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1. Introduction

The concept of fuzzy cognitive map has received special atten-
tion in recent years as a powerful tool to manipulate knowledge
by imitating human reasoning and thinking. Many complex prob-
lems like fuzzy control [1-3], approximate reasoning [4-7], strate-
gic planning [8-11], data mining [12], virtual worlds and network
models [13] have been dealt with using FCMs. Especially, in the
field of medical decision making [14,15], Kannappan [16] models
and predicts autistic spectrum disorder using FCM, and an unsu-
pervised non-linear Hebbian learning algorithm is applied to
improve it’s efficiency. Papageorgiou [17] presents a novel frame-
work for the construction of augmented FCMs based on fuzzy
rule-extraction methods for decisions in medical informatics. The
study extracted the available knowledge from data in the form of
fuzzy rules and inserted them into the FCM, contributing to the
development of a dynamic decision support system. FCM has also
been investigated for risk analysis of pulmonary infections during
patient admission into the hospital [18-23].

Although FCM has achieved success in many fields, there are
some limitations inherent in FCM, such as lack of adequate capabil-
ity to handle uncertain information and lack of enough ability to
aggregate the information from different sources. Some attention
has been paid to the first issue by some researchers. For example,
Salmeron [24] proposes an innovative and flexible model based on
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Grey Systems Theory, called fuzzy grey cognitive maps (FGCM),
which can be adapted to a wide range of problems, especially in
multiple meaning-based environments. lakovidis and Papageor-
giou [25] propose an approach based on cognitive maps and intui-
tionistic fuzzy logic, which is called intuitionistic fuzzy cognitive
map (IFCM) to extend the existing FCM by considering the expert’s
hesitancy in the determination of the causal relations between the
concepts of a domain. Similarly, after the introduction of neutro-
sophic logic (similar to intuitionistic fuzzy sets) by Samarandache
[26], indeterminacy has been introduced into causal relationships
between some of concepts of FCMs. This is a generalization of FCMs
and the structure is called neutrosophic cognitive maps (NCMs)
[27]. However, how to extend the ability of FCM to aggregate the
information from different sources under uncertain environment
is a significant question in the application of FCM and is still an
open issue.

Uncertain information fusion has been studied for many years
[28-41], indicating that Dempster Shafer theory (DS theory or evi-
dence theory)is an effective framework to represent and fuse uncer-
tain information. Therefore this paper combines FCM and evidential
theory to the concept development of evidential cognitive maps
that not only remains the ability to represent uncertainty but also
contributes to aggregating knowledge from different sources
(experts/commanders). The combination of evidence theory and
FCM is shown to be a valuable approach through illustrations.

This paper is organized as follows: Section 2 briefly presents
FCM and basic evidence theory and some operations of interval
numbers. Section 3 develops the mathematical model of the
proposed ECM concept. Section 4 describes the implementation


http://dx.doi.org/10.1016/j.knosys.2012.04.007
mailto:ydeng@swu.edu.cn
http://dx.doi.org/10.1016/j.knosys.2012.04.007
http://www.sciencedirect.com/science/journal/09507051
http://www.elsevier.com/locate/knosys

78 B. Kang et al./ Knowledge-Based Systems 35 (2012) 77-86

of ECM. Section 5 briefly presents qualitative comparison of ECM
with FCM and NCM. An application of ECM to socio-economic
model is presented in Section 6.

2. Preliminaries
In this section, we briefly introduce FCM and evidence theory.
2.1. FCM

Political scientist Robert Axelrod [42] introduced cognitive
maps in the 1970’s for representing social scientific knowledge.
Fuzzy cognitive map (FCM), an extension of the cognitive map, is
a causal description in order to model the behavior of the system
[43]. FCM is an interactive structure of concepts, each of which
interacts with the rest showing the dynamics and different aspects
of the behavior of the system. Human experience and knowledge of
the operation of complex systems are embedded in FCM, i.e.,
knowledge gained about the operation of the system and its behav-
ior under different circumstances by human experts.

FCM consists of nodes (concepts, agents) and weighted arcs (con-
nection, edge), which are graphically illustrated as signed weighted
graph with optional feedback loops. Nodes on the graph represent
concepts describing behavioral characteristics of the system.
Concepts can be inputs, outputs, variables, states, events, actions,
goals, and trends of the system. Signed weighted arcs represent
causal relationships (cause and effect) that exist among concepts.

Fig. 1 illustrates a simple FCM consisting of six concepts G;
(i=1,...,6). The value of G is denoted by A; (i=1,...,6), where
A; is mapped in the interval [0, 1]. Weight w;; € [-1, 1] represents
the causal relationship between concept i and concept j, where a
negative sign represents inverse causation. This scheme may give
rise to the following three types of interactions:

(1) wy >0 indicates a positive causality, where an increase in
the value of the ith concept causes an increase in the value
of the jth concept;

(2) w;j<0 indicates a negative causality, where an increase in
the value of the ith concept causes an decrease in the value
of the jth concept;

(3) w;j =0 indicates that there is no causal relationship between
the ith concept and the jth concept.

Fig. 1. The structural diagram of fuzzy cognitive map.

The edge matrix of six concept fuzzy cognitive map is denoted
as in Eq. (1).

