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Abstract. In recent time graphical analytics of uncertainty and indeterminacy has become major concern for data analytics re-

searchers. In this direction, the mathematical algebra of neutrosophic graph is extended to interval-valued neutrosophic graph. 

However, building the interval-valued neutrosophic graphs, its spectrum and energy computation is addressed as another issues 

by research community of neutrosophic environment. To resolve this issue the current paper proposed some related mathemat-

ical notations to compute the spectrum and energy of interval-valued neutrosophic graph using the MATAB. 
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1 Introduction 

The handling uncertainty in the given data set is considered as one of the major issues for the research com-

munities. To deal with this issue the mathematical algebra of neutrosophic set is introduced [1].  The calculus of 

neutrosophic sets (NSs)[1, 2] given a way to represent the uncertainty based on acceptation, rejection and uncer-
tain part, independently. It is nothing but just an extension of fuzzy set [3], intuitionistic fuzzy set [4-6], and in-

terval valued fuzzy sets [7] beyond the unipolar fuzzy space. It characterizes the uncertainty based on a truth-
membership function (T), an indeterminate-membership function (I) and a falsity-membership function(F) inde-

pendently of a defined neutrosophic set via real a standard or non-standard unit interval]−0, 1+[. One of the best 

suitable example is for the neutrosophic logic is win/loss and draw of a match, opinion of people towards an 
event is based on its acceptance, rejection and uncertain values. These properties of neutrosophic set differentiate 

it from any of the available approaches in fuzzy set theory while measuring the indeterminacy. Due to which 

mathematics of single valued neutrosophic sets (abbr. SVNS) [8] as well as interval valued neutrosophic sets 

(abbr.IVNS) [9-10] is introduced for precise analysis of indeterminacy in the given interval. The IVNS repre-
sents the acceptance, rejection and uncertain  membership functions in the unit interval [0, 1] which helped a lot 

for knowledge processing tasks using different classifier [11], similarity method [12-14] as well as multi-

decision making process [15-17] at user defined weighted  method [18-24]. In this process a problem is ad-
dressed while drawing the interval-valued neutrosophic graph, its spectrum and energy analysis. To achieve this 

goal, the current paper tried to focus on introducing these related properties and its analysis using MATLAB. 

2 Literature Review 

There are several applications of graph theory which is a mathematical tool provides a way to visualize the 

given data sets for its precise analysis. It is utilized for solving several mathematical problems. In this process, a 
problem is addressed while representing the uncertainty and vagueness exists in any given attributes (i.e. verti-

ces) and their corresponding relationship i.e edges. To deal with this problem, the properties of fuzzy graph [25-

26] theory is extended to intuitionistic fuzzy graph [28-30], interval valued fuzzy graphs [31] is studied with ap-

plications [32—33]. In this case a problem is addressed while measuring with indeterminacy and its situation. 
Hence, the neutrosophic graphs and its properties is introduced by Smaranadache [34-37] to characterizes them 

using their truth, falsity, and indeterminacy membership-values (T, I, F) with its applications [38-40]. Broumi et 

al. [41] introduced neutrosophic graph theory considering (T, I, F) for vertices and edges in the graph specially 
termed as “Single valued neutrosophic graph theory (abbr. SVNG)” with its other properties [42-44]. Afterwards 

several researchers studied the neutrosophic graphs and its applications [65, 68]. Broumi et al. [50] utilized the 
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SVNGs to find the shortest path in the given network subsequently other researchers used it in different fields 

[51-53, 59-60, 65]. To measure the partial ignorance, Broumi et al. [45] introduced interval valued-neutrosophic 

graphs and its related operations [46-48] with its application in decision making process in various extensions[49, 

54, 57 61, 62, 64,73-84]. 

 

Some other researchers introduced antipodal single valued neutrosophic graphs [63, 65], single valued neu-

trosophic digraph [68] for solving multi-criteria decision making. Naz et al.[69] discussed the concept of energy 

and laplacian energy of SVNGs. This given a major thrust to introduce it into interval-valued neutrosophic graph 

and its matrix. The matrix is a very useful tool in representing the graphs to computers, matrix representation of 

SVNG, some researchers study adjacency matrix and incident matrix of SVNG. Varol et al. [70] introduced sin-

gle valued neutrosophic matrix as a generalization of fuzzy matrix, intuitionistic fuzzy matrix and investigated 

some of its algebraic operations including subtraction, addition, product, transposition. Uma et al. [66] proposed 

a determinant theory for fuzzy neutrosophic soft matrices. Hamidiand Saeid [72 ] proposed the concept of acces-

sible single-valued neutrosophic graphs. 

