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Abstract 

The purpose of this paper is to study ∆ −Synchronization of interval neutrosophic automata and their characterizations. 

Key words: Interval neutrosophic automaton (INA), ∆ −Synchronization. 

AMS Mathematics subject classification: 03D05, 20M35, 18 B20, 68Q45, 68Q70, 94 A45 

1 Introduction 

The neutrosophic set was introduced by Florentin Smarandache in 1999 [6].  Fuzzy sets was introduced by 

Zadeh in 1965 [8]. Bipolar fuzzy sets, YinYang, bipolar fuzzy sets, NPN fuzzy set were introduced by W. R. 

Zhang in [9, 10, 11].  A NS N is classified by a Truth 𝑇𝑁, Indeterminacy 𝐼𝑁 , and Falsity membership 𝐹𝑁 where 

𝑇𝑁 , 𝐼𝑁 ,  and 𝐹𝑁 are real standard and non-standard subsets of ]0−, 1+[.  Fuzzy automaton was introduced by Wee 

[7]. The INA was introduced by Tahir Mahmood [4]. Retrievability, subsystem, and strong subsystems of INA 

are studied in the papers [1, 2, 3]. Here, We study the characterizations of  ∆ −synchronization of INA. 

 

2 Preliminaries 

2.1 Definition [5] 

A FA is triple F = (T, I, S) where T, I are set of states, set of input symbols and 

S is transition function in T × I × T → [0, 1]. 

𝟐. 𝟐  Definition [𝟒] 

Let U be universal set. A NS S in U is classified as truth 𝐾𝑠, an indeterminacy 𝐿𝑠 and a falsity values 𝑀𝑆 where 

𝐾𝑠, 𝐿𝑠 , and 𝑀𝑆 are real standard or non- standard subsets of ]0− 1+[.   S = {〈z, (𝐾𝑠  (z), 𝐿𝑠 (z), 𝑀𝑆 (z)〉, z ∈ U, 𝐾𝑠, 
𝐿𝑠 𝑀𝑆  ∈   ]0− 1+[ } and 

0− ≤ sup 𝐾𝑠 (z) + sup 𝐿𝑠 (z) + sup 𝑀𝑆 (z) ≤ 3+. We take values [0, 1] instead of 

]0−, 1+[ . 

𝟐. 𝟑  Definition [𝟒] 

Let 𝐹 = (T, I S)  be INA. T and I are set of states and input symbols respectively, and S = 

{〈𝐾𝑠  (z), 𝐿𝑠 (z), 𝑀𝑆 (z)〉} is an INS in 𝑇 × 𝐼 × 𝑇. The set of all strings I is denote by 𝐼∗.  
The empty string is denoted by 𝜖 and the length of z ∈  𝐼∗ is denoted by |z|. 

 

2.4 Definition [4] 

Let 𝐹 = (T, I S)  be INA. Define an INS 𝑠∗= {〈𝐾𝑠∗ (z), 𝐿𝑠∗ (z), 𝑀𝑆∗ (z)〉} in  𝑇∗ × 𝐼∗ × 𝑇 by 

𝐾𝑠 (z)(𝑡𝑎, ϵ, 𝑡𝑏) = {  
[1,1] 𝑖𝑓 𝑡𝑎 =  𝑡𝑏

[0,0] 𝑖𝑓 𝑡𝑎 ≠ 𝑡𝑏 
 ,   𝐿𝑠 (z)(𝑡𝑎, ϵ, 𝑡𝑏) = {

 [0,0] 𝑖𝑓 𝑡𝑎 =  𝑡𝑏

 [1,1] 𝑖𝑓 𝑡𝑎 ≠ 𝑡𝑏 
, and 

𝑀𝑠 (z)(𝑡𝑎, ϵ, 𝑡𝑏) = { 
[0,0] 𝑖𝑓 𝑡𝑎 =  𝑡𝑏

[1,1] 𝑖𝑓 𝑡𝑎 ≠ 𝑡𝑏 
 

𝐾𝑠∗(𝑡𝑎, zz′, 𝑡𝑏) =  ⋁𝑡𝑟 ∈ 𝑇 [𝐾𝑠∗(𝑡𝑎, z, 𝑡𝑟 )  ∧   𝐾𝑠∗(𝑡𝑟 , z′, 𝑡𝑏)] > [0, 0] 