G G G G G G

Ci/ 0 w2 0 wy 0 wp
G| O 0 wy wy O 0
W=GC| 0 w3, 0 0 w3 wsg (1)
Csl O sy a3 O 0 (g
Csl 0 ws; 0 wss 0 se

Cs\wer O 0 0 0 0

Kosko [43] proposed a rule to calculate the value of each concept
based on the influence of the interconnected concepts, where the
content of the following function is normalized in the interval
[-1,1]:

n

Ajt :f k] Z A;71Wg + sz;71

i=1

i#j
where A; is the normalized (4] € [0, 1]) value (a.k.a activation level)
of concept G at time step ¢, and f{x) is a threshold function. Gener-
ally, a sigmoidal function f(x) = ;-1 is used to constrain the value
of f(x) in the interval [0,1], where /. > 0 determines the steepness of
fix). The coefficient k; expresses the influence of interconnected
concepts in the configuration of the new value A; of concept C.
For example, in Fig. 1, the concept Cg receives inputs from concepts
C1, G3, C4, and GCs. If experts perceive that C4 and Cs interact in such a
way that both are fully participating in impacting Cs then the k;
associated with them will be closer to 1. Similarly, k, accounts for
the importance of Cg being at its activation level in the previous
time step. The selection of coefficients k; and k, depends on the nat-
ure and type of each concept, and may differ from concept to
concept.

2.2. Dempster-Shafer (DS) theory of evidence

The DS theory of evidence, which was first proposed by Demp-
ster [28] and then developed by Shafer [31], is regarded as a gen-
eralization of the Bayesian theory of probability. Due to its ability
to handle uncertainty or imprecision embedded in the evidence,
the DS theory has been increasingly applied in recent years [44-
47,41,48-52], and applied to multiple attribute decision analysis
problems [53-57].

The introduction of DS theory are briefly summarized as
following:

(1) “Frame of discernment” [31]:
Let ® ={Hq, H,, ..., Hy} be a finite set of n elements, and
P(©) denote the power set composed of 2" elements of ©.

P(@) = {0, {H,},{Hz}....,{Hy},{H: UH,},{H: UHs},..., 0}
3)

(2) “Basic probability assignment (BPA)” [31]:
The BPA function is defined as a mapping of the power set
P(®) to a number between 0 and 1.

m:P(®)—[0,1] (4)
and which satisfies the following conditions:
m@) =0, » mA) =1 (5)
ACP(O)

The mass m(A) represents how strongly the evidence supports A.
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Fig. 2. The relation between Bel and Pl

(3) “Belief and plausibility functions” [31]:
The belief function Bel is defined as

Bel : P(©) — [0,1] and Bel(A) = > m(B) (6)

BCA
and the plausibility function Pl is defined as
Pl: P(®) — [0,1] and PI(A) = 1 — Bel(A) = Z m(B) (7)

BrA=0
Bel (A) and Pl (A) are the lower limit and the upper limit, respec-

tively, of the belief level of hypothesis A which is illustrated in
Fig. 2. Both imprecision and uncertainty can be represented by
them.
(4) “Dempster’s combination rule”:
Two bodies of evidence X and Y regarding @ can be used to
calculate the belief level for some new hypothesis C as fol-
lows:
The measure of conflict K is given as

K= > mX)xm(Y) (8)

XNY=0VXYC O
and the mass function after combination is

ifXnY=0,

0,
m(C) =m;(X)om;(Y)= { Zer:Cvxvlcj)-ljf(x)xmt'<y)’ FXNY %0. 9)

2.3. Basic operations of interval numbers
Let A, B be two interval numbers, A = [A;,AJ], B = [B), Bu).

(1) The representation of the addition operation @ on interval
numbers A and B can be defined as

A® B =[A+B,A, +B,] (10)

Note that &7(A) =A; @ A, @ -+ @ A,
(2) The representation of the multiplication operation ® on
interval numbers A and B can be defined as

A®B=2.Z,] (11)
such that

Z; = min{A;B;, AB,,A,B;, A.By,}
Zu = maX{AlBlyAlBuaAuBhAuBu}

where min and max are the minimum and maximum of the denoted
values.

3. Evidential cognitive map (ECM)

ECM is also a directed graph with feedback, consisting of nodes
and weighted arcs. Nodes of the graph stand for the concepts that
are used to describe the behavior of the system and they are con-
nected by weighted arcs representing the causal relationships that
exist between the concepts. Each concept C; is characterized by an
interval A; that represents its value, and it results from the trans-
formation of the fuzzy value of the system variable. In this way,
the representation of the concept is more flexible than the repre-
sentation of the concept in FCM that uses crisp numbers.

3.1. Edge weight of the cognitive map

In a cognitive map, experts’ opinions are reflected by the estimate
of the degree of causation between nodes in the referred concept set,
namely weight estimate. Each expert’s estimate of some causal rela-
tion can be regarded as evidence. Generally, due to the complexity of
the relations between concepts and limitation of knowledge and
experience of experts, the causal relation of two concepts could be
described by the following four cases in the evidence theory:

(1) Negative causal relation, which can be described as m{—1},
where an increase in the value of the ith concept causes a
decrease in the value of the jth concept.

(2) Positive causal relation, which can be described as m{+1},
where an increase in the value of the ith concept causes a
increase in the value of the jth concept.

(3) No causal relation between the ith concept and the jth con-
cept, which can be described as m{0}.

(4) No idea or abstaining from voting, which can be described as
m{-1,0, 1}.

Hence, the combined influence from concept ith to concept jth
can be described as

m{-1}=a
| m{l} = b
BPA; = m{0} — ¢ (12)

m{-1,0,1}=1-a-b-c

suchthata>0,b>0,c>0,1—-a—-b—-c>0.

