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Abstract: The neutrosophic cubic set can contain much more information to express its interval 

neutrosophic numbers and single-valued neutrosophic numbers simultaneously in indeterminate 

environments. Hence, it is a usual tool for expressing much more information in complex 

decision-making problems. Unfortunately, there has been no research on similarity measures of 

neutrosophic cubic sets so far. Since the similarity measure is an important mathematical tool in 

decision-making problems, this paper proposes three cosine measures between neutrosophic cubic 

sets based on the included angle cosine of two vectors, distance, and cosine functions, and 

investigates their properties. Then, we develop a cosine measures-based multiple attribute 

decision-making method under a neutrosophic cubic environment in which, from the cosine 

measure between each alternative (each evaluated neutrosophic cubic set) and the ideal alternative 

(the ideal neutrosophic cubic set), the ranking order of alternatives and the best option can be 

obtained, corresponding to the cosine measure values in the decision-making process. Finally, an 

illustrative example about the selection problem of investment alternatives is provided to illustrate 

the application and feasibility of the developed decision-making method. 

Keywords: neutrosophic cubic set; decision-making; similarity measure; cosine measure; interval 

neutrosophic set; single-valued neutrosophic set 

 

1. Introduction 

The classic fuzzy set, as presented by Zadeh [1], is only described by the membership degree in 

the unit interval [0, 1]. In the real world, it is often difficult to express the value of a membership 

function by an exact value in a fuzzy set. In such cases, it may be easier to describe vagueness and 

uncertainty in the real world using both an interval value and an exact value, rather than unique 

interval/exact values. Thus, the hybrid form of an interval value and an exact value may be a very 

useful expression for a person to describe certainty and uncertainty due to his/her hesitant judgment 

in complex decision-making problems. For this purpose, Jun et al. [2] introduced the concept of 

(fuzzy) cubic sets, including internal cubic sets and external cubic sets, by the combination of both an 

interval-valued fuzzy number (IVFN) and a fuzzy value, and defined some logic operations of cubic 

sets, such as the P-union, P-intersection, R-union, and R-intersection of cubic sets. Also, Jun and Lee 

[3] and Jun et al. [4–6] applied the concept of cubic sets to BCK/BCI-algebras and introduced the 

concepts of cubic subalgebras/ideals, cubic o-subalgebras and closed cubic ideals in 

BCK/BCI-algebras.  

However, the cubic set is described by two parts simultaneously, where one represents the 

membership degree range by the interval value and the other represents the membership degree by 

a fuzzy value. Hence, a cubic set is the hybrid set combined by both an IVFN and a fuzzy value. 

Obviously, the advantage of the cubic set is that it can contain much more information to express the 

IVFN and fuzzy value simultaneously.  
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As the generalization of fuzzy sets [1], interval-valued fuzzy sets (IVFSs) [7], intuitionistic fuzzy 

sets (IFSs) [8], and interval-valued intuitionistic fuzzy sets (IVIFSs) [9], Smarandache [10] initially 

introduced a concept of neutrosophic sets to express incomplete, indeterminate, and inconsistent 

information. As simplified forms of neutrosophic sets, Smarandache [10], Wang et al. [11,12] and Ye 

[13] introduced single-valued neutrosophic sets (SVNSs) and interval neutrosophic sets (INSs), and 

simplified neutrosophic sets (SNSs) as subclasses of neutrosophic sets for easy engineering 

applications. Since then, SVNSs, INSs, and SNSs have been widely applied to various areas, such as 

image processing [14–16], decision-making [17–32], clustering analyses [33,34], medical diagnoses 

[35,36], and fault diagnoses [37]. Recently, Ali et al. [38] and Jun et al. [39] have extended cubic sets to 

the neutrosophic sets and proposed the concepts of neutrosophic cubic sets (NCSs), including 

internal NCSs and external NCSs, subsequently introducing some logic operations of NCSs, such as 

the P-union, P-intersection, R-union, and R-intersection of NCSs. Furthermore, Ali et al. [38] 

introduced a distance measure between NCSs and applied it to pattern recognition. Subsequently, 

Banerjee et al. [40] further presented a multiple attribute decision-making (MADM) method with 

NCSs based on grey relational analysis, in which they introduced the Hamming distances of NCSs 

for weighted grey relational coefficients and standard (ideal) grey relational coefficients, and then 

gave the relative closeness coefficients in order to rank the alternatives. 

