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*e problem of energy crisis and environmental pollution has been mitigated by the generation and use of solar power; however,
the choice of locations for solar power plants is a difficult task because the decision-making process includes political, socio-
economic, and environmental aspects. *us, several adverse consequences have been created by the choice of suboptimal lo-
cations. *e objective of this paper is to address the integrated qualitative and quantitative multicriteria decision-making
framework for the selection of solar power plant locations. Neutrosophic sets (NSs) are the latest extension of the ordinary fuzzy
sets. *e main characteristic of the neutrosophic sets is satisfying the condition that the sum of the truth, indeterminacy, and
falsity grades must be at least zero and at most three. In this research, we establish novel operational laws based on the Yager
t-norm and t-conorm under neutrosophic environments (NE). Furthermore, based on these Yager operational laws, we develop a
list of novel aggregation operators under NE. In addition, we design an algorithm to tackle the uncertainty to investigating the best
solar power plant selection in five potential locations in Pakistan. A numerical example of solar power plant location problem is
considered to show the supremacy and effectiveness of the proposed study. Also, a detailed comparison is constructed to evaluate
the performance and validity of the established technique.

1. Introduction

Decision-making (DM) is one of the most common and
frequent human activities aimed at selecting the best option
with respect to a list of attributes. Due to the high capability
of DM to model uncertain data, it has been extensively
studied and applied successfully to economics, manage-
ment, and other areas in recent years. Using fuzzy set
theory to tackle the DM problems has become a hotspot in
recent years because of the uncertainty in decision infor-
mation. To handle fuzziness and vagueness information,
Zadeh [1] introduced the fuzzy sets (FSs) by using only
membership degree in [0, 1], and then Atanassov [2]

proposed the intuitionistic FSs by using both positive and
negative membership grades in [0, 1]. Many extensions of
ordinary FSs have been introduced by many researchers
[3–13]. *ese modifications have often been used in the
development of DM issues in an uncertain environment.

Although intuitionistic FS can deal with incomplete and
uncertainty information, it cannot handle inconsistent in-
formation better in real situations, for example, Son [14]; in
the election of village director, the voting results can be
divided into three categories: “vote for,” “neutral voting,”
and “vote against.” “Neutral voting” means that the voting
paper is a white paper rejecting both agree and disagree for
the candidate but still takes the vote. *is example has
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happened in reality, but intuitionistic FS could not handle it.
In order to solve these problems, Cuong [15, 16] proposed
picture FS, which contains three aspects of information: yes,
neutral, and no. It can deal with inconsistent information.
Up to now, many outstanding contributions have beenmade
in the research of picture FSs, for example, Wei [17] in-
troduced the some novel AgOs for Picture FS and discussed
their applications in DM problems. Ashraf et al. [18]
highlights the deficiency in the existing operational laws and
established novel improved AgOs to tackle the uncertainty
in complex real-life DM problems under picture fuzzy en-
vironment. Khan et al. [19] established the novel extension,
generalized picture fuzzy soft sets, and discussed their DM
applications. Khan et al. [20] established the novel AgOs
using logarithmic function and algebraic norm under pic-
ture fuzzy environment. Qiyas et al. [21] presented the
linguistic information and algebraic norm-based novel
AgOs using picture FSs. Ashraf et al. [22] presented the
cleaner production evaluation technique based on the cubic
picture fuzzy AgOs using distance information measures.
Qiyas et al. [23] utilized linguistic variables to develop the list
of AgOs based on Dombi operational laws to tackle the DM
problems of real world. Ashraf and Abdullah [24] intro-
duced algebraic norm-based AgOs under cubic picture FS
and discussed their applications in the decision problem.

Picture FS is an important generalization of FS theory,
but picture FS would be meaningless in certain DM prob-
lems with the constant complexities of human information.
Ashraf et al. [25, 26] introduced a new and more general
concept spherical fuzzy set (spherical FS), which is an ex-
tension of FS by further slackening the condition that
0≤ ♭2(x) + I2(x) + z2(x)≤ 1. It should also be noted that
the acceptable spherical framework gives experts more
opportunity to express their belief in supporting member-
ship, although, spherical FS have been successfully applied in
some fields, especially in decision-making fields.

As aggregation operators (AgOs) make a massive con-
tribution to the integration of DM issues, numerous studies
have examined very valuable contributions to the incor-
poration of spherical FS AgOs. Ashraf et al. [26] established
spherical AgO-based algebraic norm to tackle inaccurate
data in DM problems, in [27], presented the spherical FS
norms representation under SF settings. Jin et al. [28] de-
veloped the linguistic function-based SF AgOs and, in [29],
presented the list of SF Dombi AgOs using Dombi norm.
GRA methodology based on spherical linguistic fuzzy
Choquet integral is proposed [30] for SF information. Rafiq
et al. [31] developed the cosine function-based novel sim-
ilarity measures, and Ashraf et al. [32] developed the dis-
tance measure-based AgOs to tackle the inaccurate data in
DM. Zeng et al. [33] introduced TOPSISmethodology under
SF rough sets. Gündoğdu and Kahraman [34] established the
TOPSIS methodology under spherical FSs and also proposed
their applications. Ashraf and Abdullah [35] presented the
emergency decision-making technique of coronavirus using
the spherical FSs. Ashraf et al. [36] introduced the symmetric
sum-based AgOs under spherical FSs to tackle the uncer-
tainty in daily life DM problems. Gundogdu and Kahraman
[37] established the generalized methodology based on

WASPAS under spherical FSs. Jin et al. [38] utilized the
logarithmic function to developed the novel SF AgOs under
spherical FSs. Shishavan et al. [39] established the list of
similarity measures to tackle the uncertainty in the form of
spherical fuzzy environment. Gündoğdu and Kahraman [40]
presented the new AHP technique to tackle the uncertainty
in renewable energy and, in [41], discussed the spherical
fuzzy QFD technique to tackle the uncertainty in robot
technology development problems.

While the presentation of fuzzy sets and their extended
sets provides more decision-making space, there are still
some restrictions. For instance, it is impossible to solve the
discontinuity and inconsistency of data so that the NS
emerge as the times require. For the very first time, the
notion of three parameters is taken into account, namely, the
degree of truth, indeterminacy, and falsity. *is theory can
help decision makers to express their views more precisely
and in detail and to address problems that the fuzzy set
cannot resolve. *e concept of neutrosophic sets was first
proposed by Smarandache [42]. It is a philosophical branch
and is a mathematical model to understand not only the
origin, nature, and scope of neutrality, but also the inter-
action between their various conceptual ranges. Such im-
provements have been made to improve capability in order
to address DM issues in ambiguous environments. Many
authors contribute to NS theory to tackle the uncertain data
in DM problems, such as Ye [43] established the DM ap-
proach based on AgOs under NSs, Peng et al. [44] presented
the power AgOs for NSs and discussed their applicability in
DM issues. Chen and Ye [45] established the Dombi norm-
based novel AgOs under SVNNs, Liu et al. [46] introduced
Hamacher norm-based generalized AgOs to tackle the
uncertain data in the form of neutrosophic numbers, Wei
and Zhang [47] presented the Bonferroni mean-based power
AgOs for single valued NSs to addressed the multiple at-
tribute DM problems, Liu et al. [48] established the group
DM methodology based on Heronian mean power AgOs
under linguistic NS information to address the uncertain
and inaccurate data in DM problems, and Garg [49]
established the hybrid methodology with linguistic variables
and single-valued NS-based prioritized AgOs and discussed
their applicability to address the uncertain data in DM
problems.

It is evident that the abovementioned AgOs are focused
on the algebraic, Einstein, Dombi, and Hamacher norms
under single-valued NSs for the implementation of the
combination process. Algebraic, Einstein, Dombi, and
Hamacher product and sum are not fundamental single-
valued NSs operations that describe the union and the in-
tersection of any two single-valued NSs. A general union and
intersection under NS information can be developed from a
generalized norm, i.e., instances of deferent-norm families
may be used to execute the respective intersections and
unions under single-valued NSs environment. *e Yager
product and sum are good replacement of the algebraic,
Einstein, Dombi, and Hamacher product for an intersection
and union and is capable of delivering smooth estimates of
the algebraic product and sum. However, there seems to be
little work in the literature on aggregation approaches that

2 Mathematical Problems in Engineering



use the Yager operations on FS theory to aggregate the fuzzy
numbers. Akram and Shahzadi [50] introduced the q-rung
orthopair FS-based Yager AgOs to tackle the DM problems.
Akram et al. [51] presented the Yager norm-based AgOs
under complex Pythagorean FSs and discussed their ap-
plication in DM problems. Shahzadi et al. [52] presented the
DM approach based on Yager operational laws under Py-
thagorean information. Garg et al. [53] presented the DM
problem of COVID-19 Testing Facility using Fermatean FS
and Yager norm information.

From the above analysis, we note that, in many practical
applications, various aggregation operators have been put
forward and implemented, although, in practical problems,
many existing AgOs are not capable to address such specific
cases. In some circumstances, many of these may result in
unreasonable or counterintuitive results. Certain new reg-
ulations built without a simple function may have a com-
plicated description. However, generalized aggregation
operators for SVNSs continue to be an open subject that
attracts many researchers. *erefore, in this article, our aim
is to present some novel single-valued neutrosophic Yager
operational law-based Yager AgOs to tackle the uncertainty
in DM real-world problems with a more effective and ef-
ficient way.*e contribution and originality of this study are
summarized as follows:

(i) Novel ranking methodology and Yager norm-based
novel operational laws for single-valued NSs are
proposed

(ii) *e new Yager averaging/geometric aggregation
operators are proposed to aggregate the uncer-
tainties in the form of single-valued NS
environment

(iii) Decision-making algorithm is proposed to tackle
the DM real-world problems

(iv) A real-life numerical application about solar power
plant location selection problem in Pakistan is
discussed to show the applicability of the proposed
technique

*e rest of this article shall be organized as set out
below. Section 2 provides basic information concerning
single-valued NSs. Section 3 describes the Yager opera-
tions of single-valued NSs. Section 4, presented as the
cornerstone of this work, proposes novel neutrosophic
Yager AgOs based on the Yager norm, together with the
associated proof of its properties. Section 5 introduces the
novel methodology for interacting with the ambiguity in
DM problems in order to pick the best alternative
according to the list of attributes. Section 6 provides a
numerical application about solar power plant location
selection problem which is used to illustrate the designed
MAGDM method, and a comparative analysis with some

existing frameworks to MAGDM is discussed in Section 7.
*e article is concluded in Section 8.

2. Preliminaries

*e section provides some basic information on the follow-
up criteria for the short-term tasks’ Fuzzy set theory,
spherical FS theory, and single-valued NS theory.