With this representation, the uncertainty of the causal relation
between two concepts is more clearly described and handled com-
pared to the frame of FCM. The idea of evidential cognitive map is
illustrated by Fig. 3, and the weights are shown as in Eq. (13).

G G G G G G
C./ O BPA, O BPAy 0\ BPAg
G| o 0 BPAy; BPAy O 0
W=¢C| 0 BPAp O 0  BPAss| BPAsg (13)
C.| 0 BPAy BPAs O 0 | BPAs
Gs| 0O BPAs, 0 BPAss 0 | BPAss

Cs \BPAg; O 0 0 0 0

3.2. Aggregate knowledge under conflict environment

In the process of collection of knowledge, the experts’ opinions
may be inconsistent with each other. How to combine the knowl-
edge to reach consensus is a critical problem. In this paper, the
method of combining belief functions based on distance of evi-
dence proposed by Deng et al. [58] is applied. The main process
is as follows:

Suppose the distance between two bodies of evidence (R;m;)
and (R, m;) can be calculated by the algorithm in Ref. [59] and is
denoted as d(m;, m;).

d(mi, m;) = \/%(1711- —m;)'D(m; — m;) (14)

such that D is a matrix (2" x 2V), and D(A,B) = 5.
The similarity measure Sim; between the two bodies of evi-

dence (R;, m;) and (R;, m;) is defined as:

Sim(m;, mj) =1 —d(m;, m;) (15)



80 B. Kang et al./ Knowledge-Based Systems 35 (2012) 77-86

Fig. 3. The structural diagram of evidential cognitive map.

Suppose the number of bodies of evidence is k. After all the de-
grees of similarity between the bodies of evidence are obtained, we
can construct a similarity measure matrix (SMM), which gives us in-
sight into the agreement between the bodies of evidence.

1 S -+ S5 - Su
SMM=| Si Sp Sij Sik (16)
Ski Sk Skj 1

The support degree of the body of evidence (R, m;)(i=1,2...,k)
is defined as:

k
Sup(m;) = Y Sim(m;, m;) (17)
ji=1
j#i

The credibility degree Crd; of the body of evidence (R;, m;)
(i=1,2...,k) is defined as:

Sup(m;)

Crdi = f o
iz Sup(m;)

(18)

It can be easily seen that }"! ,Crd; = 1, thus, the credibility de-
gree is actually a weight, which shows the relative importance of
the collected evidence.

If the maximum of the credibility degree (MaxCrd;) of the body
of evidence is 1, which can be the discounting coefficient for the ith
evidence, and the discounting coefficient of the body of evidence
can be defined as:

o= Crdl- (l o
"7 MaxCrd;” Y~

If a source of evidence provides a mass function m which has
probability o of reliability, then the discounted belief m’ on @ is
defined as [28]:

m'(A) = am(A), VAC O,A# O (20)
m' (@) =1-o+om(O) (21)

k) (19)

All mass functions are discounted by «, the discounting coeffi-
cient. Then the modified (discounted) evidence can be combined
with the classical combination rule Eq. (9) to get the aggregated
result.

fX)

3.3. Transformation using the belief function and plausibility function

The next step is to estimate each connection weight of the evi-
dential cognitive map in Fig. 3. Take any BPA;; for example. It can be
denoted explicitly by

m{-1}=a
m{1}=b
m{0} =c (22)

m{-1,0,1}=1-a-b-c
suchthata>0,b>0,c>0,1—-a—b —c > 0. According to Eq. (6),
Bel{—1} =m{-1} =a (23)
Pl{-1} =m{-1} +m{-1,0,1} =1-b—c (24)
Hence, the possibility of the positive casual relation P{ — 1} is de-
noted as

P{-1} = [Bel{-1},Pl{-1}] =[a,1 - b — (] (25)

Similarly, P{1}=[b, 1 —a —c], P{0}=[c, 1 — a — b]. And the connec-
tion weight from C; and C, can be calculated as follows (Here the
4th influence is ignored since it is abstention from voting):

@ =P{1} x 1®P{0} x 0@ P{-1} x (-1)
=1xpb1-a-c@0x[a,1-b-ca(-1)*[a,1-b—
=bl-a-c&[-1+b+c,—a=2b+c—-1,1-2a—]

(26)
G G G G G G
G [0 wp 0 @y 0
Gl o 0 @3 wa 0 0
W=GCG|l o o 0 0 op o (27)
G|l 0 op o 0 0 o
Gl o o, 0 @u 0 o5

Ce \ws1 O 0 0 0 0

3.4. ECM dynamics

At each simulation step, the value /T, of a concept 6, is calcu-
lated by computing the influence of the interconnected concepts

C-’s on the specific concept C; following the calculation rule:

(28)

where Ajf is the value of concept f] at simulation step t, Af’l is the

value of concept C; at simulation step t — 1. The meaning of k; and
k> here is the same as meaning of k; and k, in FCM. w is the weight
of the interconnection from concept C; to concept 6] and fis nonlin-
ear mapping function as

S 1

= — (29)
1+e X

where X is an interval number and 2 is a parameter determining its

steepness. The output of fis also an interval number. It can approx-

imatively handle the uncertain information from concepts and con-

nection weights. The meaning of f is illustrated in Fig. 4 (x > 0).
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4. Application framework of ECMs

The Framework of ECM is shown as Fig. 5, and its application is
detailed as follows:

4.1. Knowledge acquisition

Suppose we have m experts, and they are divided into n groups
according to their knowledge and background. For each group, the
relationship (or the edge weight) between the concepts (or the
nodes) is decided by voting. For example, may there are ten experts
to evaluate the relation from the ith concept to jth concept, and six
of them think that it is positive, one of them thinks that it is neg-
ative, one of them has no idea, and others are abstain from voting.
Hence, using evidence theory, the relation between concept C; and
concept C; is described as: m;{—1}=0.1; m;{0}=0.1; my{+ 1} =

1“1’ ¢ =(fnfm»fu)
; (%)

Jm

=

‘Yz(xl’xm’xu‘)

0 xl X X

m u

Fig. 4. The nonlinear mapping function.