𝐿𝑠∗(𝑡𝑎, zz′, 𝑡𝑏) = ∧𝑡𝑟 ∈ 𝑇 [𝐿𝑠∗(𝑡𝑎, z, 𝑡𝑟 )  ∨   𝐿𝑠∗(𝑡𝑟 , z′, 𝑡𝑏)] < [1, 1] 

𝑀𝑠∗(𝑡𝑎, zz′, 𝑡𝑏) = ∧𝑡𝑟 ∈ 𝑇 [𝑀𝑠∗(𝑡𝑎, z, 𝑡𝑟 )  ∨   𝑀𝑠∗(𝑡𝑟 , z′, 𝑡𝑏)] < [1, 1]   ∀ 𝑡𝑎, 𝑡𝑏 ∈ 𝑇, 𝑧 ∈  𝐼∗ and 𝑧′ ∈ 𝐼. 
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3  ∆ −Synchronization of Interval Neutrosophic Automata 

𝟑. 𝟏  Definition  

Let F = (𝑇, 𝐼, 𝑆) be an IVNA. F is called deterministic IVNA, ∀ 𝑡𝑎  ∈ 𝑇  and z ∈ 𝐼  

∃ unique state 𝑡𝑏 such that 𝐾𝑠∗(𝑡𝑎, z, 𝑡𝑏) > [0, 0],  𝐿𝑠∗_(𝑡𝑎, z, 𝑡𝑏) < [1, 1], 𝑀𝑠∗ _(𝑡𝑎, z, 𝑡𝑏) < [1, 1]. 

 

𝟑. 𝟐  Definition   

Let F = (𝑇, 𝐼, 𝑆) be an IVNA and  Θ =  𝑇1, 𝑇2, … . . 𝑇𝑧  be a partition of T. If 𝐾𝑠∗(𝑡𝑎, z, 𝑡𝑏) > [0, 0],  𝐿𝑠∗_(𝑡𝑎, z, 𝑡𝑏) < 

[1, 1],  𝑀𝑠∗ _(𝑡𝑎, z, 𝑡𝑏) < [1, 1] for some z ∈ 𝐼 then 𝑡𝑎  ∈  𝑇𝑆  and  𝑡𝑏  ∈  𝑇𝑆+1.  Then Θ is periodic partition of 

order 𝑧 ≥ 2. An INA F is periodic of period 𝑧 ≥ 2 iff 𝑧 = 𝑀𝑎𝑥𝑐𝑎𝑟𝑑(Θ), maximum is consider all periodic 

partitions Θ of 𝐹. 𝐹 has no periodic partition, then 𝐹 is called aperiodic. 

 

Note. 

Throughout this paper we consider aperiodic INA. 

 

3.3 Definition 

Let F = (𝑇, 𝐼, 𝑆) be an IVNA. Two states 𝑡𝑎, 𝑡𝑏 interval neutrosophic stability related (INSR) denoted by 𝑡𝑎 Ω 𝑡𝑏, 

for any string z ∈ 𝐼∗, 𝑡𝑘 ∈ 𝑇 such that 

 𝐾𝑠∗(𝑡𝑎, 𝑧𝑧′, 𝑡𝑘) > [0, 0] ⇔ 𝐾𝑠∗(𝑡𝑏 , 𝑧𝑧′,𝑡𝑘) > [0, 0] 

𝐿𝑠∗(𝑡𝑎, 𝑧𝑧′, 𝑡𝑘) < [1, 1] ⇔ 𝐿𝑠∗(𝑡𝑏 , 𝑧𝑧′,𝑡𝑘) < [1, 1] 

𝑀𝑠∗(𝑡𝑎, 𝑧𝑧′, 𝑡𝑘) > [0, 0] ⇔ 𝑀𝑠∗(𝑡𝑏 , 𝑧𝑧′,𝑡𝑘) < [1, 1] 

3.4 Example 

Let F = (𝑇, 𝐼, 𝑆) be an IVNA, where {𝑇 =  𝑇1, 𝑇2, 𝑇3, 𝑇4} I = {𝑧, 𝑧′} and 𝑆 are defned as below. 