From the above review, we can see that the existing literature mainly focus on the theoretical 

studies of cubic sets and NCSs, rather than the studies on their similarity measures and their 

applications. On the other hand, the NCS contains much more information than the general 

neutrosophic set (INS/SVNS) because the NCS is expressed by the combined information of both 

INS and SVNS. Hence, NCSs used for attribute evaluation in decision making may show its 

rationality and affectivity since general neutrosophic decision-making methods with INSs/SVNSs 

may lose some useful evaluation information (either INSs or SVNSs) of attributes, which may affect 

decision results, resulting in the distortion phenomenon. Moreover, the similarity measure is an 

important mathematical tool in decision-making problems. Currently, since there is no study on 

similarity measures of cubic sets and NCSs under a neutrosophic cubic environment, we need to 

develop new similarity measures for NCSs for MADM problems with neutrosophic cubic 

information, since the cubic set is a special case of the NCS. For these reasons, this paper aims to 

propose three cosine measures between NCSs based on the included angle cosine of two vectors, 

distance, and cosine function, and their MADM method in a neutrosophic cubic environment.  

The remainder of the article is organized as follows. Section 2 briefly describes some concepts of 

cubic sets and NCSs. Section 3 presents three cosine measures of NCSs and discusses their properties. 

In Section 4, we develop an MADM approach based on the cosine measures of NCSs under a 

neutrosophic cubic environment. In Section 5, an illustrative example about the selection problem of 

investment alternatives is provided to illustrate the application and feasibility of the developed 

method. Section 6 contains conclusions and future research. 

2. Some Basic Concepts of Cubic Sets and NCSs 

By the combination of a fuzzy value and an IVFN, Jun et al. [2] defined a (fuzzy) cubic set. 

A cubic set S in a universe of discourse X is constructed as follows [2]: 

{ , ( ), ( ) | }S x T x x x X  ,  

where ( ) [ ( ), ( )]T x T x T x   is an IVFN for x  X and μ is a fuzzy value for x  X. Then, we call 

(i) { , ( ), ( ) | }S x T x x x X   an internal cubic set if ( ) ( ) ( )T x x T x
 

   for x  X; 

(ii) { , ( ), ( ) | }S x T x x x X   an external cubic set if  ( ) ( ), ( )x T x T x
 

  for x  X. 

Then, Ali et al. [38] and Jun et al. [39] proposed a NCS based on the combination of an interval 

neutrosophic number (INN) and a single-valued neutrosophic number (SVNN) as the extension of 

the (fuzzy) cubic set. 

A NCS S in X is constructed as the following form [38,39]: 
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{ , ( ), ( ), ( ) , ( ), ( ), ( ) | }P x T x U x F x t x u x f x x X      , 

where <T(x), U(x), F(x)> is an INN, and ( ) [ ( ), ( )]T x T x T x
 

   [0, 1], ( ) [ ( ), ( )]U x U x U x
 

   [0, 

1], and ( ) [ ( ), ( )]F x F x F x
 

   [0, 1] for x  X are the truth-interval, indeterminacy-interval, and 

falsity-interval, respectively; then <t(x), u(x), f(x)> is a SVNN, and t(x), u(x), f(x)  [0, 1] for x  X are 

the truth, indeterminacy, and falsity degrees, respectively. 