DS evidence
theory

Aggregation of experts’
opinions in Group 2

Aggregation of experts’

Aggregation of experts’
opinions in Group 1 \ / opinions in Group n

Aggregation of experts’
opinions

~——

Dynamics of
ECM

Behaviors of
system

Fig. 5. Framework of ECM.

0.6; my{—1, 0, +1} = 0.2. This evidence can also be given by a single
expert/commander directly.

4.2. Knowledge aggregation

This step allows the aggregation of knowledge acquired from
various sources to develop a comprehensive ECM, which will rep-
resent the understanding of the experts about the special issue.
The comprehensive ECM combines partial ECMs from inner
groups and outer groups. The aggregation of knowledge from in-
ner groups is for the opinions of the experts of each group and
the aggregation of knowledge from outer groups is for the edges
of the partial ECMs.

In this part, a critical problem is how to deal with the conflicting
evidences since the opinions from different experts are not always
consistent. The method dealing with conflicting evidence in evi-
dence theory is mature, here the method of combing conflicting
evidence proposed by Deng [58] is applied here.

4.3. Training ECM

ECM is a dynamic system, and the procedure is described in
Algorithm 1 in detail. After converting the evidence into interval
numbers with the belief and plausibility functions. The state vector
can be handled easily, which has more flexibility to deal with
uncertain and fuzzy information when compared to the classical
fuzzy cognitive maps. Whether the dynamic is reaches equilibrium,
the paper [60] has provided some inspiration for the interpretation
of the condition.

Algorithm 1. The convergent procedure of state vector of ECMs

Input: the initial state vector of nodes, X; =[A;, As, ..., Aul;
the matrix of edge weight W,,.,,;
Output: the equilibrium state vector of nodes,

Xe= [A],Az, cee -An];
1 Temp=[]=X;
2 While not satisfy the condition do
3 X;=Temp;
4 forj=1;j<n;do
5 sum_l = 0;
6 sum_u = 0;
7 forj=1;j<n;do
8 if i # j then
9 a=Xgi, 1)« W(i, j, 1);
10 b=Xj(i, 1)« W(i, j, 2);
11 c=X(i, 2)« W(i, j, 1);
12 d=X{i, 2) » W(i, j, 2);
13 sum_l = sum_Il + min{a, b, c, d};
14 sum_u = sum_u + max{a, b, c, c};
15 end
16 end

17 sum_l = sum_l + X(j, 1);

18  sum_u=sum_u+Xgj, 2);

19 Temp (j,1) = function (sum_l);
20 Temp (j,2) = function (sum_u);
21 if Temp(j, 1) < 0.5 then

22 Temp (j, 1)=0;

23 Temp (j, 2)=0;

24 end

25 end

26 X.=Temp;

27 end

28 return Xg;
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4.4. Interpreting ECM 5. Qualitative comparison with FCM and NCM
The outcome of an ECM is in the form of concepts being “acti- Here (in ECM) we use the fact that between any two concepts/
vated” at different levels after reaching equilibrium. The interpre- nodes the existing relation may be an indeterminate (as) in reality,

tation of these concepts will determine the judgement for a given FCM do not reflect the notion of indeterminacy. Some differences
between ECM and FCM are listed as follows:

scenario.
Table 1
Experts’ knowledge in group 1 (values of aggregated knowledge are shown in bold).
G G Gs
E1: (0.7, 0.1, 0.0, 0.2) E1: (0.1, 0.6, 0.1, 0.3)
G - E2: (0.8, 0.0, 0.0, 0.2) E2: (0.3, 0.3, 0.0, 0.4)
E3:(0.2,0.5,0.1,0.2) E3:(0.1,0.5,0.2,0.2)
E123: (0.8782, 0.0759, 0.0076, 0.0383) E123: (0.0980,0.7978, 0.0699, 0.0342)
E1: (0.6, 0.1, 0.1, 0.2)
G - - E2: (0.7, 0.1, 0.0, 0.2)
E3: (0.3, 0.5, 0.0, 0.2)
E123: (0.8369, 0.1225, 0.0135, 0.0271)
E; - - -
Table 2

Experts’ knowledge in group 2 (values of aggregated knowledge are shown in bold).