(𝐾𝑠 , 𝐿𝑠, 𝑀𝑠)(𝑡1, 𝑧, 𝑡4) =  {[0.3,0.4], [0.4,0.5], [0.6,0.8]} 

(𝐾𝑠, 𝐿𝑠 , 𝑀𝑠)(𝑡1, 𝑧′, 𝑡2) =  {[0.1,0.2], [0.3,0.4], [0.7,0.8]} 

(𝐾𝑠 , 𝐿𝑠, 𝑀𝑠)(𝑡2, 𝑧, 𝑡3) =  {[0.2,0.3], [0.5,0.6], [0.8,0.9]} 

(𝐾𝑠 , 𝐿𝑠, 𝑀𝑠)(𝑡2, 𝑧′, 𝑡4) =  {[0.7,0.8], [0.3,0.4], [0.2,0.3]} 

(𝐾𝑠 , 𝐿𝑠, 𝑀𝑠)(𝑡3, 𝑧, 𝑡2) =  {[0.6,0.7], [0.4,0.5], [0.3,0.4]} 

(𝐾𝑠 , 𝐿𝑠, 𝑀𝑠)(𝑡3, 𝑧′, 𝑡4) =  {[0.5,0.6], [0.4,0.5], [0.2,0.3]} 

(𝐾𝑠 , 𝐿𝑠, 𝑀𝑠)(𝑡4, 𝑧, 𝑡1) =  {[0.8,0.9], [0.2,0.3], [0.1,0.2]} 

(𝐾𝑠 , 𝐿𝑠, 𝑀𝑠)(𝑡4, 𝑧′, 𝑡3) =  {[0.3,0.4], [0.4,0.5], [0.6,0.8]} 

For any string 𝑣 ∈  𝐼∗, there exists a string 𝑧𝑧′𝑧′ ∈  𝐼∗ such that  

𝐾𝑠∗(𝑡1, 𝑣𝑧𝑧′𝑧′, 𝑡𝑘) > [0, 0] ⇔ 𝐾𝑠∗(𝑡4, 𝑣𝑧𝑧′𝑧′, 𝑡𝑘) >[0,0] 

𝐿𝑠∗(𝑡1, 𝑣𝑧𝑧′𝑧′, 𝑡𝑘) < [1, 1] ⇔ 𝐿𝑠∗(𝑡4, 𝑣𝑧𝑧′𝑧′, 𝑡𝑘) <[1,1] 

𝑀𝑠∗(𝑡1, 𝑣𝑧𝑧′𝑧′, 𝑡𝑘) < [1, 1] ⇔ 𝑀𝑠∗(𝑡4, 𝑣𝑧𝑧′𝑧′, 𝑡𝑘) <[1,1] and 

𝐾𝑠∗(𝑡2, 𝑣𝑧𝑧′𝑧′, 𝑡𝑙) > [0, 0] ⇔ 𝐾𝑠∗(𝑡3, 𝑣𝑧𝑧′𝑧′, 𝑡𝑙) >[0,0] 

𝐿𝑠∗(𝑡2, 𝑣𝑧𝑧′𝑧′, 𝑡𝑙) < [1, 1] ⇔ 𝐿𝑠∗(𝑡3, 𝑣𝑧𝑧′𝑧′, 𝑡𝑙) <[1,1] 

𝑀𝑠∗(𝑡2, 𝑣𝑧𝑧′𝑧′, 𝑡𝑙) < [1, 1] ⇔ 𝐾𝑠∗(𝑡3, 𝑣 𝑧𝑧′𝑧′, 𝑡𝑙) <[1,1]. 

The states 𝑡1, 𝑡4 and 𝑡2, 𝑡3 are interval neutrosophic stability related. 