An NCS { , ( ), ( ), ( ) , ( ), ( ), ( ) | }P x T x U x F x t x u x f x x X       is said to be [38,39]: 

(i) An internal NCS { , ( ), ( ), ( ) , ( ), ( ), ( ) | }P x T x U x F x t x u x f x x X       if 

( ) ( ) ( )T x t x T x
 

  , ( ) ( ) ( )U x u x U x
 

  , and ( ) ( ) ( )F x f x F x
 

   for x  X; 

(ii) An external NCS { , ( ), ( ), ( ) , ( ), ( ), ( ) | }P x T x U x F x t x u x f x x X       if 

 ( ) ( ), ( )t x T x T x  ,  ( ) ( ), ( )u x U x U x  , and  ( ) ( ), ( )f x F x F x   for x  X. 

For convenience, a basic element ( , ( ), ( ), ( ) , ( ), ( ), ( ) )x T x U x F x t x u x f x     in an NCS P 

is simply denoted by p = (<T, U, F>, <t, u, f>), which is called a neutrosophic cubic number (NCN), where 

T, U, F  [0, 1] and t, u, f  [0, 1], satisfying 0 ( ) ( ) ( ) 3T x U x F x
 

     and 0 ≤ t + u + f ≤ 3. 

Let p1 = (<T1, U1, F1>, <t1, u1, f1>) and p2 = (<T2, U2, F2>, <t2, u2, f2>) be two NCNs. Then, there are the 

following relations [38,39]: 

(1)  1 1 1 1 1 1 1 1 1 1
, , 1 ,1 , , , ,1 ,

c
p F F U U T T f u t

     
               (complement of p1); 

(2) p1 ⊆ p2 if and only if 
1 2

T T , 
1 2

U U , 
1 2

F F ,
1 2
t t , 

1 2
u u , and 

1 2
f f  (P-order); 

(3) p1 = p2 if and only if p2 ⊆ p1 and p1 ⊆ p2, i.e., <T1, U1, F1> = <T2, U2, F2> and <t1, u1, f1> = <t2, u2, f2>. 

3. Cosine Measures of NCSs 

In this section, we propose three cosine measures between NCSs. 

Definition 1. Let X ={x1, x2, …, xn} be a finite set and two NCSs be P ={p1, p2, …, pn} and Q ={q1, q2, …, qn}, 

where pj = (<Tpj, Upj, Fpj>, <tpj, upj, fpj>) and qj = (<Tqj, Uqj, Fqj>, <tqj, uqj, fqj>) for j = 1, 2, …, n are two collections 

of NCNs. Then, three cosine measures of P and Q are proposed based on the included angle cosine of two vectors, 

distance, and cosine function, respectively, as follows: 

(1) Cosine measure based on the included angle cosine of two vectors 

1

2 2 2 2 2 2 2
1

2 2 2 2 2 2

( , )

1

2 ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

n

pj qj pj qj pj qj pj qj pj qj pj qj pj qj pj qj pj qj

j
pj pj pj pj pj pj pj

qj qj qj qj qj qj

S P Q

T T T T U U U U F F F F t t u u f f

n T T U U F F t

T T U U F F

           

     


     

      
 

     

     

 
 
 
  


 2 2 2 2 2

1

n

j
pj pj qj qj qj

u f t u f    

 
 
 
 
 
 
 
  



 
(1) 

(2) Cosine measure based on distance 

2

1

cos
12

1
( , )

2
cos

6

pj qj pj qj pj qj pj qj pj qj pj qj

n

j
pj qj pj qj pj qj

T T T T U U U U F F F F

S P Q
n t t u u f f





           



            
  

    
  

      
  
 

   


 

(2) 

(3) Cosine measure based on cosine function 
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3

1

( , )

2 cos 1 2 cos
8 4

1 1 1
2 cos 1

2 83( 2 1) 3( 2 1)

2 cos 1
8

pj pj qj qj pj qj

n
pj pj qj qj

j

pj pj qj qj

S P Q

T T T T t t

U U U U

n

F F F F

 





   

   



   

       
           
 

     
            

 
     

     
    


1

1

2 cos 1
4

2 cos 1
4

n
pj qj

j

pj qj

u u

f f







   
         
  

     
      
     

  
    

      
      



 

(3) 

Obviously, the three cosine measures Sk(P, Q) (k = 1, 2, 3) satisfy the following properties (S1)–(S3): 

(S1) 0  Sk(P, Q)  1; 

(S2) Sk(P, Q) = Sk(Q, P); 

(S3) Sk(P, Q) = 1 if P = Q, i.e., <Tpj, Upj, Fpj>, = <Tqj, Uqj, Fqj> and <tpj, upj, fpj> = <tqj, uqj, fqj>. 