 

It is observed that, few literature have shown the study on energy of IVNG. Hence this paper, introduces 

some basic concept related to the interval valued neutrosophic graphs are developed with an interesting proper-

ties and its illustration for its various applications in several research field. 

3 Preliminaries 

This section consists some of the elementary concepts related to the neutrosophic sets, single valued neutro-
sophic sets, interval-valued neutrosophic sets, single valued neutrosophic graphs and adjacency matrix for estab-

lishing the new mathematical properties of interval-valued neutrosophic graphs. Readers can refer to following 

references for more detail about basics of these sets and their mathematical representations [1, 8, 41]. 

Definition 3.1:[1] Suppose �	be a nonempty set. A neutrosophic set (abbr.NS) N in�is an object taking the 

form  ���= {<x: ��(�), 
�(�) ,  ��(�)>, k∈ �}       (1) 

Where ��(�):� →]−0,1+[ , 
�(�):� → ]−0,1+[ ,��(�):� →]−0,1+[  are known as truth-membership function, in-

determinate –membership function and false-membership unction, respectively. The neutrosophic sets is subject 

to  the following condition: 0� ≤ ��(�)+
�(�) +��(�) ≤ 3�            (2) 

 

Definition 3.2:[8]Suppose � be a nonempty set. A single valued neutrosophic sets N (abbr. SVNs)  in� is an 

object taking the form: 

 �����={<k:��(�), 
�(�), ��(�)>, k∈ �}  (3) 

 

where ��(�), 
�(�), ��(�) ∈	 [0, 1] are mappings. ��(�)denote the truth-membership function of an element 

x ∈ 	� , 
�(�)denote the indeterminate –membership function of an element k ∈ 	� .��(�)denote the false–

membership function of an element k ∈ 	�. The SVNs subject to condition 

0 ≤ ��(�)+
�(�)+��(�) ≤ 3          (4) 

 

Example 3.3: Let us consider following example to understand the indeterminacy and neutrosophic logic: 

 

In a given mobile phone suppose 100 calls came at end of the day. 

 

1. 60 calls were received truly among them 50 numbers are saved and 10 were unsaved in mobile. In this case 

these 60 calls will be considered as truth membership i.e. 0.6. 

 

2. 30 calls were not-received by mobile holder. Among them 20 calls which are saved in mobile contacts were 

not received due to driving, meeting, or phone left in home, car or bag and 10 were not received due to uncertain 

numbers. In this case all 30 not received  numbers by any cause (i.e. driving, meeting or phone left at home) will 

be considered as Indeterminacy membership i.e. 0.3.   

 

3. 10 calls were those number which was rejected calls intentionally by mobile holder due to behavior of 

those saved numbers, not useful calls, marketing numbers or other cases for that he/she do not want to pick or 

may be blocked numbers. In all cases these calls can be considered as false i.e. 0.1 membership value. 

 

The above situation can be represented as (0.6, 0.3, 0.1) as neutrosophic set. 
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Definition 3.4: [10] Suppose � be a nonempty set. An interval valued neutrosophic sets � (abbr.IVNs) in �is an object taking the form: 

 �����={<k:���(�), 
��(�),���(�)>,k∈ �>}   (5) 

 

Where ���(�) , 
��(�) ,���(�) ⊆ ���[0,1]  are mappings. ���(�)=[�� (�) , ��!(�) ] denote the interval truth-

membership function of an element k∈ �.
��(�)=[
� ("), 
�!(�)] denote the interval indeterminate-membership 

function of an element k∈ �.���(�)=[�� (�), ��!(�)] denote the false-membership function of an element k∈ �. 