Definition 1 (see [1]). Let U be the given collection, and a
fuzzy set (FS) F in U having one function is

F � 〈x, ♭(x)〉|x ∈ U{ }, (1)

where ♭: U⟶ [0, 1] representing the positive grade of
membership of F in U.

Definition 2 (see [2]). Let U be the given collection, and an
intuitionistic FS Fi in U having two functions is

Fi � 〈x, ♭(x), z(x)〉|x ∈ U{ }, (2)

where ♭, z: U⟶ [0, 1] representing the positive and
negative grades of membership ofF in U, such that ∀x ∈ U,
0≤ ♭(x) + z(x) ≤ 1.

Definition 3 (see [15]). Let U be the given collection, and a
picture FS Fp in U having three functions is

Fp � 〈x, ♭(x), I(x), z(x)〉|x ∈ U{ }, (3)

where ♭, I, and z: U⟶ [0, 1] representing the positive,
neutral, and negative grades of membership ofF in U, such
that ∀x ∈ U, 0≤ ♭(x) + I(x) + z(x)≤ 1.

Definition 4 (see [25, 26]). Let U be the given collection, a
spherical FS Fs in U having three functions is

Fs � 〈x, ♭(x), I(x), z(x)〉|x ∈ U{ }, (4)

where ♭, I, and z: U⟶ [0, 1] representing the positive,
neutral, and negative grades of membership ofF in U, such
that ∀x ∈ U, 0≤ ♭2(x) + I2(x) + z2(x)≤ 1.

Definition 5 (see [42]). Let U be the given collection, and a
neutrosophic set (NS) Fn in U having three functions is

Fn � 〈x, ♭(x), I(x), z(x)〉|x ∈ U{ }, (5)

where ♭, I, and z: U⟶ ]0− , 1+[ representing the truth,
indeterminacy and falsity grades of membership of F in U,
such that ∀x ∈ U, 0− ≤ ♭(x) + I(x) + z(x)≤ 3+.

Definition 6 (see [54]). Let U be the given collection, and a
single-valued NS Fn in U having three functions is

Fn � 〈x, ♭(x), I(x), z(x)〉| x ∈ U{ }, (6)
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where ♭, I, and z: U⟶ [0, 1] representing the truth, in-
determinacy, and falsity grades of membership of F in U,
such that ∀x ∈ U, 0≤ ♭(x) + I(x) + z(x)≤ 3.

We represent SVNS(U) the collection of single-valued
NSs. Wang et al. [54], Ye [55], and Zhang and Bo [56]
developed the initial operating rules which are discussed as
follows.

Definition 7 (see [56]). Let Fnt(1)
,Fnt(2)
∈ SVNS(U); then,

(1) Fnt(1)
⊆Fnt(2)

iff ♭1 ≤ ♭2, I1 ≥ I2 and z1 ≥ z2. Clearly,
Fnt(1)

� Fnt(2)
if Fnt(1)

⊆Fnt(2)
and Fnt(2)

⊆Fnt(1)
.

(2) Fnt(1)
∩Fnt(2)

� inf(♭1,♭2),sup(I1, I2),sup(z1,z2)􏼈 􏼉.
(3) Fnt(1)

∪Fnt(2)
� sup(♭1,♭2), inf(I1, I2), inf (z1,z2)􏼈 􏼉.

(4) Fc
nt(1)

� z1, I1, ♭1􏼈 􏼉.

Definition 8 (see [54, 57]). Let Fnt(1)
,Fnt(2)
∈ SVNS(U);

then, for ϱ > 0,

(1) Fnt(1)
⊗Fnt(2)

� ♭1♭2, I1 + I2 − I1I2, z1 + z2 − z1z2􏼈 􏼉

(2) Fnt(1)
⊕Fnt(2)

� ♭1 + ♭2 − ♭1♭2, I1I2, z1z2􏼈 􏼉

(3) Fϱnt(1)
� ♭ϱ1, 1 − (1 − I1)

ϱ, 1 − (1 − z1)
ϱ

􏼈 􏼉

(4) ϱ · Fnt(1)
� 1 − (1 − ♭1)

ϱ, I
ϱ
1, z
ϱ
1􏼈 􏼉

Definition 9. Let Fh � (♭h(x), Ih(x), zh(x)) ∈ SVNN
(U)(h ∈ N). *en, the weighted averaging AgOs for
SVNN(U) is described as follows:

SVNWA F1,F2, . . . ,Fn( 􏼁 � ρ1F1 ⊕ ρ2F2 ⊕ · · · ⊕ ρnFn,

� 􏽘
n

h�1
ρhFh,

� 1 − 􏽙
n

h�1
1 − ♭h( 􏼁

ρh , 􏽙
n

h�1
Ih( 􏼁

ρh , 􏽙
n

h�1
zh( 􏼁

ρh
⎧⎨

⎩

⎫⎬

⎭,

(7)

where the weights (ρ1, ρ2, . . . , ρh) of Fh have ρh ≥ 0 and
􏽐

n
h�1 ρh � 1.

Definition 10. Let Fh � (♭h(x), Ih(x), zh(x)) ∈ SVNN
(U)(h ∈ N). *en, the weighted geometric AgOs for
SFNV(U) is described as follows:

SVNWG F1,F2, . . . ,Fn( 􏼁 � F
ρ1
1 ⊗F

ρ2
2 ⊗ · · · ⊗Fρn

n ,

� 􏽙
n

h�1
Fh( 􏼁

ρh ,

� 􏽙
n

h�1
♭h( 􏼁

ρh , 1 − 􏽙
n

h�1
1 − I

2
h􏼐 􏼑

ρh
, 1 − 􏽙

n

h�1
1 − zh( 􏼁

ρh
⎧⎨

⎩

⎫⎬

⎭,

(8)

where the weights (ρ1, ρ2, . . . , ρh) of Fh have ρh ≥ 0 and
􏽐

n
h�1 ρh � 1.

Definition 11. Let Fnt(1)
� (♭1, I1, z1) and Fnt(2)

� (♭2, I2,

z2) ∈ SVNS(U). Sc(Fnt(1)
) � ♭1 − I1 − z1 and Sc(Fnt(2)

) �

♭2 − I2 − z2 are the score values of SVNNs. Also,
Ay(Fnt(1)

) � ♭1 + I1 + z1 and Ay(Fnt(2)
) � ♭1 + I1 + z1 are

the accuracy values of SVNNs. If

(a) Sc(Fnt(1)
)<Sc(Fnt(2)

)⇒Fnt(1)
<Fnt(2)

(b) Sc(Fnt(1)
) � Sc(Fnt(2)

),Ay(Fnt(1)
)<Ay(Fnt(2)

)⇒
Fnt(1)
<Fnt(2)

(c) Sc(Fnt(1)
) �Sc(Fnt(2)

),Ay(Fnt(1)
) �Ay(Fnt(2)

)⇒
Fnt(1)

�Fnt(2)

3. New Operating Laws for Single-Valued NS

In integrating information into one form and addressing
DM issues, aggregation operators (AgOs) play a vital role.
Aggregation facilitates the establishment of a number of
choices in a system or a collection of objects that have come
together or have been brought together. In recent years,
AgOs based on FSs and their different hybrid compositions
have provided a great deal of attention and become inter-
esting because they can quickly execute functional areas of
various regions. In this section, we propose the Yager norm-
based novel operational laws for single-valued NSs.

Definition 12 (see [58]). Yager’s norms for any p and c ∈ R:

(1) T
⌣

(p, c) � 1 − min (1, ((1 − p)δ + (1 − c)δ)1/δ)
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(2) 􏽢S(p, c) � min (1, (pδ − cδ)1/δ), δ ∈ (0,∞)

Definition 13. LetFnt(1)
,Fnt(2)
∈ SVNS(U) with ϱ, δ > 0.*e

Yager operating laws (YOLs) are Fnt � (♭(x), I(x), z(x)):

(1) Fnt(1)
⊗Fnt(2)

� 1 − min(1, ((1 − ♭1)
δ + (1 − ♭2)

δ)􏽮
1/δ), min(1, (Iδ1+ Iδ2)

1/δ), min(1, (zδ1 + zδ2)
1/δ)}

(2) Fnt(1)
⊕Fnt(2)

�

min(1, (♭δ1 + ♭δ2)
1/δ), 1 − min(1, ((1􏽮

− I1)
δ + (1 − I2)

δ)1/δ), 1 − min(1, ((1 − z1)
δ + (1−

z2)
δ)1/δ)}

(3) Fϱnt(1)
� 1 − min(1, (ϱ(1 − ♭1)

δ)1/δ), min(1, (ϱIδ1)􏽮
1/δ), min(1, (ϱzδ1)

1/δ)}

(4) ϱ · Fnt(1)
� min(1, (ϱ♭δ1)

1/δ), 1 − min(1, (ϱ(1 − I1)􏽮
δ)1/δ), 1 − min(1, (ϱ(1 − z1)

δ)1/δ)}

Theorem 1. Let Fnt(1)
,Fnt(2)
∈ SVNS(U) with ϱ1, ϱ2 > 0.