Proof. 

Firstly, we prove the properties (S1)–(S3) of S1(P, Q). 

(S1) The inequality S1(P, Q) ≥ 0 is obvious. Then, we only prove S1(P, Q) ≤ 1. 

Based on the Cauchy–Schwarz inequality: 

     
2 2 2 2 2 2 2

1 1 2 2 1 2 1 2n n n nx y x y x y x x x y y y         , 

where (x1, x2, …, xn)  Rn and (y1, y2, …, yn)  Rn, we can give the following inequality: 

     2 2 2 2 2 2

1 1 2 2 1 2 1 2n n n nx y x y x y x x x y y y         . 

According to the above inequality, we have the following inequality: 

pj qj pj qj pj qj pj qj pj qj pj qjT T T T U U U U F F F F                 ≤ 

2 2 2 2 2 2 2 2 2 2 2 2( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )pj pj pj pj pj pj qj qj qj qj qj qjT T U U F F T T U U F F                      , 

pj qj pj qj pj qjt t u u f f   ≤ 2 2 2 2 2 2

pj pj pj qj qj qjt u f t u f     . 

Hence, there is the following result: 

2 2 2 2 2 2
1

2 2 2 2 2 2

1

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

n
pj qj pj qj pj qj pj qj pj qj pj qj

j
pj pj pj pj pj pj

qj qj qj qj qj qj

T T T T U U U U F F F F

n T T U U F F

T T U U F F

           

     


     

    

      
 
       

  ≤ 1, 

 2 2 2 2 2 2
1

1 n
pj qj pj qj pj qj

j
pj pj pj qj qj qj

t t u u f f

n t u f t u f

 

    
 ≤ 1. 

Based on Equation (1), we have S1(P, Q) ≤ 1. Hence, 0 ≤ S1(P, Q) ≤ 1 holds. 

(S2) It is straightforward. 

(S3) If P = Q, there are <Tpj, Upj, Fpj> = <Tqj, Uqj, Fqj> and <tpj, upj, fpj> = <tqj, uqj, fqj>. Thus Tpj = Tqj, Upj = Uqj, 

Fpj = Fqj, tpj = tqj, upj = uqj, and fpj = fqj for j = 1, 2, …, n. Hence S1(P, Q) = 1 holds.  

Secondly, we prove the properties (S1)–(S3) of S2(P, Q). 
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(S1) Let  1 / 6pj qj pj qj pj qj pj qj pj qj pj qjx T T T T U U U U F F F F                        and 

 2 / 3pj qj pj qj pj qjx t t u u f f      . It is obvious that there exist 0 ≤ x1 ≤ 1 and 0 ≤ x2 ≤ 1. 

Thus, there are 0 ≤ cos(x1π/2) ≤ 1 and 0 ≤ cos(x2π /2) ≤ 1. Hence, 0 ≤ S2(P, Q) ≤ 1 holds. 

(S2) It is straightforward. 

(S3) If P = Q, there are <Tpj, Upj, Fpj> = <Tqj, Uqj, Fqj> and <tpj, upj, fpj> = <tqj, uqj, fqj>. Thus Tpj = Tqj, Upj = Uqj, 

Fpj = Fqj, tpj = tqj, upj = uqj, and fpj = fqj for j = 1, 2, …, n. Hence, S2(P, Q) = 1 holds.  

Thirdly, we prove the properties (S1)–(S3) of S3(P, Q). 