 

Definition 3.4: [10]For every two interval valued-neutrosophic sets A and B in �, we define 

(N ⋃ M) (k)= ([�$ (k), �$!(k)], [	
$ (k), 
$!(k)], [	�$ (k), �$!(k)]	) for all k ∈ �   (6) 

Where �$ (k)= �� (k)	∨ �' (k),  �$!(k)=  ��!(k)∨ �'!(k)  
$ (k)= 
� (k)∧ 
' (k),  
$!(k)=  
�!(k)∧ 
'!(k)  �$ (k)= �� (k)∧ �' (k),  �$!(k)= ��!(k)∧ �'!(k) 

 

Definition 3.5: [41]A pair G=(V,E) is known as single valued neutrosophic graph (abbr.SVNG) if the following 
holds: 

1. V=  {�):i=1,..,n} such as �*:V→ [0,1] is the truth-membership degree, 
*:V→[0,1] is the indeterminate –
membership degree and �*:V→[0,1]is the false membership degree of �) ∈ V subject to condition       

0 ≤ �*(�))+
*(�))+�*(�)) ≤ 3      (7) 

2. E={(�) , �+): (�), �+) ∈ , × ,} such as �.:, × , → [0,1] is the truth-memebership degree,  
.:, × , →[0,1] is the indeterminate –membership degree and �.:, × , → [0,1] is the false-memebership degree of 
(�),�+) ∈ E defined  as  

�.(�),�+)≤ �*(�)) ∧ �*(�+)                                              (8) 
.(�) , �+) ≥ 
*(�)) ∨ 
*(�+)                                              (9) 

�.(�), �+) ≥ �*(�)) ∨ �*(�+)                                          (10) 

  Subject to condition          0 ≤ �.(�)�.)+
.(�*�.)+�.(�)�+) ≤ 3 ∀ (�), �+) ∈ E.     (11)    

The Fig. 1 shows  an illustration of  SVNG. 
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Fig. 1. An illustration of single valued neutrosophic graph 

 

Definition 3.6[41]. A single valued neutrosophic graph G=(N, M) of 3∗= (V, E) is termed  strong single 

valued neutrosophic graph if the following holds: �'(�)�+)= ��(�)) ∧ ��(�+)                                               (12) 
'(�)�+) = 
�(�)) ∨ 
�(�))                                                (13) �'(�)�+)= ��(�)) ∨ ��(�+)                                               (14) ∀ (�) , �+) ∈ E. 

Where the operator ∧denote minimum and the operator ∨denote the maximum 

 

Definition 3.8[41]. A single valued neutrosophic graph G=(N, M) of 3∗= (V, E) is termed  complete single 

valued neutrosophic graph if the following holds:  �'(�)�+)= ��(�)) ∧ ��(�+)                                               (15) 
'(�)�+) = 
�(�)) ∨ 
�(�))                                                (16) �'(�)�+)= ��(�)) ∨ ��(�+)                                               (17) ∀�) , �+ ∈V. 

 

Definition 3.9:[70] The Eigen value of a graph G are the Eigen values of its adjacency matrix. 

Definition 3.10:[70 ]The spectrum  of a graph is the set of all Eigen values of its adjacency matrix 

5* ≥ 5.… ≥ 57              (18) 

 

Definition 3.11:[70]The energy of the graph G is defined as the sum of the absolute values of its eigenvalues 

and denoted it by E(G): 

E(G)=∑ |5)|7):*                        (19) 

4.Some Basic Concepts of Interval Valued Neutrosophic Graphs 

Throughout this paper, we abbreviate   3∗=(V, E) as a crisp graph, and G=(N, M) an interval valued neutro-

sophic graph.In this  section we  have defined some basic concepts of interval valued neutrosophic graphs and 

discuses some of their properties. 

Definition 4.1:[45] A pair G=(V,E) is called  an interval valued neutrosophic graph (abbr.IVNG) if the fol-

lowing holds: 

1. V=  {�):i=1,..,n} such as �* :V→ [0,1] is the lower truth-membership degree,�*!:V→ [0,1] is the upper 

truth-membership degree,
* :V→ [0,1] is the lower indeterminate-membership degree,
*!:V→ [0,1] is the 
upper indterminate-membership degree, and �* :V→ [0,1] is the lower false-membership degree,�*!:V→ 
[0,1] is the upper false-membership degree,of ;) ∈ V subject to condition    

                                               0 ≤ �*!(�))+
*!(�))+�*!(�)) ≤ 3      (20) 

2. E={(�) , �+ ): (�) , �+ ) ∈ , × ,} such as �. :, × , → [0,1] is the lower truth-memebership degree, as �.!:, × , → [0,1] is the upper truth-memebership degree,  
. :, × , → [0,1] is the lower indeterminate-

memebership degree, 
.! :, × , → [0,1]  is the upper indeterminate-memebership degree and �. :, ×, → [0,1] is the lower false-memebership degree, �.!:, × , → [0,1] is the upper false-memebership de-
gree of (�),�+) ∈ E defined  as  