G G G Cq

E1: (0.5,0.1,0.1,0.2)
= E2: (0.7,0.1, 0.1, 0.1) -

G - -
E3: (0.3, 0.6, 0.0, 0.1)
E123: (0.7851, 0.1575, 0.0313,
0.0260)
E1: (0.5, 0.1, 0.1, 0.2)
E\‘z - - E2: (0.4, 0.1, 0.1, 0.1)

E3: (0.3, 0.0, 0.2, 0.5)
E123: (0.7088, 0.0649, 0.1263,
0.1001)

E1: (0.5, 0.1, 0.1, 0.2)
G - E2: (0.5,0.2, 0.1,0.2) - -

E3: (0.7, 0.0, 0.0, 0.3)
E123: (0.8848, 0.0520, 0.0313,

0.0319)
E1: (0.7,0.1, 0.0, 0.2) E1:(0.1,0.5,0.2,0.2)
G, E2:(02,050.1,02) E2: (0.1,0.5, 0.2, 0.2) - -
E3: (0.6, 0.1, 0.0, 0.3) E3: (0.0,0.7, 0.0, 0.3)
E123: (0.8055, 0.1478, 0.0106,  E123: (0.0295, 0.8763, 0.0707,
0.0362) 0.0236)

Table 3
Experts’ knowledge in group 3 (values of aggregated knowledge are shown in bold).
G Ca G
E1: (0.1,0.7,0.1, 0.1)
G - - E2: (0.0, 0.6, 0.0, 0.4)
E3: (0.5,0.2, 0.2, 0.1)
E123: (0.1090, 0.8078, 0.0585, 0.0248)
E1: (0.6, 0.1, 0.1, 0.2)
Ca E2: (0.4,0.2,0.2, 0.2) - -
E3: (0.5, 0.1, 0.2, 0.2)
E123: (0.8146, 0.0681, 0.0984, 0.0189)
E1: (0.5, 0.4, 0.0, 0.1)
Cs - E2: (0.2, 0.6, 0.0, 0.2) -

E3: (0.1,0.7, 0.0, 0.2)
E123: (0.1346, 0.8600, 0.0000, 0.0054)
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(1) FCM measures the existence of causal relation between two
concepts using crisp number between —1 and 1 and if no
relation exists it is denoted by 0. ECM measures not only
the existence or absence of causal relations between two
concepts but also give representation to the indeterminacy
of the relation.

(2) Because ECM measures the indeterminacy, the expert of the
model can give due and careful representation while imple-
menting the results of the model.

(3) Being able to aggregate multiple sources and conflicting
information is an important advantage in ECM.

The advantage of ECM compared with NCM can be listed as
follows:

(1) More accurate representation of knowledge and dynamics of
system. In NCM, every edge is weighted with a number in
the set {—1, 0, 1}, and if there is a hesitating decision, I,
which is a symbo, is directly used to represent the indeter-
minacy, but in ECM, every edge is weighted with belief
and plausibility dimension using BPA {m{-1}, m{0}, m{1},
m{-1, 0, 1}}, where m{-1}, m{0}, m{1}, m{-1, 0, 1} all
belong to the interval [0, 1] and they are all crisp number,
and there is no symbolic computation. Therefore, it is a more
accurate representation and can describe the behavior of the
system more accurately.

(2) Being able to aggregate multiple, conflicting information
using evidence theory is an important advantage in ECM.

6. An application of ECM to a socio-economic model

This section illustrates the application of the proposed method
to a socio-economic model. It is constructed with Population,
Crime, Economic condition, Poverty, and Unemployment as nodes
or concepts. Our purpose is to evaluate the trend of factors chang-
ing with any one factor using ECM.

First, the structure of ECM should be established using several
sources of partial knowledge. All the available experts are divided
into three groups (group1, group2, and grou3). and the opinions
are provided in Tables 1-3. They can be described as Figs. 6-8
accordingly.

Next, the opinions from different experts and the partial ECMs
are combined together considering the conflict in the evidence.
(See Table 4 and Fig. 9). . -

Take group1 for example; The relationships between C; and C;
is provided by three evidences (Evidencel (E1), Evidence2 (E2) and
Evidence3 (E3)) as follows:

POPULATION
G

CONDITION
CJ

Fig. 6. Partial ECM from group 1.

POPULATION
G

POVERTY
G

ECONOMIC
CONDITION
G

Fig. 7. Partial ECM from group 2.

POPULATION
o

Fig. 8. Partial ECM from group 3.

POPULATION

POVERTY
¢

CONDJTION
e

Fig. 9. The aggregation of all three partial ECMs from 3 groups.

E1:m;{~1} =0.7;m;{1} = 0.1;m; {0} = 0.0;m;{-1,1,0} = 0.2;
E2: my{~1} = 0.8;my{1} = 0.0;m,{0} = 0.0;m,{—1,1,0} = 0.2;
E3:my{~1} = 0.2;m3{1} = 0.5;m3{0} = 0.1;m3{—1,1,0} = 0.2;

It is easy to conclude that Evidence3 is not consistent with Evi-
dencel and Evidence2. The combination with evidential distance is
applied here, and the process is as follows:

(1) The distance matrix of the evidences is

0.00 0.02 042
d= {002 0.00 0.62
042 0.62 0.00
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Table 4
Aggregation of experts’ knowledge from 3 groups (values of aggregated knowledge are shown in bold).
Gt G G Ca G
61 - - E1: (0.8782, 0.0759, 0.0076, - E1: (0.0980, 0.7978, 0.0699,
0.0383) 0.0342)
E2:(0.7851, 0.1575, 0.0313, E2: (0.1090, 0.8078, 0.0585,
0.0260) 0.0248)
E12: (0.9703, 0.0261, 0.0021, E12: (0.0235, 0.9644, 0.0109,
0.0013) 0.0012)
6; - - - E1:(0.7088, 0.0649, 0.1263, -
0.1001)
f_*; - E1:(0.8848, 0.0520, 0.0313, - - E1: (0.8369, 0.1225, 0.0135,
0.0319) 0.0271)
64 E1: (0.8055, 0.1478, 0.0106, E1: (0.0295, 0.8763, 0.0707, - - -
0.0362) 0.0236)
E2:(0.8146, 0.0681, 0.0984,
0.0189)
E12: (0.9713, 0.0212, 0.0067,
0.0009)

Cs - - -

E1: (0.1346, 0.8600, 0.0000, -
0.0054)

(2) The similarity matrix of the evidences is

1.00 0.98 0.58
0.98 1.00 0.38
058 038 1.00

SMM =

(3) The credibility degree of the evidences is
Cred = [0.3721, 0.3430, 0.2849]

(4) The discounting coefficient is
o = [1.0000, 0.9219, 0.7656]

(5) Now we combine the three evidences using DS theory.