 

3.5 Definition 

Let F = (𝑇, 𝐼, 𝑆) be an IVNA. 𝐹 is called ∆ −Synchronization if ∃ a string 𝑧 ∈  𝐼∗, 𝑡𝑏 ∈ 𝑇 and a real number ∆ 

with ∆ ∈ (0,1] such that 𝐾𝑠∗(𝑡𝑎, 𝑧, 𝑡𝑏) ≥ ∆ >[0,0], 𝐿𝑠∗(𝑡𝑎, 𝑧, 𝑡𝑏) ≤ ∆ < [1,1], 𝑀𝑠∗(𝑡𝑎, 𝑧, 𝑡𝑏) ≤ ∆ < [1,1] ∀ 𝑡𝑎 ∈ 𝑇. 
 

4 Algorithm 

Let F = (𝑇, 𝐼, 𝑆) be an IVNA. 

1) Find the equivalence classes of the states 𝑇 using INSR. 

2) Construct the quotient 𝐼𝑁𝐴 𝐺 by considering each equivalence class as a state. 

3) Relabel the quotient 𝐼𝑁𝐴 along with neutrosophic values 𝐺 into 𝐺′ keeping the stability class. 

4) Construct New 𝐼𝑁𝐴 𝐹′ from 𝐺′. 
5) 𝐼𝑁𝐴 𝐺′ gives the synchronized string. 
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4.1 Example 

From Example 3.4 and the quotient 𝐼𝑁𝐴 𝐺 is as follows. 

(𝐾𝑠∗, 𝐿𝑠∗, 𝑀𝑠∗)(𝑡1𝑡4, 𝑧, 𝑡1𝑡4) =  {[0.3,0.4], [0.4,0.5], [0.6,0.8]} 

(𝐾𝑠∗, 𝐿𝑠∗, 𝑀𝑠∗)(𝑡1𝑡4, 𝑧′, 𝑡2𝑡3) =  {[0.1,0.2], [0.4,0.5], [0.7,0.8]} 

(𝐾𝑠∗, 𝐿𝑠∗, 𝑀𝑠∗)(𝑡2𝑡3, 𝑧, 𝑡2𝑡3) =  {[0.2,0.3], [0.5,0.6], [0.8,0.9]} 

(𝐾𝑠∗, 𝐿𝑠∗, 𝑀𝑠∗)(𝑡2𝑡3, 𝑧′, 𝑡1𝑡4) =  {[0.5,0.6], [0.4,0.5], [0.2,0.3]} 

 

Relabled quotient 𝐼𝑁𝐴 𝐺′ is as follows 

(𝐾𝑠∗, 𝐿𝑠∗, 𝑀𝑠∗)(𝑡1𝑡4, 𝑧′, 𝑡1𝑡4) =  {[0.1,0.2], [0.4,0.5], [0.7,0.8]} 

(𝐾𝑠∗, 𝐿𝑠∗, 𝑀𝑠∗)(𝑡1𝑡4, 𝑧, 𝑡2𝑡3) =  {[0.3,0.4], [0.4,0.5], [0.6,0.8]} 

(𝐾𝑠∗, 𝐿𝑠∗, 𝑀𝑠∗)(𝑡2𝑡3, 𝑧, 𝑡2𝑡3) =  {[0.2,0.3], [0.5,0.6], [0.8,0.9]} 

(𝐾𝑠∗, 𝐿𝑠∗, 𝑀𝑠∗)(𝑡2𝑡3, 𝑧′, 𝑡1𝑡4) =  {[0.5,0.6], [0.4,0.5], [0.2,0.3]} 

 