�. (�),�+)≤ �* (�)) ∧ �* (�+) ,�.!(�),�+)≤ �*!(�)) ∧ �*!(�+)      (21) 


. (�),�+)≥ 
* (�)) ∨ 
* (�+) ,
.!(�),�+)≥ 
*!(�)) ∨ 
*!(�+)            (22) 

�. (�),�+)≥ �* (�)) ∨ �* (�+) ,�.!(�),�+)≥ �*!(�)) ∨ �*!(�+)      (23) 

  Subject to condition          0 ≤ �.!(�)�.)+
.!(�*�.)+�.!(�)�+) ≤ 3 ∀ (�), �+) ∈ E.     (24) 
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Example 4.2.Consider  a crisp graph	3∗ such that V= {�*, �., �2}, E={�*�., �.�2, �2�1}. Suppose N be an 

interval valued neutrosophic subset of V and suppose M an interval valued neutrosophic subset of E denoted by: 

 

 �* �. �2   �*�. �.�2 �2�* ��  0.3 

 

0.2 

 

0.1 

 

 �'  0.1 

 

0.1 

 

0.1 

 ��! 0.5 0.3 0.3  �'! 0.2 0.3 0.2 
�  0.2 0.2 0.2  
'  0.3 0.4 0.3 
�! 0.3 0.3 0.4  
'!  0.4 0.5 0.5 ��  0.3 0.1 0.3  �'  0.4 0.4 0.4 ��! 0.4 0.4 0.5  �'! 0.5 0.5 0.6 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
Fig. 2.Example of an interval valued neutrosophic  graph 

 
Definition 4.3A graph G=(N , M)  is termed simple interval valued neutrosophic graph if it has neither self 

lops nor parallel edges in an interval valued neutrosophic graph. 

 

Definition 4.4The degree d(k) of any vertex k of  an interval valued neutrosophic graph G=(N, M) is defined 

as follow: 

 

d(v)= [ <= (�),<=!(�)],[<� (�),<�!(�)],[<> (�),<>!(�)]    (25) 

 Where  <= (�)= ∑ �' ?@A?B (�)�+) known as the degree of lower truth-membership vertex  <=!(�)= ∑ �'!?@A?B (�)�+) known as the degree of upper truth-membership vertex  <� (�)= ∑ 
' ?@A?B (�)�+) known as the degree of lower indterminate-membership vertex  <�!(�)= ∑ 
'!?@A?B (�)�+) known as the degree of upperindeterminate-membership vertex  <> (�)= ∑ �' ?@A?B (�)�+) known as the degree of lower false-membership vertex  <>!(�)= ∑ �'!?@A?B (�)�+) known as the degree of upperfalse-membership vertex  

 

Example 4.5 Consider an IVNG  G=(N, M) presented in Fig. 4 with  vertices  set V={�): � = 1, . . ,4} and  

edges  set E ={�*�1 ,�1�2, �2�.,�.�*}. 

 

 

 

 

 

 

 

 

�2 

<[0.3, 0.5],[ 0.2, 0.3],[0.3, 0.4]> 
<[0.2, 0.3],[ 0.2, 0.3],[0.1, 0.4]> 

<[0.1, 0.3],[ 0.2, 0.4],[0.3, 0.5]> 

<[0.1, 0.2],[ 0.3, 0.4],[0.4, 0.5]> 

�* 
�. 

<[0.1, 0.3],[ 0.4, 0.5],[0.4, 0.5]> <[0.1, 0.2],[ 0.3, 0.5],[0.4, 0.6]> 
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Fig. 4.Illutstrationof  an interval valued neutrosophic graph 

The degree of each vertex �)is given as follows: <(k*)=	([0.3, 0.6], [0.5, 0.9], [0.5, 0.9]), <(k.)=	([0.4, 0.6], [0.5, 1.0], [0.4, 0.8]), <(k2)=	([0.4, 0.6], [0.6, 0.9], [0.4, 0.8]), <(k1)=	([0.3, 0.6], [0.6, 0.8], [0.5, 0.9]). 

 

Definition 4.6.  A graph G=(N, M) is termed regular interval valued neutrosophic graph if d(k)=r=([r*H, r*I], [r.H, r.I], [r2H, r2I]), ∀	k ∈ V. 