E12:mi{—1} = 0.9150;m;{1} = 0.0283;
my {0} = 0.0;m;{~1,1,0} = 0.0567;
E123:m {1} = 0.8782;m;{1} = 0.0759;
my {0} = 0.0076;m,{—1,1,0} = 0.0383;

Then, the partial ECMs can be combined with each other in a
similar way. Taking Figs. 6 and 7 for example, the shared edge is
from concept C; to Cs, and the result of combination is shown in
Tables4and5. N

Let A® = [A9,A9 A9 A%, AY(AY = [0.9,1],A° = [0,0],i =2,...,5)
be an initial vector state, and let k; = 1 and k; = 1. Let the sigmoidal
function with /=1 be used as a threshold function. Figs. 10-12
represent the results of Eq. (28) simulated iteratively thirty times.

Table 5
Aggregation of experts’ knowledge in 3 groups (values shown in bold are transformed
using the belief function and plausibility function).

G G G Cs Cs
¢, [0.0000, [0.0000, [-0.9457,  [0.0000, [0.9397,
0.0000] 0.0000] ~0.9427] 0.0000] 0.9421]
G [0.0000, [0.0000, [0.0000, [-0.7439,  [0.0000,
0.0000] 0.0000] 0.0000] ~0.5439] 0.0000]
¢ 10.0000, [-0.8647,  [0.0000, [0.0000, [-0.7415,
0.0000] ~0.8009] 0.0000] 0.0000] ~0.6873]
G, [-09509,  [0.8233, [0.0000, [0.0000, [0.0000,
~0.9493] 0.8703] 0.0000] 0.0000] 0.0000]
¢, 10.0000, [0.0000, [0.0000, [0.7200, [0.0000,
0.0000] 0.0000] 0.0000] 0.7308] 0.0000]

The trend of lower bound of each concept value

0.9 T T T T T T

“‘\ — = C1 I(Population)
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— C3I(Unemplyment)
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<
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Fig. 10. Results of ECM simulations (Trend of lower bound of each concept value).

It can be seen that the ECM reaches an equilibrium state approxi-
mately after 11 iterations. The values of the concepts reach an
equilibrium state vector All = [A}HAE,A;RA}J,A;]]. (See
Table 6).

Once the ECM reaches equilibrium, the activation values pro-
vide the “triggering” or “firing” strength of those concepts for a gi-
ven scenario. Generally, when the FCM reaches equilibrium, the
activation levels are transformed back to the corresponding values.
These activation levels may be interpreted quantitatively or quali-
tatively. For example, the ECM shown in Fig. 11 reaches an equibri-
um state vector All — (0.0000,0.7929,0.0000, 0.6488,0.6591] ,
which implies that, concept C,, for example, is 79.29% (fired) of
its maximum normalized value. And the whole procedure can be
interpreted as a process of inference. The result can be “When
the population is initially triggering, the rate of crime is increasing,
the poverty is more serious, and the economic condition (volume
of economic) may be improved; the population is decreasing
gradually at the same time”.
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The trend of mean value of lower and upper bound of each concept value

1 T T T T T T

—a— C1_(Population)
091 —6—C2_(Crime) i
0.8} —— C3_(Unemployment)
—+#— C4_(Economic Condition)
S oV il N —=— C5_(Poverty) .

0.6

0.1

0 5 10 15 20 25 30 35

Fig. 11. Results of ECM simulations (Trend of mean value of each concept value).

The trend of upper bound of each concept value

—a— C1u(PopuIation)

—— C2u (Crime)
— C3U(Unemployment)

— C4U(Economic Condition)
— CSU(Poverty)

20 25 30 35

Fig. 12. Results of ECM simulations (Trend of upper bound of each concept value).

Table 6
Equilibrium values of the concepts.
fem ¢, G g G G
A° [0.9000, [0.0000, [0.0000, [0.0000, [0.0000,
0.1000] 0.0000] 0.0000] 0.0000] 0.0000]
0.9500 0.0000 0.0000 0.0000 0.0000
Al [0.7109, [0.0000, [0.0000, [0.0000, [0.6997,
0.7311] 0.0000] 0.0000] 0.0000] 0.7195]
0.9500 0.0000 0.0000 0.0000 0.0000
Al [0.0000, [0.7856, [0.0000, [0.6230, [0.6591,
0.0000] 0.8002] 0.0000] 0.6746] 0.6591]
0.0000 0.7929 0.0000 0.6488 0.6591
A2 [0.0000, [0.7856, [0.0000, [0.6230, [0.6591,
0.0000] 0.8002] 0.0000] 0.6746] 0.6591]
0.0000 0.7929 0.0000 0.6488 0.6591

7. Conclusions

Evidential cognitive maps (ECMs) are uncertain-graph struc-
tures for representing causal reasoning. They can be considered
as the exploration of cognitive maps (CMs) and fuzzy cognitive
maps (FCMs). ECMs can not only deal with the uncertain informa-
tion but can also handle the fuzzy information with the advantage
of evidence theory, and can be used in many applications involving
decision making and uncertain reasoning. The framework of ECMs
is developed in this paper and a simple application is shown to
illustrate the implementation. Future work needs to enhance the
learning ability of ECMs to handle problems in recognition and
classification.