(S1) Let 
1

( ) / 2
pj pj qj qj

y T T T T
   

    , 
2 ( ) / 2pj pj qj qjy U U U U       , 

3 ( ) / 2pj pj qj qjy F F F F       , 

4 pj qj
y t t  , 5 pj qj

y u u  , and 6 pj qj
y f f  . Obviously, there exists −1 ≤ yk ≤ +1 for k = 1, 

2, ...., 6. Thus, 2 2  ≤ cos(ykπ/4) ≤ 1, and then there exists 0 ≤ S3(P, Q) ≤ 1.  

(S2) It is straightforward. 

(S3) If P = Q, there are <Tpj, Upj, Fpj> = <Tqj, Uqj, Fqj> and <tpj, upj, fpj> = <tqj, uqj, fqj>. Thus Tpj = Tqj, Upj = Uqj, 

Fpj = Fqj, tpj = tqj, upj = uqj, and fpj = fqj for j = 1, 2, …, n. Hence, S3(P, Q) = 1 holds. □ 

When the weight of the elements pj and qj (j = 1, 2, …, n) is taken into account, w = {w1, w2, …, wn} 

is given as the weight vector of the elements pj and qj (j = 1, 2, …, n) with wj  [0, 1] and 
1

1
n

jj
w


 . 

Then, we have the following three weighted cosine measures between P and Q, respectively: 

2 2 2 2 2 2
1

2 2 2 2 2 2

1

( ) ( ) ( ) ( ) ( ) ( )

1
( ) ( ) ( ) ( ) ( ) ( )( , )

2

n
pj qj pj qj pj qj pj qj pj qj pj qj

j

j
pj pj pj pj pj pj

qj qj qj qj qj qjw

pj qj pj qj pj qj

j

T T T T U U U U F F F F
w

T T U U F F

T T U U F FS P Q

t t u u f f
w

t

           

     


     

    

    

     

 


 
 
 
  



 2 2 2 2 2 2
1

n

j
pj pj pj qj qj qj

u f t u f     

 
 
 
  
 
 
 
 
  



, 
(4) 

2
1

cos
12

1
( , )

2

cos
6

pj qj pj qj pj qj pj qj pj qj pj qj

n

jw
j

pj qj pj qj pj qj

T T T T U U U U F F F F

S P Q w
t t u u f f





           



  
  
  
  
 

  
  
    

          


    




, 

(5) 

3

2 cos 1 2 cos 1
8 4

1 1
( , ) 2 cos 1

2 83( 2 1)

2 cos 1
8

pj pj qj qj pj qj

pj pj qj qj

w j

pj pj qj qj

T T T T t t

U U U U
S P Q w

F F F F

 





   

   

   

         
                 
 

     
             

 
     

     
    

1

2 cos 1
4

2 cos 1
4

n
pj qj

j

pj qj

u u

f f







   
   
    
   
       

       
       

   
     

       
        



. 

(6) 

It is obvious that the three cosine measures Swk(P, Q) (k=1, 2, 3) also satisfy the following 

properties (S1)-(S3): 

(S1) 0 ≤ Swk(P, Q) ≤ 1; 

(S2) Swk(P, Q) = Swk(Q, P); 

(S3) Swk(P, Q) = 1 if P = Q, i.e., <Tpj, Upj, Fpj> = <Tqj, Uqj, Fqj> and <tpj, upj, fpj> = <tqj, uqj, fqj>. 

By similar proof ways, we can prove the properties (S1)–(S3) for Swk(P, Q) (k = 1, 2, 3). Their 

proofs are omitted here.  
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4. Decision-Making Method Using Cosine Measures 

In this section, we propose an MADM method by using one of three cosine measures to solve 

decision-making problems with neutrosophic cubic information. 