(i.e.) if each vertex has same degree r, then G is said to be a regular interval valued neutrosophic graph of de-

gree r. 

 

Definition 4.7. A graph G=(N,M) is termed irregular interval valued neutrosophic graph if the degree of 

some vertices are different than other. 

 

Example 4.8 Let us Suppose, G is a regular interval-valued neutrosophic graph as portrayed in Fig. 5 having 

vertex set V={k*, k., k2, k1} and edge sets E={k*k.,k.k2, k2k1	,k1k*} as follows. 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

Fig.5 .Regular IVN-graph. 

�1 

<[0.2, 0.3],[ 0.2, 0.4],[0.1, 0.2]> 

<[0.2, 0.3],[ 0.2, 0.5],[0.2, 0.4]> 

�2 

<[0.3, 0.6],[ 0.2, 0.3],[0.2, 0.3]> 

<
[0

.2
, 

0
.3

],
[ 

0
.2

, 
0
.5

],
[0

.2
, 

0
.4

]>
 

 

<[0.4, 0.6],[ 0.1, 0.2],[0.2, 0.3]> <[0.4, 0.5],[ 0.1, 0.3],[0.1, 0.4]> 

�* 

<[0.2, 0.3],[ 0.2, 0.5],[0.2, 0.4]> 

�. 

<
[0

.2
, 

0
.3

],
[ 

0
.2

, 
0
.5

],
[0

.2
, 

0
.4

]>
 

 

�1 

<[0.2, 0.3],[ 0.2, 0.4],[0.1, 0.2]> 

<[0.2, 0.3],[ 0.3, 0.4],[0.2, 0.4]> 

�2 

<[0.3, 0.6],[ 0.2, 0.3],[0.2, 0.3]> 

<
[0

.1
, 

0
.3

],
[ 

0
.3

, 
0
.4

],
[0

.3
, 
0
.5

]>
 

<[0.4, 0.6],[ 0.1, 0.2],[0.2, 0.3]> <[0.4, 0.5],[ 0.1, 0.3],[0.1, 0.4]> 

�* 

<[0.2, 0.3],[ 0.2, 0.5],[0.2, 0.4]> 

�. 

<
[0

.2
, 

0
.3

],
[ 

0
.3

, 
0
.5

],
[0

.2
, 
0
.4

]>
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In the Fig. 5. All adjacent vertices JKJL , JLJM , JMJN , JN�K  have the same degree equal 

<[0.4,0.6],[0.4,1],[0.4,0.8]>. Hence, the graph G is a regular interval valued neutrosophic graph. 

 

 
Definition 4.9 A graph G= (N, M) on O∗is termed strong interval valued neutrosophic graph if the following 

holds: 

 PQR (JS, JT) = PUR (JS)∧ PUR (JT) PQV (JS, JT) = PUV(JS)∧ PUV(JT) WQR (JS, JT) = WUR (JS)∨ WUR (JT) WQV (JS, JT) =WUV(JS)∨ WUV(JT) XQR (JS, JT) = XUR (JS)∨ XUR (�) XQV (JS, JT) = XUV(JS)∨ XUV(JT)	∀	(JS ,JT )∈ E                                               (26) 

 

 

Example 4.10.Consider the strong interval valued neutrosophic graph G=(N, M) in Fig. 6 with vertex set N 

={k*, k., k2, k1}and edge set M={�*�., �.�2, �2�1, �1�*} as follows: 

 

 

 

 �* �. �2   �*�. �.�2 �2�* TZH 0.3 

 

0.2 

 

0.1 

 

 T[H  0.2 

 

0.1 

 

0.1 

 TZI 0.5 0.3 0.3  T[I 0.3 0.3 0.3 IZH  0.2 0.2 0.2  I[H  0.2 0.2 0.2 IZI 0.3 0.3 0.4  I[I  0.3 0.4 0.4 FZH  0.3 0.1 0.3  F[H  0.3 0.3 0.3 FZI 0.4 0.4 0.5  F[I  0.4 0.4 0.5 

 

 

 
 

 

 

 

 

 

 

 

 
 

 

Fig.6.Illustration of strong IVNG 

 

 
Proposition 4.11For everyJS,JT ∈ V, we have 

 PQR (JS, JT) =PQR (JT, JS)and            PQV (JS, JT) =PQV (JT, JS) WQR (JS, JT) =WQR (JT, JS)and              WQV (JS, JT) =WQV (JT, JS) XQR (JS, JT) =XQR (JT, JS)and              XQV (JS, JT) =XQV (JT, JS)                         (27) 

 

�2 

<[0.3, 0.5],[ 0.2, 0.3],[0.3, 0.4]> 
<[0.2, 0.3],[ 0.2, 0.3],[0.1, 0.4]> 

<[0.1, 0.3],[ 0.2, 0.4],[0.3, 0.5]> 

<[0.2, 0.3],[ 0.2, 0.3],[0.3, 0.4]> 

�* 
�. 

