy intervals of the eight subfrequency
bands as shown in Table 3.

Assume that a set of bearing faults is 𝐴 = {𝐴1 (healthy),𝐴2 (outer race fault), 𝐴3 (ball fault), 𝐴4 (inner race fault)},
and a set of energy eigenvector is 𝐸 = {𝑒1(𝐸∗03 ), 𝑒2(𝐸∗13 ),
𝑒3(𝐸∗23 ), 𝑒4(𝐸∗33 ), 𝑒5(𝐸∗43 ), 𝑒6(𝐸∗53 ), 𝑒7(𝐸∗63 ), 𝑒8(𝐸∗73 )}. InTable 3,
let 𝑇𝐴𝑘(𝑒𝑖) and 𝑈𝐴𝑘(𝑒𝑖) (𝑘 = 1, 2, 3, 4; 𝑖 = 1, 2, . . . , 8) be
the lower bound and upper bound of the characteristic value𝑒𝑖 for 𝐴𝑘, respectively; then, the characteristic intervals of
rolling bearing can be represented by

𝐴𝑘 = {(𝑒1, [𝑇𝐴𝑘 (𝑥1) , 𝑈𝐴𝑘 (𝑒1)]) ,
(𝑒2, [𝑇𝐴𝑘 (𝑒2) , 𝑈𝐴𝑘 (𝑒2)]) , (𝑒3, [𝑇𝐴𝑘 (𝑒3) , 𝑈𝐴𝑘 (𝑒3)]) ,
(𝑒4, [𝑇𝐴𝑘 (𝑒4) , 𝑈𝐴𝑘 (𝑒4)]) , (𝑒5, [𝑇𝐴𝑘 (𝑒5) , 𝑈𝐴𝑘 (𝑒5)]) ,
(𝑒6, [𝑇𝐴𝑘 (𝑒6) , 𝑈𝐴𝑘 (𝑒6)]) , (𝑒7, [𝑇𝐴𝑘 (𝑒7) , 𝑈𝐴𝑘 (𝑒7)]) ,
(𝑒8, [𝑇𝐴𝑘 (𝑒8) , 𝑈𝐴𝑘 (𝑒8)])} , (𝑘 = 1, 2, 3, 4)

(17)

Let 𝑈𝐴𝑘(𝑒𝑖) = 1 − 𝐹𝐴𝑘(𝑒𝑖) and 𝐼𝐴𝑘(𝑒𝑖) = 𝑈𝐴𝑘(𝑒𝑖) − 𝑇𝐴𝑘(𝑒𝑖),
for 𝑘 = 1, . . . , 4 and 𝑖 = 1, . . . , 8. If 𝑈𝐴𝑘(𝑒𝑖) − 𝑇𝐴𝑘(𝑒𝑖) ≤ 0.01,
then let 𝐼𝐴𝑘(𝑒𝑖) = 0.01. In this case, the sets 𝐴𝑘 can be
extended to simplified neutrosophic sets (SNSs) and can be
rewritten as

𝐴𝑘 = {⟨𝑒1, 𝑇𝐴𝑘 (𝑒1) , 𝐼𝐴𝑘 (𝑒1) , 𝐹𝐴𝑘 (𝑒1)⟩ ,
⟨𝑒2, 𝑇𝐴𝑘 (𝑒2) , 𝐼𝐴𝑘 (𝑒2) , 𝐹𝐴𝑘 (𝑒2)⟩ ,
⟨𝑒3, 𝑇𝐴𝑘 (𝑒3) , 𝐼𝐴𝑘 (𝑒3) , 𝐹𝐴𝑘 (𝑒3)⟩ ,

⟨𝑒4, 𝑇𝐴𝑘 (𝑒4) , 𝐼𝐴𝑘 (𝑒4) , 𝐹𝐴𝑘 (𝑒4)⟩ ,
⟨𝑒5, 𝑇𝐴𝑘 (𝑒5) , 𝐼𝐴𝑘 (𝑒5) , 𝐹𝐴𝑘 (𝑒5)⟩ ,
⟨𝑒6, 𝑇𝐴𝑘 (𝑒6) , 𝐼𝐴𝑘 (𝑒6) , 𝐹𝐴𝑘 (𝑒6)⟩ ,
⟨𝑒7, 𝑇𝐴𝑘 (𝑒7) , 𝐼𝐴𝑘 (𝑒7) , 𝐹𝐴𝑘 (𝑒7)⟩ ,
⟨𝑒8, 𝑇𝐴𝑘 (𝑒8) , 𝐼𝐴𝑘 (𝑒8) , 𝐹𝐴𝑘 (𝑒8)⟩} ,