In an MADM problem, let P = {P1, P2, …, Pm} be a set of m alternatives and R = {R1, R2, …, Rn} be a 

set of n attributes. The evaluation value of an attribute Rj (j = 1, 2, …, n) with respect to an alternative 

Pi (i = 1, 2, …, m) is expressed by a NCN pij = (<Tij, Uij, Fij>, <tij, uj, fij>) (j = 1, 2, …, n; i = 1, 2, …, m), 

where , , [0,1]
ij ij ij

T U F   and , , [0,1]
ij ij ij
t u f  . Therefore, all the evaluation values expressed by 

NCNs can be constructed as the neutrosophic cubic decision matrix P = (pij)m×n. Then, the weight 

vector of the attributes Rj (j = 1, 2, …, n) is considered as w = (w1, w2, …, wn), satisfying wj  [0, 1] and 

1
1

n

jj
w


 . In this case, the proposed decision steps are described as follows: 

Step 1: Establish an ideal solution (ideal alternative) 
* * * *

1 2
{ , ,..., }

n
P p p p  by the ideal NCN

 *
max( ), max( ) , min( ), min( ) , min( ), min( ) , max( ), min( ), min( )

j ij ij ij ij ij ij ij ij ij
i i i i i ii i i

p T T U U F F t u f
     

      
    

 

corresponding to the benefit type of attributes and 

 *
min( ), min( ) , max( ), max( ) , max( ), max( ) , min( ), max( ), max( )

j ij ij ij ij ij ij ij ij ij
i i ii i i i i i

p T T U U F F t u f
     

     
     

 

corresponding to the cost type of attributes. 

Step 2: Calculate the weighted cosine measure values between an alternative Pi (i = 1, 2, …, m) and 

the ideal solution P* by using Equation (4) or Equation (5) or Equation (6) and get the values 

of Sw1(Pi, P*) or Sw2(Pi, P*) or Sw3(Pi, P*) (i = 1, 2, …, m). 

Step 3: Rank the alternatives in descending order corresponding to the weighted cosine measure 

values and select the best one(s) according to the bigger value of Sw1(Pi, P*) or Sw2(Pi, P*) or 

Sw3(Pi, P*). 

Step 4: End. 

5. Illustrative Example and Comparison Analysis 

In this section, an illustrative example of the selection problem of investment alternatives is 

provided in order to demonstrate the application of the proposed MADM method with 

neutrosophic cubic information.  

5.1. Illustrative Example 

An investment company wants to invest a sum of money for one of four potential alternatives: 

(a) P1 is a textile company; (b) P2 is an automobile company; (c) P3 is a computer company; (d) P4 is a 

software company. The evaluation requirements of the four alternatives are on the basis of three 

attributes: (a) R1 is the risk; (b) R2 is the growth; (c) R3 is the environmental impact; where the 

attributes R1 and R2 are benefit types, and the attribute R3 is a cost type. The weight vector of the 

three attributes is w = (0.32, 0.38, 0.3). When the expert or decision maker is requested to evaluate the 

four potential alternatives on the basis of the above three attributes using the form of NCNs. Thus, 

we can construct the following neutrosophic cubic decision matrix: 

     

 

[0.5,0.6],[0.1,0.3],[0.2,0.4] , 0.6,0.2,0.3 [0.5,0.6],[0.1,0.3],[0.2,0.4] , 0.6,0.2,0.3 [0.6,0.8],[0.2,0.3],[0.1,0.2] , 0.7,0.2,0.1

[0.6,0.8],[0.1,0.2],[0.2,0.3] , 0.7,0.1,0.2 [0.6,0.7],[0.1,0.2],[0.2,0.3] , 0.6,
P 

   

     

0.1,0.2 [0.6,0.7],[0.3,0.4],[0.1,0.2] , 0.7,0.4,0.1

[0.4,0.6],[0.2,0.3],[0.1,0.3] , 0.6,0.2,0.2 [0.5,0.6],[0.2,0.3],[0.3,0.4] , 0.6,0.3,0.4 [0.5,0.7],[0.2,0.3],[0.3,0.4] , 0.6,0.2,0.3

[0.7,0.8],[0.1,0.2],[0.1,0.2]     , 0.8,0.1,0.2 [0.6,0.7],[0.1,0.2],[0.1,0.3] , 0.7,0.1,0.2 [0.6,0.7],[0.3,0.4],[0.2,0.3] , 0.7,0.3,0.2

 
 
 
 
 
 
 

. 