+en,

(1) Fnt(1)
⊕Fnt(2)

� Fnt(2)
⊕Fnt(1)

(2) Fnt(1)
⊗Fnt(2)

� Fnt(2)
⊗Fnt(1)

(3) ϱ(Fnt(1)
⊕Fnt(2)

) � ϱFnt(1)
⊕ ϱFnt(2)

(4) (ϱ1 + ϱ2)Fnt(1)
� ϱ1Fnt(1)

⊕ ϱ2Fnt(1)

(5) (Fnt(1)
⊗Fnt(2)

)ϱ � F
ϱ
nt(1)
⊗Fϱnt(2)

(6) Fϱ1nt(1)
⊗Fϱ2nt(1)

� F
(ϱ1+ϱ2)
nt(1)

Proof. For any Fnt(1)
,Fnt(2)
∈ SVNS(U) with ϱ1, ϱ2 > 0, we

have

Fnt(1)
⊕Fnt(2)

� min 1, ♭δ1 + ♭δ2􏼐 􏼑
1/δ

􏼒 􏼓, 1 − min 1, 1 − I1( 􏼁
δ

+ 1 − I2( 􏼁
δ

􏼐 􏼑
1/δ

􏼒 􏼓, 1 − min 1, 1 − z1( 􏼁
δ

+ 1 − z2( 􏼁
δ

􏼐 􏼑
1/δ

􏼒 􏼓􏼚 􏼛

� min 1, ♭δ2 + ♭δ1􏼐 􏼑
1/δ

􏼒 􏼓, 1 − min 1, 1 − I2( 􏼁
δ

+ 1 − I1( 􏼁
δ

􏼐 􏼑
1/δ

􏼒 􏼓, 1 − min 1, 1 − z2( 􏼁
δ

+ 1 − z1( 􏼁
δ

􏼐 􏼑
1/δ

􏼒 􏼓􏼚 􏼛

� Fnt(2)
⊕Fnt(1)

,

Fnt(1)
⊗Fnt(2)

� 1 − min 1, 1 − ♭1( 􏼁
δ

+ 1 − ♭2( 􏼁
δ

􏼐 􏼑
1/δ

􏼒 􏼓, min 1, I
δ
1 + I

δ
2􏼐 􏼑

1/δ
􏼒 􏼓, min 1, z

δ
1 + z

δ
2􏼐 􏼑

1/δ
􏼒 􏼓􏼚 􏼛

� 1 − min 1, 1 − ♭2( 􏼁
δ

+ 1 − ♭1( 􏼁
δ

􏼐 􏼑
1/δ

􏼒 􏼓, min 1, I
δ
2 + I

δ
1􏼐 􏼑

1/δ
􏼒 􏼓, min 1, z

δ
2 + z

δ
1􏼐 􏼑

1/δ
􏼒 􏼓􏼚 􏼛

� Fnt(2)
⊗Fnt(1)

,

ϱ Fnt(1)
⊕Fnt(2)

􏼒 􏼓 � ϱ · min 1, ♭δ1 + ♭δ2􏼐 􏼑
1/δ

􏼒 􏼓, 1 − min 1, 1 − I1( 􏼁
δ

+ 1 − I2( 􏼁
δ

􏼐 􏼑
1/δ

􏼒 􏼓, 1 − min 1, 1 − z1( 􏼁
δ

+ 1 − z2( 􏼁
δ

􏼐 􏼑
1/δ

􏼒 􏼓􏼚 􏼛

� min 1, ϱ♭δ1 + ϱ♭δ2􏼐 􏼑
1/δ

􏼒 􏼓, 1 − min 1, ϱ 1 − I1( 􏼁
δ

+ ϱ 1 − I2( 􏼁
δ

􏼐 􏼑
1/δ

􏼒 􏼓, 1􏼚

− min 1, ϱ 1 − z1( 􏼁
δ

+ ϱ 1 − z2( 􏼁
δ

􏼐 􏼑
1/δ

􏼒 􏼓􏼛,

ϱFnt(1)
⊕ ϱFnt(2)

� min 1, ϱ♭δ1􏼐 􏼑
1/δ

􏼒 􏼓, 1 − min 1, ϱ 1 − I1( 􏼁
δ

􏼐 􏼑
1/δ

􏼒 􏼓, 1 − min 1, ϱ 1 − z1( 􏼁
δ

􏼐 􏼑
1/δ

􏼒 􏼓􏼚 􏼛⊕ min 1, ϱ♭δ2􏼐 􏼑
1/δ

􏼒 􏼓, 1􏼚

− min 1, ϱ 1 − I2( 􏼁
δ

􏼐 􏼑
1/δ

􏼒 􏼓, 1 − min 1, ϱ 1 − z2( 􏼁
δ

􏼐 􏼑
1/δ

􏼒 􏼓􏼛

� min 1, ϱ♭δ1 + ϱ♭δ2􏼐 􏼑
1/δ

􏼒 􏼓, 1 − min 1, ϱ 1 − I1( 􏼁
δ

+ ϱ 1 − I2( 􏼁
δ

􏼐 􏼑
1/δ

􏼒 􏼓, 1􏼚

− min 1, ϱ 1 − z1( 􏼁
δ

+ ϱ 1 − z2( 􏼁
δ

􏼐 􏼑
1/δ

􏼒 􏼓􏼛

⇒ϱ Fnt(1)
⊕Fnt(2)

􏼒 􏼓 � ϱFnt(1)
⊕ ϱFnt(2)

,

ϱ1Fnt(1)
⊕ ϱ2Fnt(1)

� min 1, ϱ1♭
δ
1􏼐 􏼑

1/δ
􏼒 􏼓, 1 − min 1, ϱ1 1 − I1( 􏼁

δ
􏼐 􏼑

1/δ
􏼒 􏼓, 1 − min 1, ϱ1 1 − z1( 􏼁

δ
􏼐 􏼑

1/δ
􏼒 􏼓􏼚 􏼛⊕ min 1, ϱ2♭

δ
2􏼐 􏼑

1/δ
􏼒 􏼓, 1􏼚

− min 1, ϱ2 1 − I2( 􏼁
δ

􏼐 􏼑
1/δ

􏼒 􏼓, 1 − min 1, ϱ2 1 − z2( 􏼁
δ

􏼐 􏼑
1/δ

􏼒 􏼓􏼛

� min 1, ϱ1 + ϱ2( 􏼁♭δ1􏼐 􏼑
1/δ

􏼒 􏼓, 1 − min 1, ϱ1 + ϱ2( 􏼁 1 − I1( 􏼁
δ

􏼐 􏼑
1/δ

􏼒 􏼓, 1 − min 1, ϱ1 + ϱ2( 􏼁 1 − z1( 􏼁
δ

􏼐 􏼑
1/δ

􏼒 􏼓􏼚 􏼛

� ϱ1 + ϱ2( 􏼁Fnt(1)
.

(9)

□
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Proof of (5) and (6) are similar as above.

4. Aggregation Operators Based on
Yager’s Norms

*e section presents some single-valued neutrosophic AgOs
using Yager OLs of SVNNs.

4.1. Yager Weighted Averaging AgOs

Definition 14. Let Fh � (♭h(x), Ih(x), zh(x)) ∈ SVNN(U)

(h ∈ N). *en, Yager weighted averaging AgOs for
SVNN(U) is described as follows:

SVNYWA F1,F2, . . . ,Fn( 􏼁 � ρ1F1 ⊕ ρ2F2 ⊕ · · · ⊕ ρnFn

� 􏽘
n

h�1
ρhFh,

(10)

where the weights (ρ1, ρ2, . . . , ρh) of Fh have ρh ≥ 0 and
􏽐

n
h�1 ρh � 1.

Theorem 2. Let Fh � (♭h(x), Ih(x), zh(x)) ∈ SVNN
(U)(h ∈ N) and the weights (ρ1, ρ2, . . . , ρh) of Fh having
ρh ≥ 0 and 􏽐

n
h�1 ρh � 1 +e SVNYWA AgOs are a mapping

Gn⟶ G such that

SVNYWA F1,F2, . . . ,Fn( 􏼁 � 􏽘
n

h�1
ρhFh

� min 1, 􏽘
n

h�1
ρh♭

δ
h

⎛⎝ ⎞⎠

1/δ

⎛⎜⎝ ⎞⎟⎠, 1 − min 1, 􏽘
n

h�1
ρh 1 − Ih( 􏼁

δ⎛⎝ ⎞⎠

1/δ

⎛⎜⎝ ⎞⎟⎠, 1⎛⎜⎝

− min 1, 􏽘
n

h�1
ρh 1 − zh( 􏼁

δ⎛⎝ ⎞⎠

1/δ

⎛⎜⎝ ⎞⎟⎠⎞⎟⎠.

(11)

Proof. We prove *eorem 2, by applying mathematical
induction on n, since for each h,
Fh � (♭h(x), Ih(x), zh(x)) ∈ SVNN(U) which implies that
♭h, Ih, zh ∈ [0, 1] and ♭h + Ih + zh ≤ 3.

Step 1: for n � 2, we obtain

SVNYWA F1,F2( 􏼁 � ρ1F1 ⊕ ρ2F2. (12)

Since by Definition 13, we have

SVNYWA F1,F2( 􏼁 � ρ1F1 ⊕ ρ2F2

� min 1, ρ1♭
δ
1􏼐 􏼑

1/δ
􏼒 􏼓, 1 − min 1, ρ1 1 − I1( 􏼁

δ
􏼐 􏼑

1/δ
􏼒 􏼓, 1 − min 1, ρ1 1 − z1( 􏼁

δ
􏼐 􏼑

1/δ
􏼒 􏼓􏼚 􏼛

· ⊕ min 1, ρ2♭
δ
2􏼐 􏼑

1/δ
􏼒 􏼓, 1 − min 1, ρ2 1 − I2( 􏼁

δ
􏼐 􏼑

1/δ
􏼒 􏼓, 1 − min 1, ρ2 1 − z2( 􏼁

δ
􏼐 􏼑

1/δ
􏼒 􏼓􏼚 􏼛

� min 1, 􏽘
2

h�1
ρh♭

δ
h

⎛⎝ ⎞⎠

1/δ

⎛⎜⎝ ⎞⎟⎠, 1 − min 1, 􏽘
2

h�1
ρh 1 − Ih( 􏼁

δ⎛⎝ ⎞⎠

1/δ

⎛⎜⎝ ⎞⎟⎠, 1 − min 1, 􏽘
2

h�1
ρh 1 − zh( 􏼁

δ⎛⎝ ⎞⎠

1/δ

⎛⎜⎝ ⎞⎟⎠⎛⎜⎝ ⎞⎟⎠.

(13)
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Step 2: suppose that equation (11) holds for n � κ, and
we have

SVNYWA F1,F2, . . . ,Fκ( 􏼁 �

���������������������

min 1, 􏽘

κ

h�1
ρh♭

2δ
h

⎛⎝ ⎞⎠

1/δ

⎛⎜⎝ ⎞⎟⎠

􏽶
􏽴

,

�����������������������������

1 − min 1, 􏽘

κ

h�1
ρh 1 − I

2
h􏼐 􏼑

δ⎛⎝ ⎞⎠

1/δ

⎛⎜⎝ ⎞⎟⎠

􏽶
􏽴

,
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

·

�����������������������������

1 − min 1, 􏽘
κ

h�1
ρh 1 − z

2
h􏼐 􏼑

δ⎛⎝ ⎞⎠

1/δ

⎛⎜⎝ ⎞⎟⎠

􏽶
􏽴

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠.