(18)

where 𝑇𝐴𝑘(𝑒𝑖): 𝑈 → [0, 1], 𝐼𝐴𝑘(𝑒𝑖): 𝑈 → [0, 1], 𝐹𝐴𝑘(𝑒𝑖): 𝑈 →[0, 1], and 0 ≥ 𝑇𝐴𝑘(𝑒𝑖) + 𝐼𝐴𝑘(𝑒𝑖) + 𝐹𝐴𝑘(𝑒𝑖) ≤ 3, for 𝑘 = 1, . . . , 4
and 𝑖 = 1, . . . , 8.

According to the definition of neutrosophic sets, the
numbers 𝑇𝐴𝑘(𝑒𝑖), 𝐼𝐴𝑘(𝑒𝑖), and 𝐹𝐴𝑘(𝑒𝑖) represent a truth-
membership, an indeterminacy-membership, and a falsity-
membership, respectively. The neutrosophic sets of bearing
fault types are shown in Table 4. Here, 𝐴1, 𝐴2, 𝐴3, and 𝐴4
are healthy, outer race fault, ball fault, and inner race fault
bearings, respectively.

4.4. Rolling Bearing Fault Diagnosis Using Correlation Coeffi-
cient. In this section, we apply the correlation coefficient of
SNSs to diagnose rolling bearing faults. Assume that 𝐴𝑘 (𝑘 =1, 2, 3, 4) are SNSs models of rolling bearing faults and 𝐴 𝑡 is
a testing rolling bearing signal expressed by a SNS. Then we
can calculate the correlation coefficient value 𝑀SNS(𝐴𝑘, 𝐴 𝑡)
(𝑘 = 1, 2, 3, 4) using (16). Finally, the fault-diagnosis order
of the fault-testing sample can be ranked according to the
correlation coefficient value, and the proper diagnosis𝐴𝑘∗ for
the bearing fault 𝐴 𝑡 is derived by

𝑘∗ = arg max
1≤𝑘≤4

{𝑀SNS (𝐴𝑘, 𝐴 𝑡)} , (19)

This paper considers the same importance of the energy
values in each frequency band; therefore, the weights of 𝑤𝑖
(𝑖 = 1, 2, . . . , 8) are 𝑤𝑖 = 1/8.
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Table 5: Fault diagnosis results based on the correlation coefficient of SNSs and SVM.

Fault type Method Test sample Diagnosis result Diagnosis accuracy
rate (%)Healthy Outer race fault Ball fault Inner race fault

Healthy SNSs
SVM

30 28
27

2
3

93.3
90

Outer race fault SNSs
SVM 30 28

28
2
2

93.3
93.3

Ball fault SNSs
SVM 30 5

7
25
23

83.3
76.7

Inner race fault SNSs
SVM 30 5

30
25

100
83.3

4.5. Results andDiscussions. Todemonstrate the effectiveness
of the new diagnosis method, we now provide two examples
for fault diagnosis of bearings. Let us consider two testing
bearing samples 𝐵1 and 𝐵2 described as neutrosophic sets:

𝐵1 = {⟨𝑒1, 1.00, 0.01, 0.00⟩ , ⟨𝑒2, 0.51, 0.01, 0.49⟩ ,
⟨𝑒3, 0.08, 0.01, 0.92⟩ , ⟨𝑒4, 0.24, 0.01, 0.76⟩ ,
⟨𝑒5, 0.00, 0.01, 1.00⟩ , ⟨𝑒6, 0.03, 0.01, 0.97⟩ ,
⟨𝑒7, 0.05, 0.01, 0.95⟩ , ⟨𝑒8, 0.06, 0.01, 0.94⟩} ,

𝐵2 = {⟨𝑒1, 1.00, 0.01, 0.00⟩ , ⟨𝑒2, 0.39, 0.01, 0.61⟩ ,
⟨𝑒3, 0.03, 0.01, 0.97⟩ , ⟨𝑒4, 0.22, 0.01, 0.78⟩ ,
⟨𝑒5, 0.00, 0.01, 1.00⟩ , ⟨𝑒6, 0.01, 0.01, 1.00⟩ ,
⟨𝑒7, 0.01, 0.01, 1.00⟩ , ⟨𝑒8, 0.01, 0.01, 1.00⟩} .