Hence, the proposed MADM method can be applied to this decision-making problem with 

NCSs by the following steps: 

Firstly, corresponding to the benefit attributes R1, R2, and the cost attribute R3, we establish an 

ideal solution (ideal alternative): 



Symmetry 2017, 9, 121  7 of 10 

 

 

 

 

* * * *

1 2

[0.7,0.8],[0.1,0.2],[0.1,0.2] , 0.8,0.1,0.2 ,

{ , ,..., } [0.6,0.7],[0.1,0.2],[0.1,0.3] , 0.7,0.1,0.2 ,

[0.5,0.7],[0.3,0.4],[0.3,0.4] , 0.6,0.4,0.3

nP p p p

 
  

   
 
  

. 

Then, we calculate the weighted cosine measure values between an alternative Pi (i = 1, 2, 3, 4) 

and the ideal solution P* by using Equation (4) or Equation (5) or Equation (6), get the values of 

Sw1(Pi, P*) or Sw2(Pi, P*) or Sw3(Pi, P*) (i = 1, 2, 3, 4), and rank the four alternatives, which are shown in 

Table 1. 

Table 1. All the cosine measure values between Pi and P* and ranking orders of the four alternatives. 

Swk(Pi, P*) Cosine Measure Value Ranking Order The Best Alternative 

Sw1(Pi, P*) 0.9564, 0.9855, 0.9596, 0.9945 P4 > P2 > P3 > P1 P4 

Sw2(Pi, P*) 0.9769, 0.9944, 0.9795, 0.9972 P4 > P2 > P3 > P1 P4 

Sw3(Pi, P*) 0.9892, 0.9959, 0.9897, 0.9989 P4 > P2 > P3 > P1 P4 

From the results of Table 1, we can see that all the ranking orders of the four alternatives and 

best choice return the same results corresponding to the three cosine measures in the 

decision-making problem with neutrosophic cubic information. It is obvious that P4 is the best one. 

5.2. Related Comparison 

For relative comparison, we compare our decision-making method with the only existing 

related decision-making method based on the grey relational analysis under neutrosophic cubic 

environment [40]. Because the decision-making problem/method with CNS weights in [40] is 

different from ours, which has exact/crisp weights, we cannot compare them under different 

decision-making conditions. However, we only gave the comparison of decision-making complexity 

to show our simple method. 

The proposed decision-making method based on the cosine measures of NCSs directly uses the 

cosine measures between an alternative Pi (i = 1, 2, …, m) and the ideal alternative (ideal solution) P* 

to rank all the alternatives; while the existing decision-making method with NCSs introduced in [40] 

firstly determines the Hamming distances of NCSs for weighted grey relational coefficients and 

standard (ideal) grey relational coefficients, and then derives the relative closeness coefficients in 

order to rank the alternatives. It is obvious that our decision-making method is simpler and easier 

than the existing decision-making method with NCSs introduced in [40]. But, our decision-making 

method can only deal with decision-making problems with exact/crisp weights, rather than NCS 

weights [40]. 

Compared with existing related decision-making methods with general neutrosophic sets (INSs 

or SVNSs) [17–39], the proposed decision-making method with NCSs contains much more 

evaluation information of attributes, which consists of both INSs and SVNSs; while the existing 

decision-making methods [17–39] contain either INS or SVNS information, which may lose some 

useful evaluation information of attributes in the decision-making process and affect the decision 

results, resulting in the distortion phenomenon. Furthermore, the existing decision-making methods 

[17–39] cannot deal with the decision-making problem with NCSs. 