<[0.1, 0.3],[ 0.2, 0.4],[0.3, 0.4]> <[0.1, 0.3],[ 0.2, 0.4],[0.3, 0.5]> 
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Proof. Suppose G =(N, M) be an interval valued neutrosophic graph, suppose JS is a neigbourhood of  JT in 

G.Then , we have 

 PQR (JS, JT) =min [ PUR (JS), PUR (JT)]   and  PQV (JS, JT) =min [ PUV(JS), PUV(JT)] 
 WQR (JS, JT) =max [ WUR (JS), WUR (JT)]  and WQV (JS, JT) =max[ WUV(JS), WUV(JT)] 
 XQR (JS, JT) =max [ XUR (JS), XUR (JT)]  and  XQV (JS, JT) =max [ XUV(JS), XUV(JT)]   
 

Similarly we have also for 

 PQR (JT, JS) =min [ PUR (JT), PUR (JS)]   and  PQV (JT, JS) =min [ PUV(JT), PUV(JS)] 
 WQR (JT, JS) =max [ WUR (JT), WUR (JS)]  and WQV (JT, JS) =max[ WUV(JT), WUV(JS)] 
 XQR (JT, JS) =max [ XUR (JT), XUR (JS)]  and  XQV (JT, JS) =max [ XUV(JT), XUV(JS)]   
 

Thus  

 PQR (JS, JT) =PQR (JT, JS)andPQV (JS, JT) =PQV (JT, JS) WQR (JS, JT) =WQR (JT, JS)andWQV (JS, JT) =WQV (JT, JS) XQR (JS, JT) =XQR (JT, JS)andXQV (JS, �) =XQV (JT, JS) 
 

Definition 4.12 The graph G= (N, M) is termed an interval valued neutrosophic graph if the following holds PQR (JS, JT) =min [ PUR (JS), PUV(JT)]   and  PQV (JS, JT) =min [ PUV(JS), PUV(JT)] 
 WQR (JS, JT) =max [ WUR (JS), WUR (JT)]  and WQV (JS, JT) =max[ WUV(JS), WUV(JT)] 
 XQR (JS, JT) =max [ XUR (JS), XUR (JT)]  and  XQV (JS, JT) =max [ XUV(JS), XUV(JT)]  ∀JS,JT ∈ V          (28) 

 

Example 4.13. Consider the complete interval valued neutrosophic graph G=(N, M) portrayed in Fig. 7 with 

vertex set A ={k*, k., k2, k1}and edge set E={k*k.,k*k2 ,k.k2, k*k1, k2k1	,k.k1}as follows 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.7 .Illustration of complete IVN-graph 
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In the following based on the extension of the adjacency matrix of SVNG [69], we defined the concept of ad-

jacency matrix of IVNG as follow: 

 

Definition 4.14:The adjacency matrix M(G) of IVNG G= (N, M) is defined as a square matrix M(G)=^_)+`, 
with _)+=<��'a�) , �+b,
�' a�) , �+b,��' a�) , �+b>, where ��'a�) , �+b= [�' a�) , �+b,�!a�) , �+b] denote the strength of relationship      
�'a�), �+b= [
' a�) , �+b,
'!a�) , �+b] denote the strength of undecided relationship ��'a�), �+b=[�' a�) , �+b,�'!a�) , �+b] denote the strength of non-relationship between �) and �+       (29) 

 

The adjacency matrix of an IVNG can be expressed as sixth matrices, first matrix contain the entries as lower 

truth-membership values, second contain upper  truth-membership values, third contain lower indeterminacy-

membership values, forth contain upper indeterminacy-membership, fifth contains lower non-membership values 

and the sixth contain the upper non-membership values, i.e., 

 c(3)=<[�' a�) , �+b,�'!a�) , �+b] ,	[
' a�) , �+b,
'!a�) , �+b] ,	[�' a�) , �+b,�'!a�) , �+b] >,           (30) 