Relabled  𝐼𝑁𝐴 𝐹′ from 𝐺′is as follows 

(𝐾𝑠, 𝐿𝑠 , 𝑀𝑠)(𝑡1, 𝑧′, 𝑡4) =  {[0.5,0.6], [0.4,0.5], [0.2,0.3]} 

(𝐾𝑠 , 𝐿𝑠, 𝑀𝑠)(𝑡1, 𝑧, 𝑡2) =  {[0.3,0.4], [0.4,0.5], [0.6,0.8]} 

(𝐾𝑠 , 𝐿𝑠, 𝑀𝑠)(𝑡2, 𝑧, 𝑡3) =  {[0.2,0.3], [0.5,0.6], [0.8,0.9]} 

(𝐾𝑠 , 𝐿𝑠, 𝑀𝑠)(𝑡2, 𝑧′, 𝑡4) =  {[0.7,0.8], [0.3,0.4], [0.2,0.3]} 

(𝐾𝑠 , 𝐿𝑠, 𝑀𝑠)(𝑡3, 𝑧, 𝑡2) =  {[0.6,0.7], [0.4,0.5], [0.3,0.4]} 

(𝐾𝑠 , 𝐿𝑠, 𝑀𝑠)(𝑡3, 𝑧′, 𝑡4) =  {[0.8,0.9], [0.2,0.3], [0.1,0.2]} 

(𝐾𝑠 , 𝐿𝑠, 𝑀𝑠)(𝑡4, 𝑧, 𝑡3) =  {[0.3,0.4], [0.4,0.5], [0.6,0.8]} 

(𝐾𝑠, 𝐿𝑠 , 𝑀𝑠)(𝑡4, 𝑧′, 𝑡1) =  {[0.3,0.4], [0.4,0.5], [0.6,0.8]} 

In the relabeled 𝐼𝑁𝐴 there exists a string 𝑧𝑧′ ∈  𝐼∗ in 𝐹′ such that  

 

𝐾𝑠∗(𝑡𝑖 , 𝑧𝑧′, 𝑡4) > [0, 0], 𝐿𝑠∗(𝑡𝑖 , 𝑧𝑧′, 𝑡4) < [1, 1] and 𝑀𝑠∗(𝑡𝑖 , 𝑧𝑧′, 𝑡4) < [1, 1] ∀ 𝑡𝑖 ∈ 𝑇. 
 

5. Procedure for finding ∆ −Synchronized String of Interval Neutrosophic Automata 

Let F = (𝑇, 𝐼, 𝑆) be an INA. We define another 𝐼𝑁𝐴 as follows: 

𝐹𝑆 = (2𝑇 , 𝐼, 𝑀𝑆, 𝑇, 𝐷 ⊆ 𝑇) where 

T- Starting state on 𝐹𝑆, D- set of all final states on 𝐹𝑆, 𝑀𝑆 − Interval neutrosophic transition function and is 

defined by  

𝐾𝑀𝑆
( 𝑇𝑎, 𝑧, 𝑇𝑏) = ∧ {(𝐾𝑠(𝑡𝑎, 𝑧, 𝑡𝑏)} > [0, 0] 

𝐿𝑀𝑆
( 𝑇𝑎, 𝑧, 𝑇𝑏) = ∨ {(𝐿𝑠(𝑡𝑎, 𝑧, 𝑡𝑏)} < [1, 1] 

𝑀𝑀𝑆
( 𝑇𝑎 , 𝑧, 𝑇𝑏) = ∨ {(𝑀𝑠(𝑡𝑎, 𝑧, 𝑡𝑏)} < [1, 1], 𝑡𝑎 ∈ 𝑇𝑎 , 𝑡𝑏 ∈ 𝑇𝑏 , 𝑇𝑎, 𝑇𝑏  ∈  2𝑇  for 𝑧 ∈ 𝐼. 

𝑀𝑆 is a deterministic 𝐼𝑁𝐴 and a string 𝑧 ∈ 𝐼 is ∆ − synchronized in 𝐹 iff ∃ a singleton subsets 𝑇𝑡  ∈  2𝑇 such that  

𝐾𝑀𝑆∗
( 𝑇𝑎, 𝑧, 𝑇𝑡) > [0, 0], 𝐿𝑀𝑆∗

( 𝑇𝑎 , 𝑧, 𝑇𝑡) < [1, 1] and 𝑀𝑀𝑆∗
( 𝑇𝑎, 𝑧, 𝑇𝑏) < [1, 1]. 

6 Conclusion 

∆ −Synchronization of INA are introduce, algorithm is given for finding Synchronized string using interval 

neutrosophic stability relation. Finally procedure is given for finding synchronized string. 
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