5.3. Sensitive Analysis 

To show the sensitivities of these cosine measures on the decision results, we can only change 

the internal NCS of the alternative P4 into the external NCS and reconstruct the following 

neutrosophic cubic decision matrix: 
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     

 

[0.5,0.6],[0.1,0.3],[0.2,0.4] , 0.6,0.2,0.3 [0.5,0.6],[0.1,0.3],[0.2,0.4] , 0.6,0.2,0.3 [0.6,0.8],[0.2,0.3],[0.1,0.2] , 0.7,0.2,0.1

[0.6,0.8],[0.1,0.2],[0.2,0.3] , 0.7,0.1,0.2 [0.6,0.7],[0.1,0.2],[0.2,0.3] , 0.6
'P 

   

     

,0.1,0.2 [0.6,0.7],[0.3,0.4],[0.1,0.2] , 0.7,0.4,0.1

[0.4,0.6],[0.2,0.3],[0.1,0.3] , 0.6,0.2,0.2 [0.5,0.6],[0.2,0.3],[0.3,0.4] , 0.6,0.3,0.4 [0.5,0.7],[0.2,0.3],[0.3,0.4] , 0.6,0.2,0.3

[0.7,0.8],[0.1,0.2],[0.1,0.2     ] , 0.9,0.3,0.3 [0.6,0.7],[0.1,0.2],[0.1,0.3] , 0.8,0.3,0.4 [0.6,0.7],[0.3,0.4],[0.2,0.3] , 0.8,0.5,0.4

 
 
 
 
 
 
 

. 

Then, the corresponding ideal solution (ideal alternative) is changed into the following form: 

 

 

 

*' *' *' *'

1 2

[0.7,0.8],[0.1,0.2],[0.1,0.2] , 0.9,0.1,0.2 ,

{ , ,..., } [0.6,0.7],[0.1,0.2],[0.1,0.3] , 0.8,0.1,0.2 ,

[0.5,0.7],[0.3,0.4],[0.3,0.4] , 0.6,0.5,0.4

nP p p p

 
  

   
 
  

. 

According to the results of Table 2, both the cosine measure based on the included angle cosine 

of two vectors Sw1 and the cosine measure based on cosine function Sw3 still hold the same ranking 

orders; while the cosine measure based on distance Sw2 shows another ranking form. In this case, Sw2 

is sensitive to the change of the evaluation values, since its ranking order changes with the change of 

the evaluation values for the alternative P4. 

Table 2. All the cosine measure values between Pi′ and P*′and ranking orders of the four 

alternatives. 

Swk(Pi′, P*′) Cosine Measure Value Ranking Order The Best Alternative 

Sw1(Pi′, P*′) 0.9451, 0.9794, 0.9524, 0.9846 P4 > P2 > P3 > P1 P4 

Sw2(Pi′, P*′) 0.9700, 0.9906, 0.9732, 0.9877 P2 > P4 > P3 > P1 P2 

Sw3(Pi′, P*′) 0.9867, 0.9942, 0.9877, 0.9968 P4 > P2 > P3 > P1 P4 

Nevertheless, this study provides a new and effective method for decision makers, due to the 

limited study on similarity measures and decision-making methods with NCSs in the existing 

literature. In this study, decision makers can select one of three cosine measures of NCSs to apply to 

MADM problems, according to their preferences and actual requirements. 

6. Conclusions 

This paper proposed three cosine measures of NCSs based on the included angle cosine of two 

vectors, distance, and cosine function, and discussed their properties. Then, we developed an 

MADM method with neutrosophic cubic information by using one of three cosine measures of NCSs. 

An illustrative example about the selection problem of investment alternatives was provided to 

demonstrate the applications of the proposed MADM method with neutrosophic cubic information. 

The cosine measures-based MADM method developed in this paper is simpler and easier than 

the existing decision-making method with neutrosophic cubic information based on the grey related 

analysis, and shows the main advantage of its simple and easy decision-making process. However, 

this study can only deal with decision-making problems with exact/crisp weights, rather than NCS 

weights [40], which is its chief limitation. Therefore, the three cosine measures of NCSs that were 

developed, and their decision-making method are the main contributions of this paper. The 

developed MADM method provides a new and effective method for decision makers under 

neutrosophic cubic environments. In future work, we will further propose some new similarity 

measures of NCSs and their applications in other fields, such as image processing, medical 

diagnosis, and fault diagnosis. 
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