Acknowledgments

This paper presents results of an on-going research, which is
funded by Canada NSERC discovery grant. The work is also partially
supported by National Natural Science Foundation of China, Grant
Nos. 60874105, 60904099, 61174022, Chongqing Natural Science
Foundation for Distinguished Young Scientists, Grant Nos. CSCT,
2010BA2003, Program for New Century Excellent Talents in
University, Grant No. NCET-08-0345, Shanghai Rising-Star Program
Grant No. 09QA1402900, the Chenxing Scholarship Youth Found of
Shanghai Jiao Tong University Grant No. T241460612, Doctor
Funding of Southwest University Grant No. SWU110021. The first
author thanks for the Scientific & Technological Innovation Fund
of School of Computer and Information Science of Southwest
University.

References

[1] C.D. Stylios, P.P. Groumpos, Fuzzy cognitive maps: a model for intelligent
supervisory control systems, Computers in Industry 39 (1999) 229-238.

[2] S. Lee, I. Han, Fuzzy cognitive map for the design of edi controls, Information &
Management 37 (2000) 37-50.

[3] J. Gonzalez, L. Aguilar, O. Castillo, A cognitive map and fuzzy inference engine
model for online design and self fine-tuning of fuzzy logic controllers,
International Journal of Intelligent Systems 24 (2009) 1134-1173.

[4] C. Miao, Q. Yang, H. Fang, A. Goh, A cognitive approach for agent-based
personalized recommendation, Knowledge-Based Systems 20 (2007) 397-405.

[5] M.S. Khan, M. Quaddus, Group decision support using fuzzy cognitive maps for
causal reasoning, Group Decision and Negotiation 13 (2004) 463-480.

[6] A. Konar, U.K. Chakraborty, Reasoning and unsupervised learning in a fuzzy
cognitive map, Information Sciences 170 (2005) 419-441.

[7] C. Miao, A. Goh, Y. Miao, Z. Yang, Agent that models, reasons and makes
decisions, Knowledge-Based Systems 15 (2002) 203-211.

[8] J. Salmeron, Augmented fuzzy cognitive maps for modelling Ims critical
success factors, Knowledge-Based Systems 22 (2009) 275-278.

[9] L. Rodriguez-Repiso, R. Setch, J.L. Salmeron, Modelling it projects success with
fuzzy cognitive maps, Expert Systems with Applications 32 (2007) 543-559.

[10] P. Beena, R. Ganguli, Structural damage detection using fuzzy cognitive maps
and hebbian learning, Applied Soft Computing 11 (2011) 1014-1020.

[11] E. Papageorgiou, A. Markinos, T. Gemtos, Fuzzy cognitive map based approach
for predicting yield in cotton crop production as a basis for decision support
system in precision agriculture application, Applied Soft Computing 11 (2009)
3643-3657.

[12] B. Yang, Z. Peng, Fuzzy cognitive map and a mining methodology based on
multi-relational data resources, Fuzzy Information and Engineering 1 (2009)
357-366.

[13] J.A. Dickerson, B. Kosko, Virtual Worlds in Fuzzy Cognitive Maps, Prentice-Hall,
Englewood Cliffs, NJ, 1997.

[14] E. Papageorgiou, P. Spyridonos, D. Glotsos, C. Stylios, P. Ravazoula, G.
Nikiforidis, P. Groumpos, Brain tumor characterization using the soft
computing technique of fuzzy cognitive maps, Applied Soft Computing 8
(2008) 820-828.

[15] C. Stylios, V. Georgopoulos, G. Malandraki, S. Chouliara, Fuzzy cognitive map
architectures for medical decision support systems, Applied Soft Computing 8
(2008) 1243-1251.

[16] A. Kannappan, A. Tamilarasi, E. Papageorgiou, Analyzing the performance
of fuzzy cognitive maps with non-linear hebbian learning algorithm in
predicting autistic disorder, Expert Systems with Applications 38 (2011)
1282-1292.

[17] E.I. Papageorgiou, A new methodology for decisions in medical informatics
using fuzzy cognitive maps based on fuzzy rule-extraction techniques, Applied
Soft Computing 11 (2011) 500-513.



86 B. Kang et al./ Knowledge-Based Systems 35 (2012) 77-86

[18] E.IL Papageorgiou, N. Papandrianos, G. Karagianni, G. Kyriazopoulos, D. Sfyras,
A fuzzy inference map approach to cope with uncertainty in modeling medical
knowledge and making decisions, Intelligent Decision Technologies 5 (2011)
219-235.

[19] K.E. Parsopoulos, E.I. Papageorgiou, P.P. Groumpos, M.N. Vrahatis, Evolutionary
computation techniques for optimizing fuzzy cognitive maps in radiation
therapy systems, in: Lecture Notes in Computer Science, pp. 402-413.

[20] W. Wang, C. Cheung, W. Lee, S. Kwok, Self-associated concept mapping for
representation, elicitation and inference of knowledge, Knowledge-Based
Systems 21 (2008) 52-61.

[21] C. De Maio, G. Fenza, M. Gaeta, V. Loia, F. Orciuoli, A knowledge-based
framework for emergency dss, Knowledge-Based Systems 24 (2011) 1372-
1379.