(14)

Step 3: now, we have to prove that equation (11) holds
for n � κ + 1:

SVNYWA F1,F2, . . . ,Fκ+1( 􏼁 � 􏽘
κ

h�1
ρhFh ⊕ ρκ+1Fκ+1

� min 1, 􏽘
κ

h�1
ρh♭

δ
h

⎛⎝ ⎞⎠

1/δ

⎛⎜⎝ ⎞⎟⎠, 1 − min 1, 􏽘
κ

h�1
ρh 1 − Ih( 􏼁

δ⎛⎝ ⎞⎠

1/δ

⎛⎜⎝ ⎞⎟⎠, 1⎛⎜⎝

− min 1, 􏽘
κ

h�1
ρh 1 − zh( 􏼁

δ⎛⎝ ⎞⎠

1/δ

⎛⎜⎝ ⎞⎟⎠⎞⎟⎠ ⊕ min 1, ρκ+1♭
δ
κ+1􏼐 􏼑

1/δ
􏼒 􏼓, 1􏼒

− min 1, ρκ+1 1 − Iκ+1( 􏼁
δ

􏼐 􏼑
1/δ

􏼒 􏼓, 1 − min 1, ρκ+1 1 − zκ+1( 􏼁
δ

􏼐 􏼑
1/δ

􏼒 􏼓􏼓

� min 1, 􏽘
κ+1

h�1
ρh♭

δ
h

⎛⎝ ⎞⎠

1/δ

⎛⎜⎝ ⎞⎟⎠, 1 − min 1, 􏽘
κ+1

h�1
ρh 1 − Ih( 􏼁

δ⎛⎝ ⎞⎠

1/δ

⎛⎜⎝ ⎞⎟⎠, 1⎛⎜⎝

− min 1, 􏽘
κ+1

h�1
ρh 1 − zh( 􏼁

δ⎛⎝ ⎞⎠

1/δ

⎛⎜⎝ ⎞⎟⎠⎞⎟⎠,

(15)

that is, when n � z + 1, equation (11) also holds.
Hence, equation (11) holds for any n. *e proof is

completed.
Next, we give the some properties of the proposed

SVNYWA aggregation operator. □

Theorem 3. Let Fh � (♭h(x), Ih(x), zh(x)) ∈ SVNN
(U)(h ∈ N) such that Fh � F. Then,

SVNYWA F1,F2, . . . ,Fn( 􏼁 � F. (16)
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Proof. Since Fh � F(h ∈ N). *en, by *eorem 2, we
obtain

SVNYWA F1,F2, . . . ,Fn( 􏼁 � min 1, 􏽘
n

h�1
ρh♭

2δ
h

⎛⎝ ⎞⎠

1/δ

⎛⎜⎝ ⎞⎟⎠, 1 − min 1, 􏽘
n

h�1
ρh 1 − Ih( 􏼁

δ⎛⎝ ⎞⎠

1/δ

⎛⎜⎝ ⎞⎟⎠, 1⎛⎜⎝

− min 1, 􏽘
n

h�1
ρh 1 − zh( 􏼁

δ⎛⎝ ⎞⎠

1/δ

⎛⎜⎝ ⎞⎟⎠⎞⎟⎠

� min 1, 􏽘
n

h�1
ρh♭

δ⎛⎝ ⎞⎠

1/δ

⎛⎜⎝ ⎞⎟⎠, 1 − min 1, 􏽘
n

h�1
ρh(1 − I)

δ⎛⎝ ⎞⎠

1/δ

⎛⎜⎝ ⎞⎟⎠, 1⎛⎜⎝

− min 1, 􏽘
n

h�1
ρh(1 − z)

δ⎛⎝ ⎞⎠

1/δ

⎛⎜⎝ ⎞⎟⎠⎞⎟⎠

� min 1, ♭δ􏼐 􏼑
1/δ

􏼒 􏼓, 1 − min 1, (1 − I)
δ

􏼐 􏼑
1/δ

􏼒 􏼓, 1 − min 1, (1 − z)
δ

􏼐 􏼑
1/δ

􏼒 􏼓􏼒 􏼓

� (♭(x), I(x), z(x))

� F.

(17)

Hence, proved. □

Theorem 4. Let Fh � (♭h(x), Ih(x), zh(x)),F−
h � min{

(♭h(x)), max(Ih(x)), max(zh(x))} and F+
h � max(♭h􏼈

(x)), min(Ih(x)), min(zh(x))} ∈ SVNN(U) (h ∈ N).
Then,

F
−
h ≤ SVNYWA F1,F2, . . . ,Fn( 􏼁≤F+

h . (18)

Proof. Procedure is similar as the above theorem, so here we
eliminate. □

Theorem 5. Let Fh � (♭h(x), Ih (x), zh(x)),F∗h � (♭∗h(x),

I∗h(x), z∗h(x)) ∈ SVNN(U)(h ∈ N). If ♭h ≤ ♭
∗
h , Ih ≤ I∗h , and

zh ≤ z∗h , then

SVNYWA F1,F2, . . . ,Fn( 􏼁≤ SVNYWA F
∗
1 ,F
∗
2 , . . . ,F

∗
n( 􏼁.

(19)

Proof. Procedure is similar as above theorem, so here we
eliminate. □

Definition 15. Let Fh � (♭h(x), Ih(x), zh (x)) ∈ SVNN(U)

(h ∈ N). *en, Yager ordered weighted averaging AgOs for
SVNN(U) is described as follows:

SVNYOWA F1,F2, . . . ,Fn( 􏼁 � ρ1Fx(1) ⊕ ρ2Fx(2) ⊕ · · · ⊕ ρnFx(n)

� 􏽘
n

h�1
ρhFx(h),

(20)

where x(h) represented the ordered and
(x(1), x(2), x(3), . . . , x(n)) is a permutation of
(1, 2, 3, . . . , n), subject to εx(h− 1) ≥ εx(h) for all h. Also, the
weights (ρ1, ρ2, . . . , ρh) ofFh having ρh ≥ 0 and 􏽐

n
h�1 ρh � 1.

Theorem 6. Let Fh � (♭h(x), Ih(x), zh(x)) ∈ SVNN
(U)(h ∈ N) and the weights (ρ1, ρ2, . . . , ρh) of Fh having
ρh ≥ 0 and 􏽐

n
h�1 ρh � 1 +e SVNYOWA AgOs is a mapping

Gn⟶ G such that
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SVNYOWA F1,F2, . . . ,Fn( 􏼁 � 􏽘
n

h�1
ρhFx(h)

� min 1, 􏽘
n

h�1
ρh♭

δ
x(h)

⎛⎝ ⎞⎠

1/δ

⎛⎜⎝ ⎞⎟⎠, 1 − min 1, 􏽘
n

h�1
ρh 1 − Ix(h)􏼐 􏼑

δ⎛⎝ ⎞⎠

1/δ

⎛⎜⎝ ⎞⎟⎠, 1⎛⎜⎝

− min 1, 􏽘

n

h�1
ρh 1 − zx(h)􏼐 􏼑

δ⎛⎝ ⎞⎠

1/δ

⎛⎜⎝ ⎞⎟⎠⎞⎟⎠.

(21)

Proof. It follows from *eorem 2 similarly. □

Theorem 7. Let Fh � (♭h(x), Ih(x), zh(x)) ∈ SVNN(U)

(h ∈ N) such that Fh � F. Then,

SVNYOWA F1,F2, . . . ,Fn( 􏼁 � F. (22)

Theorem 8. Let Fh � (♭h(x), Ih(x), zh(x)),F−
h � min{

(♭h(x)), max(Ih(x)), max(zh(x))}, and F+
h � max{

(♭h(x)), min (Ih(x)), min(zh(x))} ∈ SVNN(U)(h ∈ N).
Then,

F
−
h ≤ SVNYOWA F1,F2, . . . ,Fn( 􏼁≤F+

h . (23)

Theorem 9. Let Fh � (♭h(x), Ih(x), z h(x)) andF∗h �

(♭∗h(x), I∗h(x), z∗h(x)) ∈ SVNN(U)(h ∈ N). If
♭h ≤ ♭
∗
h , Ih ≤ I∗h , and zh ≤ z∗h , then

SVNYOWA F1,F2, . . . ,Fn( 􏼁≤ SVNYOWA F
∗
1 ,F
∗
2 , . . . ,F

∗
n( 􏼁.

(24)

Proof of these theorems is similarly followed by *eo-
rems 3–5.

Definition 16. Let Fh � (♭h(x), Ih(x), zh(x)) ∈ SVNN(U)

(h ∈ N). *en, Yager hybrid weighted averaging AgOs for
SVNN(U) is described as follows:

SVNYHWA F1,F2, . . . ,Fn( 􏼁 � σhFx(1)
′ ⊕ σhFx(2)

′ ⊕ . . . ⊕ σhFx(n)
′

� 􏽘

n

h�1
σhFx(h)
′ ,

(25)

where weights (ρ1, ρ2, . . . , ρh) of Fh having ρh ≥ 0 and
􏽐

n
h�1 ρh � 1 and gth biggest weighted value is

Fx(h)
′ (Fx(h)
′ � nρhFx(h)|h � 1, 2, . . . , n), consequently by

total order (x(1), x(2), x(3), . . . , x(n)). Also, associated
weights (σ1, σ2, . . . , σh) ofFh having σh ≥ 0 and 􏽐

n
h�1 σh � 1.

Theorem 10. Let Fh � (♭h(x), Ih(x), zh(x)) ∈ SVNN(U)

(h ∈ N) and the weights (ρ1, ρ2, . . . , ρh) of Fh having ρh ≥ 0
and 􏽐

n
h�1 ρh � 1 +e SVNYHWA AgOs are a mapping

Gn⟶ G with associated weights (σ1, σ2, . . . , σh) of Fh

having σh ≥ 0 and 􏽐
n
h�1 σh � 1, and we have

SFYHWA F1,F2, . . . ,Fn( 􏼁 � 􏽘
n

h�1
σhFx(h)
′

� min 1, 􏽘
n

h�1
ρh♭
′δ
x(h)

⎛⎝ ⎞⎠

1/δ

⎛⎜⎝ ⎞⎟⎠, 1 − min 1, 􏽘
n

h�1
ρh 1 − Ix(h)

′􏼐 􏼑
δ⎛⎝ ⎞⎠

1/δ

⎛⎜⎝ ⎞⎟⎠, 1⎛⎜⎝

− min 1, 􏽘
n

h�1
ρh 1 − zx(h)

′􏼐 􏼑
δ⎛⎝ ⎞⎠

1/δ

⎛⎜⎝ ⎞⎟⎠⎞⎟⎠.