 

From the Fig. 1, the adjacency matrix of IVNG is defined as: 

 

 QO = d e < [e. K	, e. N], [e. M	, e. L], [e. L	, e. g] > < [e. K	, e. N], [e. M	, e. g], [e. L	, e. i] >< [e. K	, e. N], [e. M	, e. L], [e. L	, e. g] > e < [e. K	, e. M], [e. L	, e. g], [e. L	, e. g] >< [e. K	, e. N], [e. M	, e. g], [e. L	, e. i] > < [e. K	, e. M], [e. L	, e. g], [e. L	, e. g] > e j 
 

 
In the literature, there is no Matlab toolbox deals with neutrosophic matrix such as adjacency matrix and so 

on. Recently Broumi et al [58] developed a Matlab toolbox for computing operations on  interval valued neutro-

sophicmatrices.So, we can inputted the adjacency matrix of IVNG  in the workspace Matlab as portrayed in Fig.  

8. 
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Fig. .8 Screen shot of Workspace MATLAB 

Definition 4.15:The spectrum of adjacency matrix of an IVNG M(G) is defined as  

                              <k� , l�,m�>=<[k� ,k�!],[l� ,l�!],<[m� ,m�!]>                               (31) 

 

Where k� is  the set of eigenvalues of c(�' a�) , �+b),k�! is the set of eigenvalues of c(�n!a�), �+b),l�  is the 

set of eigenvalues of c(
' a�) , �+b),l�! is the set of eigenvalues of  c(
'!a�) , �+b) , m�   is the set of eigenvalues of c(�' a�) , �+b) and m�!  is the set of eigenvalue of c(�n!a�) , �+b)respectively. 

 

 

Definition 4.16: The energy of an IVNG G= (N,M) is defined as  

E(G)=<E(PoQaJS, JTb),p(W�QR aJS, JTb),p(XoQR aJS, JTb)>                              (32) 

Where  

 

E(��'a�) , �+b = [E(�' a�)�+b),E(�'!a�)�+b)]=[∑ |5) |7):*q@r∈s�r
, ∑ t5)!t7 ):*q@u∈s�u

] 

E(
�'a�) , �+b = [E(
' a�)�+b),E(
'!a�)�+b)]=[∑ |v) |7):*w@r∈��r
, ∑ tv)!t7 ):*w@u∈��u

] 

E(��'a�) , �+b= [E(�' a�)�+b),E(�'!a�)�+b)] =[∑ |x) |7):*y@r∈z�r
, ∑ tx)!t7 ):*y@u∈z�u

] 

 

Definition 4.17:Two interval valued neutrosophic graphs3* and 3. are termed equienergetic, if they have the 

same number of vertices and the same energy. 

 

Proposition4.18:If an interval valued neutrosophic G is both regular and totally regular, then the eigen values 

are balanced on the energy. 

 ∑ ±5) 7):* = 0, ∑ ±5)!7):* = 0, ∑ ±v) 7):* = 0, ∑ ±v)!7):* = 0, ∑ ±x) 7):* = 0  and∑ ±x)!7):* = 0.             (33) 

 

 

4.19. MATLAB program for findingspectrum of an interval valued neutrosophic graph 
To generate the MATLAB program for finding the spectrum of interval valued neutrosophic graph. The program 

termed “Spec.m” is written  as follow: 

 
Function SG=Spec(A); 

% Spectrum of an interval valued neutrosophic matrix A   

% "A" have to be an interval valued neutrosophic  matrix - "ivnm" object: 

a.ml=eig(A.ml);               % eigenvalues of lower membership of ivnm% 

a.mu=eig(A.mu);             % eigenvalues of upper membership of ivnm% 

a.il=eig(A.il);                  % eigenvalues of lower rindeterminate-membership of ivnm% 

a.iu=eig(A.iu);                % eigenvalues of upper indterminate- membership of ivnm% 

a.nl=eig(A.nl);               % eigenvalues of lower false-membership of ivnm% 

a.nu=eig(A.nu);            % eigenvalues of upper false-membership of ivnm% 

SG=ivnm(a.ml,a.mu,a.il,a.iu,a.nl,a.nu); 