(20)

The correlation coefficient values between SNSs 𝐵𝑗 (𝑗 =1, 2) and 𝐴𝑘 (𝑘 = 1, 2, 3, 4) can calculated by (17) as follows:

𝑀SNS (𝐴1, 𝐵1) = 0.8787,
𝑀SNS (𝐴2, 𝐵1) = 0.9483,
𝑀SNS (𝐴3, 𝐵1) = 0.8746,
𝑀SNS (𝐴4, 𝐵1) = 0.9819.
𝑀SNS (𝐴1, 𝐵2) = 0.8587,
𝑀SNS (𝐴2, 𝐵2) = 0.9714,
𝑀SNS (𝐴3, 𝐵2) = 0.8566,
𝑀SNS (𝐴4, 𝐵2) = 0.9590.

(21)

For the fault-testing sample 𝐵1, 𝑀SNS(𝐴4, 𝐵1) is the
maximum correlation coefficient, and 𝑀SNS(𝐴2, 𝐵1) is the
second correlation coefficient. According to the principle of
correlation coefficient, the fault-diagnosis order is as follows:

𝐴4 󳨀→ 𝐴2 󳨀→ 𝐴1 󳨀→ 𝐴3. (22)

Therefore, we can determine that the testing bearing is
an inner race fault bearing. By actual observing, the testing

bearing inner race was covered with scratches, and therefore
the diagnosis result is correct.

Similarly, for the fault-testing sample 𝐵2, the fault-
diagnosis order is as follows:

𝐴2 󳨀→ 𝐴4 󳨀→ 𝐴1 󳨀→ 𝐴3. (23)

By actual checking, the fault of the bearing firstly resulted
from damage of outer race and then inner race. So the
diagnosis results are consistent with the actual situation.

In the experiment, 120 rolling bearings were used for
testing samples. In order to verify the effectiveness of the
fault-diagnosis method proposed in this paper, we extracted
the energy eigenvalues of bearing vibration signals firstly and
then diagnosed the bearing faults using the correlation coef-
ficient of SNSs and the support vector machine (SVM) [25],
respectively.The fault-diagnosis results of rolling bearings are
shown in Table 5. By comparing the diagnosis results shown
in Table 5, it is clear that the diagnosis accuracy rate based on
the correlation coefficient of SNSs is much higher than the
accuracy rate based on SVM.

For further comparison, Table 6 lists the diagnosis results
based on the correlation coefficient of SNSs, SVM, BP, and
GA-BP [28] methods, respectively. Obviously, the method
based on the correlation coefficient of SNSs can achieve the
average accuracy rate of 92.5%, and it is higher than the ones
based on the other methods.

The above comparisons demonstrate that the proposed
method in this paper is effective in the bearing fault diagnosis.

5. Conclusion

To diagnose rolling bearing faults, a new fault-diagnosis
method was developed by combining correlation coefficient
of SNSs with wavelet packet decomposition. A series of
experiments were conducted to diagnose rolling bearing
faults, and the experimental results demonstrated that the
proposed method can effectively identify the bearing faults.
For the novel fault-diagnosis method, there exist two key
issues: (1) extracting useful fault features by wavelet packet
decomposition; (2) building the accurate SNSs models of
bearing faults. In the future work, the two issues will be
further improved based on the analysis of a large amount of
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Table 6: Fault diagnosis results based on the correlation coefficient of SNSs, SVM, BP, and GA-BP.

Diagnosis method Diagnosis accuracy rate (%) Average accuracy (%)
Healthy Outer race fault Ball fault Inner race fault

SNS 93.3 93.3 83.3 100 92.5

SVM 90 93.3 76.7 83.3 85.8

GA-BP 100 80 70 90 85

BP 90 70 50 90 75

experimental data since they will influence the accuracy of
fault-diagnosis results.
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