(26)

Proof. It follows from *eorem 2 similarly. □

Theorem 11. Let Fh � (♭h(x), Ih(x), zh(x)) ∈ SVNN(U)

(h ∈ N) such that Fh � F. Then,

SVNYHWA F1,F2, . . . ,Fn( 􏼁 � F. (27)

Theorem 12. Let Fh � (♭h(x), Ih(x), zh(x)), F−
h � min{

(♭h(x)), max(Ih(x)), max(zh(x))} and
F+

h � max(♭h(x)), min(Ih(x)), min􏼈 (zh(x))} ∈ SVNN
(U)(h ∈ N). Then,

F
−
h ≤ SVNYHWA F1,F2, . . . ,Fn( 􏼁≤F+

h . (28)
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Theorem 13. LetFh � (♭h(x), Ih(x), zh(x)),F∗h � (♭∗h(x),

I∗h(x), z∗h(x)) ∈ SVNN(U)(h ∈ N). If ♭h ≤ ♭
∗
h , Ih ≤ I∗h and

zh ≤ z∗h , then

SVNYHWA F1,F2, . . . ,Fn( 􏼁≤ SVNYHWA F
∗
1 ,F
∗
2 , . . . ,F

∗
n( 􏼁.

(29)

Proof of these theorems is similarly followed by *eo-
rems 3–5.

4.2. Yager Weighted Geometric AgOs

Definition 17. Let Fh � (♭h(x), Ih(x), zh(x)) ∈ SVNN(U)

(h ∈ N). *en, Yager weighted geometric AgOs for
SVNN(U) is described as follows:

SVNYWG F1,F2, . . . ,Fn( 􏼁 � F
ρ1
1 ⊗F

ρ2
2 ⊗ · · · ⊗Fρn

n

� 􏽙
n

h�1
Fh( 􏼁

ρh ,

(30)

where the weights (ρ1, ρ2, . . . , ρh) of Fh having ρh ≥ 0 and
􏽐

n
h�1 ρh � 1.

Theorem 14. Let Fh � (♭h(x), Ih(x), zh(x)) ∈ SVNN(U)

(h ∈ N) and the weights (ρ1, ρ2, . . . , ρh) of Fh having ρh ≥ 0
and 􏽐

n
h�1 ρh � 1+e SVNYWGAgOs is a mappingGn⟶ G

such that

SVNYWG F1,F2, . . . ,Fn( 􏼁 � 􏽙

n

h�1
Fh( 􏼁

ρh

� 1 − min 1, 􏽘
n

h�1
ρh 1 − ♭h( 􏼁

δ⎛⎝ ⎞⎠

1/δ

⎛⎜⎝ ⎞⎟⎠, min 1, 􏽘
n

h�1
ρhI

δ
h

⎛⎝ ⎞⎠

1/δ

⎛⎜⎝ ⎞⎟⎠, min 1, 􏽘
n

h�1
ρhz

δ
h

⎛⎝ ⎞⎠

1/δ

⎛⎜⎝ ⎞⎟⎠⎛⎜⎝ ⎞⎟⎠.

(31)

Proof. We prove *eorem 14, by applying mathematical
induction on n. Since for each h,
Fh � (♭h(x), Ih(x), zh(x)) ∈ SVNN(U) which implies that
♭h, Ih, zh ∈ [0, 1] and ♭h + Ih + zh ≤ 3.

Step 1: for n � 2, we obtain

SVNYWG F1,F2( 􏼁 � F
ρ1
1 ⊗F

ρ2
2 . (32)

Since by Definition 13, we have

SVNYWG F1,F2( 􏼁 � F
ρ1
1 ⊗F

ρ2
2

� 1 − min 1, ρ1 1 − ♭1( 􏼁
δ

􏼐 􏼑
1/δ

􏼒 􏼓, min 1, ρ1I
δ
1􏼐 􏼑

1/δ
􏼒 􏼓, min 1, ρ1z

δ
1􏼐 􏼑

1/δ
􏼒 􏼓􏼚 􏼛

⊕ 1 − min 1, ρ2 1 − ♭2( 􏼁
δ

􏼐 􏼑
1/δ

􏼒 􏼓, min 1, ρ2I
δ
2􏼐 􏼑

1/δ
􏼒 􏼓, min 1, ρ2z

δ
2􏼐 􏼑

1/δ
􏼒 􏼓􏼚 􏼛

� 1 − min 1, 􏽘
2

h�1
ρh 1 − ♭h( 􏼁

δ⎛⎝ ⎞⎠

1/δ

⎛⎜⎝ ⎞⎟⎠, min 1, 􏽘
2

h�1
ρhI

δ
h

⎛⎝ ⎞⎠

1/δ

⎛⎜⎝ ⎞⎟⎠, min 1, 􏽘
2

h�1
ρhz

δ
h

⎛⎝ ⎞⎠

1/δ

⎛⎜⎝ ⎞⎟⎠⎛⎜⎝ ⎞⎟⎠.

(33)

Step 2: suppose that equation (31) holds for n � κ, and
we have

SVNYWG F1,F2, . . . ,Fκ( 􏼁 � 1 − min 1, 􏽘
κ

h�1
ρh 1 − ♭h( 􏼁

δ⎛⎝ ⎞⎠

1/δ

⎛⎜⎝ ⎞⎟⎠, min 1, 􏽘
κ

h�1
ρhI

δ
h

⎛⎝ ⎞⎠

1/δ

⎛⎜⎝ ⎞⎟⎠, min 1, 􏽘
κ

h�1
ρhz

δ
h

⎛⎝ ⎞⎠

1/δ

⎛⎜⎝ ⎞⎟⎠⎛⎜⎝ ⎞⎟⎠.

(34)
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Step 3: now, we have to prove that equation (31) holds
for n � κ + 1:

SVNYWG F1,F2, . . . ,Fκ+1( 􏼁 � 􏽙
κ

h�1
Fh( 􏼁

ρh ⊗ Fκ+1( 􏼁
ρκ+1

� 1 − min 1, 􏽘
κ

h�1
ρh 1 − ♭h( 􏼁

δ⎛⎝ ⎞⎠

1/δ

⎛⎜⎝ ⎞⎟⎠, min 1, 􏽘
κ

h�1
ρhI

δ
h

⎛⎝ ⎞⎠

1/δ

⎛⎜⎝ ⎞⎟⎠, min 1, 􏽘
κ

h�1
ρhz

δ
h

⎛⎝ ⎞⎠

1/δ

⎛⎜⎝ ⎞⎟⎠⎛⎜⎝ ⎞⎟⎠

⊕ 1 − min 1, ρκ+1 1 − ♭κ+1( 􏼁
δ

􏼐 􏼑
1/δ

􏼒 􏼓, min 1, ρκ+1I
δ
κ+1􏼐 􏼑

1/δ
􏼒 􏼓, min 1, ρκ+1z

δ
κ+1􏼐 􏼑

1/δ
􏼒 􏼓􏼚 􏼛

� 1 − min 1, 􏽘
κ+1

h�1
ρh 1 − ♭h( 􏼁

δ⎛⎝ ⎞⎠

1/δ

⎛⎜⎝ ⎞⎟⎠, min 1, 􏽘
κ+1

h�1
ρhI

δ
h

⎛⎝ ⎞⎠

1/δ

⎛⎜⎝ ⎞⎟⎠, min 1, 􏽘
κ+1

h�1
ρhz

δ
h

⎛⎝ ⎞⎠

1/δ

⎛⎜⎝ ⎞⎟⎠⎛⎜⎝ ⎞⎟⎠,

(35)

that is, when n � z + 1, equation (31) also holds.
Hence, equation (31) holds for any n. *e proof is

completed. □

Theorem 15. Let Fh � (♭h(x), Ih(x), zh(x)) ∈ SVNN(U)

(h ∈ N) such that Fh � F. Then,

SVNYWG F1,F2, . . . ,Fn( 􏼁 � F. (36)

Proof. Since Fh � F(h ∈ N). *en, by *eorem 14, we
obtain

SVNYWG F1,F2, . . . ,Fn( 􏼁 � 1 − min 1, 􏽘
n

h�1
ρh 1 − ♭h( 􏼁

δ⎛⎝ ⎞⎠

1/δ

⎛⎜⎝ ⎞⎟⎠, min 1, 􏽘
n

h�1
ρhI

δ
h

⎛⎝ ⎞⎠

1/δ

⎛⎜⎝ ⎞⎟⎠, min 1, 􏽘
n

h�1
ρhz

δ
h

⎛⎝ ⎞⎠

1/δ

⎛⎜⎝ ⎞⎟⎠⎛⎜⎝ ⎞⎟⎠

� 1 − min 1, 􏽘
n

h�1
ρh(1 − ♭)δ⎛⎝ ⎞⎠

1/δ

⎛⎜⎝ ⎞⎟⎠, min 1, 􏽘
n

h�1
ρhI

δ⎛⎝ ⎞⎠

1/δ

⎛⎜⎝ ⎞⎟⎠, min 1, 􏽘
n

h�1
ρhz

δ⎛⎝ ⎞⎠

1/δ

⎛⎜⎝ ⎞⎟⎠⎛⎜⎝ ⎞⎟⎠

� (1 − min(1, (1 − ♭)), min(1, (I)), min(1, (z)))

� (♭(x), I(x), z(x))

� F.

(37)

Hence, proved. □

Theorem 16. Let Fh � (♭h(x), Ih(x), zh(x)),F−
h � min{

(♭h(x)), max(Ih(x)), max(zh(x))} and F+
h � max(♭h􏼈

(x)), min(Ih(x)), min(zh(x))} ∈ SVNN(U) (h ∈N). Then,

F
−
h ≤ SVNYWG F1,F2, . . . ,Fn( 􏼁≤F+

h . (38)

Theorem 17. LetFh � (♭h(x), Ih(x), zh(x)),F∗h � (♭∗h(x),

I∗h(x), z∗h(x)) ∈ SVNN(U)(h ∈ N). If ♭h ≤ ♭
∗
h , Ih ≤ I∗h , and

zh ≤ z∗h , then

Mathematical Problems in Engineering 11



SVNYWG F1,F2, . . . ,Fn( 􏼁≤ SVNYWG F
∗
1 ,F
∗
2 , . . . ,F

∗
n( 􏼁.

(39)

Definition 18. Let Fh � (♭h(x), Ih(x), zh(x)) ∈ SVNN(U)

(h ∈ N). *en, Yager ordered weighted geometric AgOs for
SVNN(U) is described as follows:

SVNYOWG F1,F2, . . . ,Fn( 􏼁 � Fx(1)􏼐 􏼑
ρ1 ⊗ Fx(2)􏼐 􏼑

ρ2 ⊗ · · · ⊗ Fx(n)􏼐 􏼑
ρn

� 􏽙
n

h�1
Fx(h)􏼐 􏼑

ρh
,

(40)

where x(h) represented the ordered and
(x(1), x(2), x(3), . . . , x(n)) is a permutation of
(1, 2, 3, . . . , n), subject to εx(h− 1) ≥ εx(h) for all h. Also, the
weights (ρ1, ρ2, . . . , ρh) of Fh have ρh ≥ 0 and 􏽐

n
h�1 ρh � 1.