 
4.20. MATLAB program for finding energy of an interval valued neutrosophic graph 
To generate the MATLAB program for finding the energy of interval valued neutrosophic graph. The program 

termed “ENG.m”iswritten  as follow: 
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Example4.21: The spectrum and the energy of an IVNG, illustrated in Fig. 6,  are given below: 

 

Spec(�' a�)�+b)={ -0.10, -0.10,0.20},  Spec(�'!a�)�+b)={-0.30,-0.17,0.47} 

Spec(
' a�)�+b)={-0.40,-0.27,0.67},   Spec(
'!a�)�+b)={-0.53,-0.40,0.93]} 

Spec(�' a�)�+b)={-0.40,-0.40,0.80},  Spec(�'!a�)�+b)={ -0.60,-0.47,1.07} 

 

Hence, 

Spec(G)={<[-0.10, -0.30], [-0.40, -0.53 ],[-0.40, -0.60 ]>, <[-0.10, -0.17], [-0.27, -0.40 ],[-0.40, -0.47 ]>, <[0.20, 

0.47], [0.67, 0.93 ],[0.80, 1.07 ]>} 

Now , 

E(�' a�)�+b)=0.40,   E(�'!a�)�+b)=0.94 

 

E(
' a�)�+b)=1.34,E(
'!a�)�+b)=1.87 

 

E(�' a�)�+b)=1.60,E(�'!a�)�+b)=2.14 

 

Therefore 

E(G)= <[0.40, 0.94],[1.34, 1.87], [1.60, 2.14]> 

Based on toolbox MATLAB developed in [58], the readers can run the program termed “Spec.m”, for computing 

the spectrum of graph, by writing in command window “Spec (A)” as described below: 

 

 
 
Similarly,  the readers can also run the program termed “ENG.m”, for computing the energy of graph, by writing 

in command window “ENG (A) as described below: 
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In term of the number of vertices and the sum of interval truth-membership, interval indeterminate-membership 

and interval false-membership, we define the upper and lower bounds on energy of an IVNG. 

 

Proposition 4.22. Suppose  G= (N, M) be an IVNG on n vertices and the adjacency matrix   of G.then 

|2∑ a�' (�)�+)b. + �(� − 1)|� |. ��*�)+�7 ≤ �(�' a�)�+b) ≤ |2�∑ a�' (�)�+)b.*�)+�7                      (34) 

|2∑ a�'!(�)�+)b. + �(� − 1)|�!|. ��*�)+�7 ≤ �(�'!a�)�+b) ≤ |2� ∑ a�'!(�)�+)b.*�)+�7   (35) 

|2∑ a
' (�)�+)b. + �(� − 1)|
 |. ��*�)+�7 ≤ �(
' a�)�+b) ≤ |2� ∑ a
' (�)�+)b.*�)+�7          (36) 

|2∑ a
'!(�)�+)b. + �(� − 1)|
!|. ��*�)+�7 ≤ �(
'!a�)�+b) ≤ |2�∑ a
'!(�)�+)b.*�)+�7       (37) 

|2∑ a�' (�)�+)b. + �(� − 1)|� |. ��*�)+�7 ≤ �(�' a�)�+b) ≤ |2� ∑ a�' (�)�+)b.*�)+�7    (38) 

|2∑ a�'!(�)�+)b. + �(� − 1)|�!|. ��*�)+�7 ≤ �(�'!a�)�+b) ≤ |2� ∑ a�'!(�)�+)b.*�)+�7    (39) 

Where  |PR|,|PV|,|WR|,|WV|,|XR|and |XV| are the determinant of Q(PQR aJS, JTb), Q(PQV aJS, JTb), Q(WQR aJS, JTb), 	Q(WQV aJS, JTb), Q(XQR aJS, JTb) andQ(XQV aJS, JTb),respectively. 

Proof: proof is similar as in Theorem 3.2 [69] 

Conclusion 

This paper introduces some basic operations on interval-valued neutrosophic set to increase its utility in vari-

ous fields for multi-decision process. To achieve this goal, a new mathematical algebra of interval-valued neu-

trosophic graphs, its energy as well as spectral computation is discussed with mathematical proof using 

MATLAB. In the near future, we plan to extend our research to interval valued neutrosophic digraphs and devel-

oped the concept of domination in interval valued-neutrosophic graphs. Same time the author will focus on han-

dling its necessity for knowledge representation and processing tasks [85-87]. 
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