Theorem 18. Let Fh � (♭h(x), Ih(x), zh(x)) ∈ SVNN
(U)(h ∈ N) and the weights (ρ1, ρ2, . . . , ρh) ofFh have ρh ≥ 0
and 􏽐

n
h�1 ρh � 1. +e SVNYOWG AgOs is a mapping

Gn⟶ G such that

SVNYOWG F1,F2, . . . ,Fn( 􏼁 � 􏽙
n

h�1
Fx(h)􏼐 􏼑

ρh

� 1 − min 1, 􏽘
n

h�1
ρh 1 − ♭x(h)􏼐 􏼑

δ⎛⎝ ⎞⎠

1/δ

⎛⎜⎝ ⎞⎟⎠, min 1, 􏽘
n

h�1
ρhI

δ
x(h)

⎛⎝ ⎞⎠

1/δ

⎛⎜⎝ ⎞⎟⎠,⎛⎜⎝

·min 1, 􏽘

n

h�1
ρhz

δ
x(h)

⎛⎝ ⎞⎠

1/δ

⎛⎜⎝ ⎞⎟⎠⎞⎟⎠.

(41)

Proof. It follows from *eorem 14 similarly. □

Theorem 19. Let Fh � (♭h(x), Ih(x), zh(x)) ∈ SVNN(U)

(h ∈ N) such that Fh � F. Then,

SVNYOWG F1,F2, . . . ,Fn( 􏼁 � F. (42)

Theorem 20. Let Fh � (♭h(x), Ih(x), zh(x)), F−
h � min{

(♭h (x)), max(Ih(x)), max(zh(x))} and F+
h � max(♭h􏼈

(x)), min(Ih(x)), min(zh(x))} ∈ SVNN(U) (h ∈ N).
Then,

F
−
h ≤ SVNYOWG F1,F2, . . . ,Fn( 􏼁≤F+

h . (43)

Theorem 21. Let Fh � (♭h(x), Ih(x), z h(x)),F∗h �

(♭∗h(x), I∗h(x), z∗h(x)) ∈ SVNN(U)(h ∈ N). If
♭h ≤ ♭
∗
h , Ih ≤ I∗h , and zh ≤ z∗h , then

SVNYOWG F1,F2, . . . ,Fn( 􏼁≤ SVNYOWG F
∗
1 ,F
∗
2 , . . . ,F

∗
n( 􏼁.

(44)

Proof of these theorems is similarly followed by *eo-
rems 15–17.

Definition 19. Let Fh � (♭h(x), Ih(x), zh(x)) ∈ SVNN(U)

(h ∈ N). *en, Yager hybrid weighted geometric AgOs for
SVNN(U) is described as follows:

SVNYHWG F1,F2, . . . ,Fn( 􏼁 � Fx(1)
′􏼐 􏼑

σh ⊗ Fx(2)
′􏼐 􏼑

σh ⊗ · · · ⊗ Fx(n)
′􏼐 􏼑

σh

� 􏽙
n

h�1
Fx(h)
′􏼐 􏼑

σh
,

(45)

where weights (ρ1, ρ2, . . . , ρh) of Fh having ρh ≥ 0 and
􏽐

n
h�1 ρh � 1 and gth biggest weighted value is

Fx(h)
′ (Fx(h)
′ � nρhFx(h)|h � 1, 2, . . . , n), consequently by

total order (x(1), x(2), x(3), . . . , x(n)). Also, associated
weights (σ1, σ2, . . . , σh) of Fh have σh ≥ 0 and 􏽐

n
h�1 σh � 1.

Theorem 22. Let Fh � (♭h(x), Ih(x), zh(x)) ∈ SVNN(U)

(h ∈ N), and the weights (ρ1, ρ2, . . . , ρh) of Fh have ρh ≥ 0
and 􏽐

n
h�1 ρh � 1 +e SVNYHWG AgOs is a mapping

Gn⟶ G with associated weights (σ1, σ2, . . . , σh) of Fh

having σh ≥ 0 and 􏽐
n
h�1 σh � 1, and we have
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SVNYHWG F1,F2, . . . ,Fn( 􏼁 � 􏽙
n

h�1
Fx(h)
′􏼐 􏼑

σh

� 1 − min 1, 􏽘
n

h�1
ρh 1 − ♭x(h)

′􏼐 􏼑
δ⎛⎝ ⎞⎠

1/δ

⎛⎜⎝ ⎞⎟⎠,⎛⎜⎝

· min 1, 􏽘
n

h�1
ρhI
′δ
x(h)

⎛⎝ ⎞⎠

1/δ

⎛⎜⎝ ⎞⎟⎠, min 1, 􏽘
n

h�1
ρhz
′δ
x(h)

⎛⎝ ⎞⎠

1/δ

⎛⎜⎝ ⎞⎟⎠⎞⎟⎠.

(46)

Proof. It follows from *eorem 14 similarly. □

Theorem 23. Let Fh � (♭h(x), Ih(x), zh(x)) ∈ SVNN(U)

(h ∈ N) such that Fh � F. Then,

SVNYHWG F1,F2, . . . ,Fn( 􏼁 � F. (47)

Theorem 24. Let F � (♭h(x), Ih(x), z h(x)),F−
h � min{

(♭h(x)), max(Ih(x)), max(zh(x))}, and
F+

h � max(♭h(x)), min(Ih(x)), min(zh(x))􏼈 􏼉 ∈ SVNN(U)

(h ∈ N). Then,

F
−
h ≤ SVNYHWG F1,F2, . . . ,Fn( 􏼁≤F+

h . (48)

Theorem 25. Let Fh � (♭h(x), I h(x), zh(x)) andF∗h �

(♭∗h(x), I∗h(x), z∗h(x)) ∈ SVNN(U)(h ∈ N). If
♭h ≤ ♭
∗
h , Ih ≤ I∗h , and zh ≤ z∗h , then

SVNYHWG F1,F2, . . . ,Fn( 􏼁≤ SVNYHWG F
∗
1 ,F
∗
2 , . . . ,F

∗
n( 􏼁.

(49)

Proof of these theorems is similarly followed by *eo-
rems 15–17.

5. Algorithm for Decision-Making
Problems (DMPs)

In this section, we propose a framework for solving mul-
tiattribute group DMPs under single-valued NS informa-
tion. Consider a MAGDM with a set of m alternatives
ℷ1, ℷ2, . . . , ℷh􏼈 􏼉, and let I1, I2, . . . , Ih􏼈 􏼉 be a set of attributes
with weight vector ρ � (ρ1, ρ2, . . . , ρh), where ρt ∈ [0, 1] and
􏽐

h
t�1 ρt � 1. To assess the performance of kth alternative ℷk

under the tth attribute It, let �D1,
�D2, . . . , �D􏽢J

􏼚 􏼛 be a set of

decision makers and 􏽢w � (􏽢w1, 􏽢w2, . . . , 􏽢w􏽢J
) be the weighted

vector of decision makers with 􏽢ws ∈ [0, 1] and 􏽐
􏽢J
s�1 􏽢ws � 1.

*e single-valued NS decision matrix can be written as
follows:

♭11(x), I11(x), z11(x)( 􏼁 ♭12(x), I12(x), z12(x)( 􏼁 · · · ♭1h(x), I1h(x), z1h(x)( 􏼁

♭21(x), I21(x), z21(x)( 􏼁 ♭22(x), I22(x), z22(x)( 􏼁 · · · ♭2h(x), I2h(x), z2h(x)( 􏼁

♭31(x), I31(x), z31(x)( 􏼁 ♭32(x), I32(x), z32(x)( 􏼁 · · · ♭3h(x), I3h(x), z3h(x)( 􏼁

⋮ ⋮ ⋮ ⋮

♭h1(x), Ih1(x), zh1(x)( 􏼁 ♭h2(x), Ih2(x), zh2(x)( 􏼁 · · · ♭hh(x), Ihh(x), zhh(x)( 􏼁

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (50)
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where ♭(x) ∈ [0, 1] truth, I(x) ∈ [0, 1] indeterminacy, and
z(x) ∈ [0, 1] falsity membership grades, respectively. In
addition, 0≤ ♭(x) + I(x) + z(x)≤ 3, ∀x ∈ U. Key steps of
the developed multiattribute group decision-making
(MAGDM) problem are described as follows:

Step 1: construct the single-valued NS decision matrix
based on the expert evaluations:

♭􏽢J11(x), I
􏽢J
11(x), z

􏽢J
11(x)􏼒 􏼓 ♭

􏽢J
12(x), I

􏽢J
12(x), z

􏽢J
12(x)􏼒 􏼓 · · · ♭􏽢J1h(x), I

􏽢J
1h(x), z

􏽢J
1h(x)􏼒 􏼓

♭
􏽢J
21(x), I

􏽢J
21(x), z

􏽢J
21(x)􏼒 􏼓 ♭

􏽢J
22(x), I

􏽢J
22(x), z

􏽢J
22(x)􏼒 􏼓 · · · ♭

􏽢J
2h(x), I

􏽢J
2h(x), z

􏽢J
2h(x)􏼒 􏼓

♭􏽢J31(x), I
􏽢J
31(x), z

􏽢J
31(x)􏼒 􏼓 ♭

􏽢J
32(x), I

􏽢J
32(x), z

􏽢J
32(x)􏼒 􏼓 · · · ♭􏽢J3h(x), I

􏽢J
3h(x), z

􏽢J
3h(x)􏼒 􏼓

⋮ ⋮ ⋱ ⋮

♭
􏽢J
h1(x), I

􏽢J
h1(x), z

􏽢J
h1(x)􏼓􏼒 􏼓 ♭

􏽢J
h2(x), I

􏽢J
h2(x), z

􏽢J
h2(x)􏼒 􏼓 · · · ♭

􏽢J
hh(x), I

􏽢J
hh(x), z

􏽢J
hh(x)􏼒 􏼓

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (51)

where 􏽢J represents the number of expert.
Step 2: aggregate the individual decision matrices based
on the aggregation operators to construct the

aggregated matrix. Hence, the aggregated decision
matrix is constructed as follows:

♭11(x), I11(x), z11(x)( 􏼁 ♭12(x), I12(x), z12(x)( 􏼁 · · · ♭1h(x), I1h(x), z1h(x)( 􏼁

♭21(x), I21(x), z21(x)( 􏼁 ♭22(x), I22(x), z22(x)( 􏼁 · · · ♭2h(x), I2h(x), z2h(x)( 􏼁

♭31(x), I31(x), z31(x)( 􏼁 ♭32(x), I32(x), z32(x)( 􏼁 · · · ♭3h(x), I3h(x), z3h(x)( 􏼁

⋮ ⋮ ⋱ ⋮

♭h1(x), Ih1(x), zh1(x)( 􏼁 ♭h2(x), Ih2(x), zh2(x)( 􏼁 · · · ♭hh(x), Ihh(x), zhh(x)( 􏼁

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (52)

Step 3: if the weights of the attribute are known as a
prior then use them. Otherwise, we will calculate them

using the concept of neutrosophic entropy measure.
Neutrosophic entropy measure is as follows:

ρj �
1 +(1/h) 􏽐

h
i�1 ♭ijlog ♭ij􏼐 􏼑 + Iijlog Iij􏼐 􏼑 + zijlog zij􏼐 􏼑􏼐 􏼑

􏽐
h
j�1 1 +(1/h) 􏽐

h
i�1 ♭ijlog ♭ij􏼐 􏼑 + Iijlog Iij􏼐 􏼑 + zijlog zij􏼐 􏼑􏼐 􏼑

. (53)

Step 4: exploit the established aggregation operators to
achieve the SVNN Ft(t � 1, 2, . . . , h) for the alterna-
tives ℷk, that is, the established operators to obtained
the collective overall preference values of
Ft(t � 1, 2, . . . , h) for the alternatives ℷk, where ρ �

(ρ1, ρ2, . . . , ρh) is the weight vector of the attributes.
Step 5: after that, we compute the scores of all the
overall valuesFt(t � 1, 2, . . . , h) for the alternatives ℷk.
Step 6: according to Definition 11, rank the alternatives
ℷk(k � 1, 2, . . . , h) and select the best one having the
greater value.

6. Application of Proposed
Decision-Making Technique

*is section provided a numerical implementation of the
problem to determining the location of the solar power plant
to describe the designed DM approach.

6.1. Practical Case Study. In this segment, a case study is
provided to illustrate the effectiveness and reliability of the
established decision-making approach.
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*e case study area was Bahawalpur District of Punjab
province in Pakistan. Bahawalpur geographical coordinates
are 29° 23′44″ North, 71° 41′1″ East. *e Area of Baha-
walpur District is 24,830 km2.*e location of Bahawalpur is
shown in Figure 1:

*e required data were collected from numerous re-
sources including governmental agencies, open sources, and
related literature such as National Authority for Remote
Sensing and Space Sciences, Pakistan Meteorological Au-
thority, New and Renewable Energy Authority, Pakistan
General Survey Authority, NASA POWER Prediction of
Worldwide Energy Resources, United States Geological
Survey, and Pakistan Environmental Affairs Agency.

Electricity plays an essential part in any nation’s socio-
economic progress and social prosperity. Electricity energy
should be regarded as the fundamental need for human
development. In Pakistan, limited power generation is a
major issue that directly restricts the country’s growth. In a
landmark achievement, the 100MW photovoltaic cells (PV)
solar power project has begun commercial operations as
Pakistan gradually moves to ramp up renewable energy
generation in line with the global trend and to bridge the
domestic shortfall. *e total cost of project is $215 million.
Completed in 2015, it has a total capacity of 100MW. Some
400,000 solar panels, spread over 200 hectares of flat desert,
glare defiantly at the sun at what is known as the Quaid-e-
Azam Solar Power Park (QASP) in Cholistan Desert
(Bahawalpur), Punjab, and named after Pakistan’s founding
father, Mohammad Ali Jinnah. An aerial view of Quaid-e-
Azam solar power park is shown in Figure 2:

*e 100MW facility is a pilot phase of a more exciting
programme for the construction of the largest solar plant in
the world. *e location could have a capability of 5.2 million
Pv panels generating up to 1,000MW of electricity once
finalized in 2017, enough to power about 320,000 house-
holds.*e next installation phase is already fully operational,
led by Zonergy, another Chinese company.

Pakistan’s National Renewable Energy Laboratories
(NREL) solar power resource map has provided a major
boost to the development of solar power in the open corridor
regions.*ese regions are Pakistani Kashmir, Punjab, Sindh,
and Balochistan. Here, we enlist the solar power energy
project and discussed their production in Table 1:

For our research, we used a dataset comprising topo-
graphic, geological, and climatic factor. Based on several
literatures, case studies concerning solar farm site selection
and local conditions, different criteria were reviewed by
experts, and five locations ℷ1, ℷ2, ℷ3, ℷ4, ℷ5􏼈 􏼉 under five cri-
teria were selected to evaluate the suitable sites for solar
farms. *e detailed criteria description is as follows:

(1) Natural factors (I1): Pakistan is renowned for long
hours of sunshine and powerful solar radiation.
Compared to northern and southern coastal regions,
central and western regions of Pakistan are exposed
to greater solar intensity values. *e production of
solar power infrastructure has a promising future for
the country. Bahawalpur is in the south of the Punjab
region. Bahawalpur District solar radiation data

acquired by Metronome software are summarized in
Table 2:

In Bahawalpur District, annual average sunshine
hours are 3,201 and solar radiation amount is 6,408
MJ/m2.

(2) Political aspect (I2): select the location that offers
maximum output and minimizing project costs and
gives the political point score to the government for
installations of solar energy project’s.

(3) Socio-economic factors (I3): in order to minimize
the cost of building solar farms and to reduce the cost
of transporting electricity, solar farms should be
located close to the existing transmission grids [59].

(4) Environmental factors (I4): solar farms in areas
where they negligibly interfere with existing land use
outside protected areas, artificial surfaces, wetlands,
aquatic areas, and forestry areas should be installed
[59]. It is necessary to keep all the mechanical parts
of solar park away from the water.

(5) Hydrology (I5): the project site’s ground water is
brackish and can be reported from 7 to 8m below the
existing ground level. Ground water is not a means of
uninterrupted fresh water availability. *is region is
hot and dry and receives very little rainfall. *e
annual average rainfall is 200–220mm.

Figure 1: Location of Bahawalpur.

Figure 2: An aerial view of Quaid-e-Azam Solar Power Park.
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*e expert panel was asked in this assessment to use SV
neutrosophic information to identify the best location for
solar power plant.

Step 1: the expert evaluation information using the
single-valued NSs is given in Table 3.

Step 2: there is only one expert involved in this case
study, so we would not need to determine the accu-
mulated decision matrix here.
Step 3: known criteria weight vector is

ρ � ρ1 � 0.15, ρ2 � 0.28, ρ3 � 0.20, ρ4 � 0.22, ρ4 � 0.15􏼈 􏼉.

(54)

Step 4: evaluate the overall perfumes of the alternatives,
and we utilized proposed Yager aggregation operators
as shown in Tables 4 and 5.

Step 6: compute the score value of the each collective
SVNS information of each alternative as shown in
Table 6:

Step 7: select the optimal alternative according the
maximum score value calculated in Table 7.

We can conclude from this abovecomputational process
that location ℷ2 is the best for the installation of the solar
power plant, among others, and therefore, it is highly
recommended.

7. Comparison Analysis

We provide some appropriate examples below to test the
potential and efficacy of the established decision-making
approach and to compare it with the recent findings.

*e use of existing methods and different aggregation
operators for computed aggregate information is shown in
Tables 8–10.

Table 1: Solar power projects and their production.

Station Location Capacity (MW) In service date
Quaid-e-azam Solar Park Bahawalpur, Punjab 1000 2018
OurSun Solar Power Plant Gharo, Sindh 50 2018
Harappa Solar Pvt. Ltd Sahiwal, Punjab 18 2017
AJ Power Pvt. Ltd. Jhelum, Punjab 12 2017
Gharo Solar Power Plant Gharo, Sindh 50 2020
Access Electric Pvt. Ltd. Pind Dadan Khan, Punjab, Pakistan 25 2020

Table 2: Solar radiation information of Bahawalpur.

Months Monthly avg. radiation quantity (MJ/m2) Monthly average sunshine hours
Jan 354 223
Feb 441 224
Mar 536 271
Apr 638 288
May 686 308
Jun 664 262
Jul 651 276
Aug 637 282
Sep 606 285
Oct 496 293
Nov 386 263
Dec 343 226

Table 3: Expert evaluation information (�D1).

I1 I2 I3 I4 I5

ℷ1 (0.5, 0.3, 0.4) (0.5, 0.2, 0.3) (0.2, 0.2, 0.6) (0.3, 0.2, 0.4) (0.3, 0.3, 0.4)

ℷ2 (0.7, 0.1, 0.3) (0.7, 0.2, 0.3) (0.6, 0.3, 0.2) (0.6, 0.4, 0.2) (0.7, 0.1, 0.2)

ℷ3 (0.5, 0.3, 0.4) (0.6, 0.2, 0.4) (0.6, 0.1, 0.2) (0.5, 0.1, 0.3) (0.6, 0.4, 0.3)

ℷ4 (0.7, 0.3, 0.2) (0.7, 0.2, 0.2) (0.4, 0.5, 0.2) (0.5, 0.2, 0.2) (0.4, 0.5, 0.4)

ℷ5 (0.4, 0.1, 0.3) (0.5, 0.1, 0.2) (0.4, 0.1, 0.5) (0.4, 0.3, 0.6) (0.3, 0.2, 0.4)
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Table 4: Yager weighted averaging.

SVNYWA SVNYOWA SVNYHWA
ℷ1 (0.38574, 0.22863, 0.40300) (0.38897, 0.24833, 0.40881) (0.37709, 0.24237, 0.39733)

ℷ2 (0.65984, 0.22579, 0.24138) (0.66475, 0.20118, 0.24634) (0.65688, 0.21437, 0.24039)

ℷ3 (0.56506, 0.19569, 0.31875) (0.55919, 0.20690, 0.31662) (0.56017, 0.23247, 0.31596)

ℷ4 (0.56718, 0.30645, 0.22669) (0.56559, 0.32642, 0.22669) (0.55677, 0.29594, 0.23214)

ℷ5 (0.41797, 0.15495, 0.37398) (0.39761, 0.14876, 0.37839) (0.41448, 0.14641, 0.38844)

Table 5: Yager weighted geometric.

SVNYWG SVNYOWG SVNYHWG
ℷ1 (0.3544, 0.23452, 0.42473) (0.36023, 0.25495, 0.42367) (0.35023, 0.24899, 0.41376)

ℷ2 (0.65445, 0.25961, 0.24799) (0.65955, 0.23685, 0.25298) (0.65143, 0.24738, 0.24698)

ℷ3 (0.56034, 0.23, 0.33181) (0.55424, 0.24698, 0.32710) (0.55525, 0.27404, 0.32542)

ℷ4 (0.53127, 0.34785, 0.24083) (0.52893, 0.36290, 0.24083) (0.52460, 0.33719, 0.24819)

ℷ5 (0.40949, 0.17916, 0.42178) (0.39, 0.16911, 0.41279) (0.40687, 0.16911, 0.43127)

Table 6: Score value.

Sc(ℷ1) Sc(ℷ2) Sc(ℷ3) Sc(ℷ4) Sc(ℷ5)

SVNYWA − 0.245899 0.192675 0.0506162 0.0340323 − 0.110965
SVNYOWA − 0.268177 0.217225 0.035665 0.0124742 − 0.129537
SVNYHWA − 0.262617 0.202113 0.0117392 0.0286902 − 0.120376
SVNYWG − 0.304856 0.14685 − 0.00147216 − 0.0574041 − 0.191455
SVNYOWG − 0.318391 0.169723 − 0.0198481 − 0.0747995 − 0.191911
SVNYHWG − 0.31253 0.157063 − 0.0442137 − 0.0607824 − 0.19352

Table 7: Ranking.

Score ranking Best alternative
SVNYWA Sc(ℷ2)>Sc(ℷ3)>Sc(ℷ4)>Sc(ℷ5)>Sc(ℷ1) ℷ2
SVNYOWA Sc(ℷ2)>Sc(ℷ3)>Sc(ℷ4)>Sc(ℷ5)>Sc(ℷ1) ℷ2
SVNYHWA Sc(ℷ2)>Sc(ℷ4)>Sc(ℷ3)>Sc(ℷ5)>Sc(ℷ1) ℷ2
SVNYWG Sc(ℷ2)>Sc(ℷ3)>Sc(ℷ4)>Sc(ℷ5)>Sc(ℷ1) ℷ2
SVNYOWG Sc(ℷ2)>Sc(ℷ3)>Sc(ℷ4)>Sc(ℷ5)>Sc(ℷ1) ℷ2
SVNYHWG Sc(ℷ2)>Sc(ℷ3)>Sc(ℷ4)>Sc(ℷ5)>Sc(ℷ1) ℷ2

Table 8: Existing average aggregated SVN information.

SVNWA [60] SVNOWA [60] NWA [55] SVNFWA [61]
ℷ1 (0.37, 0.22, 0.40) (0.38, 0.24, 0.40) (0.37, 0.23, 0.42) (0.37, 0.22, 0.40)

ℷ2 (0.66, 0.20, 0.23) (0.66, 0.18, 0.24) (0.66, 0.24, 0.24) (0.66, 0.20, 0.23)

ℷ3 (0.56, 0.17, 0.31) (0.55, 0.18, 0.31) (0.56, 0.21, 0.32) (0.56, 0.17, 0.31)

ℷ4 (0.57, 0.29, 0.22) (0.57, 0.31, 0.22) (0.57, 0.33, 0.23) (0.56, 0.29, 0.22)

ℷ5 (0.41, 0.14, 0.36) (0.39, 0.13, 0.36) (0.41, 0.16, 0.41) (0.41, 0.14, 0.36)

Table 9: Existing average aggregated SVN information.

SVNHWA [46] c � 2 SVNHWA [46] c � 3 L-SVNWA [62] L-SVNOWA [62]
ℷ1 (0.37, 0.22, 0.40) (0.36, 0.22, 0.40) (0.31, 0.17, 0.35) (0.32, 0.19, 0.36)

ℷ2 (0.66, 0.20, 0.23) (0.66, 0.20, 0.23) (0.64, 0.19, 0.23) (0.65, 0.17, 0.23)

ℷ3 (0.56, 0.17, 0.31) (0.56, 0.18, 0.31) (0.49, 0.17, 0.33) (0.48, 0.18, 0.33)

ℷ4 (0.56, 0.29, 0.22) (0.56, 0.30, 0.22) (0.55, 0.27, 0.19) (0.55, 0.29, 0.19)

ℷ5 (0.41, 0.14, 0.36) (0.41, 0.14, 0.37) (0.28, 0.12, 0.37) (0.24, 0.12, 0.38)

Mathematical Problems in Engineering 17



Now, according to collective data, the overall ranking of
alternative is as shown in Tables 11 and 12.

From the findings of the proposed operators and the
existing methods, we conclude that the ranking lists are the
same. *e generalized and novel approach to address un-
certainty in DM problems is the Yager operators under the
SVNS environment. Yager norm-based aggregation opera-
tors under single-valued NS environment are more flexible
and efficient in assessing the best alternative in real-world
problems.

8. Conclusion

Single-valued NS is a general extension of intuitionistic FS,
picture FS, which is more capable of dealing with incomplete
and inconsistent information. *erefore, it is widely used in
various fields. Single-valued NS tackles the vagueness and
uncertain information in real-world complex problems with
a more flexible and effective way. In addition, the Yager
norms have a more generalized framework that works ef-
fectively to incorporate complex information. We are mo-
tivated by the deficiencies of the existing methods and the

beneficial features of the Yager AgOs to work towards
improving a successful merger with SVNNs.

In this study, under the single-valued NS model, we
modified the multiskilled Yager AgOs to integrate the
benefits and flexibility of both theories. Later, we explore
operational laws of SVNNs to construct single-valued NS
AgOs that comply with the principles of Yager operations.
We have established the single-valued neutrosophic
weighted averaging, ordered weighted averaging, hybrid
weighted averaging, weighted geometric, ordered weighted
geometric, and hybrid weighted geometric aggregation
operators to aggregate the SVNNs. Some of the main
characteristics of the proposed operators have been studied,
including idempotency, boundedness, and monotonicity.
*e main objective of this study is to present a strategy to
addressMAGDM that includes single-valued NS evaluations
based on the proposed operators. *e theoretical basis of
AgOs needs to be carefully considered in preparation for
their use in MAGDM. A practical example is provided to
demonstrate the implementation of the established strategy
for the selection of a suitable location for solar power sta-
tions. *e comparison analysis of our proposed theory was

Table 10: Existing geometric aggregated SVN information.

ST-SVNWA [63] ST-SVNWG [63] ST-SVNOWA [63] ST-SVNOWG [63]
ℷ1 (0.56, 0.02, 0.07) (0.50, 0.02, 0.08) (0.56, 0.02, 0.08) (0.51, 0.03, 0.08)

ℷ2 (0.86, 0.02, 0.02) (0.85, 0.03, 0.03) (0.86, 0.01, 0.02) (0.85, 0.02, 0.03)

ℷ3 (0.77, 0.01, 0.04) (0.76, 0.02, 0.05) (0.77, 0.01, 0.04) (0.76, 0.03, 0.05)

ℷ4 (0.78, 0.04, 0.02) (0.73, 0.06, 0.02) (0.78, 0.04, 0.02) (0.72, 0.06, 0.02)

ℷ5 (0.60, 0.09, 0.06) (0.59, 0.01, 0.08) (0.58, 0.09, 0.06) (0.57, 0.01, 0.08)

Table 11: Overall ranking of the alternatives.

Existing operators Ranking Best alternative
NWA [55] Sc(ℷ2)>Sc(ℷ3)>Sc(ℷ1)>Sc(ℷ5)>Sc(ℷ4) ℷ2
SVNWA [60] Sc(ℷ2)>Sc(ℷ3)>Sc(ℷ1)>Sc(ℷ5)>Sc(ℷ4) ℷ2
SVNOWA [60] Sc(ℷ2)>Sc(ℷ3)>Sc(ℷ1)>Sc(ℷ5)>Sc(ℷ4) ℷ2
SVNFWA [61] Sc(ℷ2)>Sc(ℷ3)>Sc(ℷ1)>Sc(ℷ5)>Sc(ℷ4) ℷ2
SVNHWA [46] c � 2 Sc(ℷ2)>Sc(ℷ3)>Sc(ℷ1)>Sc(ℷ5)>Sc(ℷ4) ℷ2
SVNHWA [46] c � 3 Sc(ℷ2)>Sc(ℷ3)>Sc(ℷ1)>Sc(ℷ5)>Sc(ℷ4) ℷ2
L-SVNWA [62] Sc(ℷ2)>Sc(ℷ3)>Sc(ℷ1)>Sc(ℷ5)>Sc(ℷ4) ℷ2
L-SVNOWA [62] Sc(ℷ2)>Sc(ℷ3)>Sc(ℷ1)>Sc(ℷ5)>Sc(ℷ4) ℷ2
L-SVNWG [62] Sc(ℷ2)>Sc(ℷ3)>Sc(ℷ1)>Sc(ℷ5)>Sc(ℷ4) ℷ2
ST-SVNWA [63] Sc(ℷ2)>Sc(ℷ3)>Sc(ℷ1)>Sc(ℷ5)>Sc(ℷ4) ℷ2
ST-SVNWG [63] Sc(ℷ2)>Sc(ℷ3)>Sc(ℷ1)>Sc(ℷ5)>Sc(ℷ4) ℷ2
ST-SVNOWA [63] Sc(ℷ2)>Sc(ℷ3)>Sc(ℷ1)>Sc(ℷ5)>Sc(ℷ4) ℷ2
ST-SVNOWG [63] Sc(ℷ2)>Sc(ℷ3)>Sc(ℷ1)>Sc(ℷ5)>Sc(ℷ4) ℷ2

Table 12: Overall ranking of the alternatives.

Proposed operators Ranking Best alternative
SVNYWA Sc(ℷ2)>Sc(ℷ3)>Sc(ℷ4)>Sc(ℷ5)>Sc(ℷ1) ℷ2
SVNYOWA Sc(ℷ2)>Sc(ℷ3)>Sc(ℷ4)>Sc(ℷ5)>Sc(ℷ1) ℷ2
SVNYHWA Sc(ℷ2)>Sc(ℷ4)>Sc(ℷ3)>Sc(ℷ5)>Sc(ℷ1) ℷ2
SVNYWG Sc(ℷ2)>Sc(ℷ3)>Sc(ℷ4)>Sc(ℷ5)>Sc(ℷ1) ℷ2
SVNYOWG Sc(ℷ2)>Sc(ℷ3)>Sc(ℷ4)>Sc(ℷ5)>Sc(ℷ1) ℷ2
SVNYHWG Sc(ℷ2)>Sc(ℷ3)>Sc(ℷ4)>Sc(ℷ5)>Sc(ℷ1) ℷ2
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conducted with the existing operators.*e superiority of our
proposed operators over the existing DM method has been
highlighted. We examined the effect of different parameter
values on the results of MAGDM issues. In short, this article
creates a tool that has the rich properties of Yager AgOs and
the single-valued NS model’s flexibility. We will expand our
models to single-valued NS hesitant fuzzy set environments
in future research.
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