[22] H. Fujita, J. Hakura, M. Kurematu, Cognitive modeling in software and relation
to human emotional reasoning, in: Proceedings of the 7th Conference on 7th
WSEAS International Conference on Applied Computer Science, vol. 7, World
Scientific and Engineering Academy and Society, pp. 398-408.

[23] K.C. Lee, H.R. Cho, J.S. Kim, An expert system using an extended and-or graph,
Knowledge-Based Systems 21 (2008) 38-51.

[24] J.L. Salmeron, Modelling grey uncertainty with fuzzy grey cognitive maps,
Expert Systems with Applications 37 (2010) 7581-7588.

[25] D.K. lakovidis, E. Papageorgiou, Intuitionistic fuzzy cognitive maps for medical
decision making, IEEE Transactions on Information Technology in Biomedicine
15 (2011) 100-107.

[26] F. Smarandache, Definitions derived from neutrosophics, Multiple Valued
Logic: An International Journal 8 (2002) 591-603.

[27] W. Vasantha Kandasamy, F. Smarandache, Fuzzy cognitive maps and
neutrosophic cognitive maps, 2003.

[28] A.P. Dempster, Upper and lower probabilities induced by a multi-valued
mapping, Annals of Mathematics and Statistics 38 (1967) 325-339.

[29] Y. Deng, Y. Chen, Y. Zhang, S. Mahadevan, Fuzzy dijkstra algorithm for shortest
path problem under uncertain environment, Applied Soft Computing 12
(2011) 1231-1237.

[30] Y. Liu, Y. Jiang, X. Liu, S. Yang, Csmc: a combination strategy for multi-class
classification based on multiple association rules, Knowledge-Based Systems
21 (2008) 786-793.

[31] G. Shafer, A Mathematical Theory of Evidence, Princeton University Press,
Princeton, 1976.

[32] Z. Su, P. Wang, ]. Shen, X. Yu, Z. Lv, L. Lu, Multi-model strategy based evidential
soft sensor model for predicting evaluation of variables with uncertainty,
Applied Soft Computing 11 (2011) 2595-2610.

[33] Y. Deng, R. Sadiq, W. Jiang, S. Tesfamariam, Risk analysis in a linguistic
environment: a fuzzy evidential reasoning-based approach, Expert Systems
with Applications 38 (2011) 15438-15446.

[34] Y. Deng, W.K. Shi, Z.F. Zhu, Q. Li, Combining belief functions based on distance
of evidence, Decision Support Systems 38 (2004) 489-493.

[35] Y. Deng, F.T.S. Chan, Y. Wu, D. Wang, A new linguistic mcdm method based on
multiple-criterion data fusion, Expert Systems with Applications 38 (2011)
9854-9861.

[36] Y. Deng, FTS. Chan, A new fuzzy dempster mcdm method and its
application in supplier selection, Expert Systems with Applications 38
(2011) 6985-6993.

[37] R. Sadiq, Y. Kleiner, B.B. Rajani, Fuzzy cognitive maps for decision support to
maintain water quality in ageing water mains, in: 4th International Conference
on Decision-Making in Urban and Civil Engineering, 2004, pp. 1-10.

[38] R.Sadigq, Y. Kleiner, B. Rajani, Estimating risk of contaminant intrusion in water
distribution networks using dempstercshafer theory of evidence, Civil
Engineering and Environmental System 23 (2006) 129-141.

[39] R. Sadiq, Y. Kleiner, B. Rajani, Water quality failures in distribution networks c
risk analysis using fuzzy logic and evidential reasoning, Risk Analysis 27
(2007) 1381-1394.

[40] H. Altingay, Ensembling evidential k-nearest neighbor classifiers through
multi-modal perturbation, Applied Soft Computing 7 (2007) 1072-1083.

[41] R. Jones, A. Lowe, M. Harrison, A framework for intelligent medical diagnosis
using the theory of evidence, Knowledge-Based Systems 15 (2002) 77-84.

[42] R. Axelrod, Structure of Decision: The Cognitive Maps of Political Elites,
Prentice-Hall, Upper Saddle River, NJ, 1976.

[43] B. Kosko, Fuzzy Engineering, Prentice-Hall, Upper Saddle River, NJ, 1997.

[44] Y.M. Wang, ].B. Yang, D.L. Xu, Environmental impact assessment using the
evidential reasoning approach, European Journal of Operational Research 174
(2006) 1885-1913.

[45] L. Dymova, P. Sevastjanov, An interpretation of intuitionistic fuzzy sets in
terms of evidence theory: decision making aspect, Knowledge-Based Systems
23 (2010) 772-782.

[46] L. Dymova, P. Sevastianov, P. Bartosiewicz, A new approach to the rule-base
evidential reasoning: stock trading expert system application, Expert Systems
with Applications 37 (2010) 5564-5576.

[47] L.D. Mas, R.M. Salinas, F.J.M. Cuevas, R.M. Carnicer, Shape from silhouette using
dempster-shafer theory, Pattern Recognition 43 (2010) 2119-2131.

[48] C. Kalloniatis, P. Belsis, S. Gritzalis, A soft computing approach for privacy
requirements engineering: the pris framework, Applied Soft Computing 11
(2011) 4341-4348.

[49] B. Reddy, O. Basir, Concept-based evidential reasoning for multimodal fusion
in human-computer interaction, Applied Soft Computing 10 (2010) 567-
577.

[50] Y. Zhang, X. Deng, W. Jiang, Y. Deng, Assessment of e-commerce security using
ahp and evidential reasoning, Expert Systems with Applications 39 (2012)
3611-3623.

[51] G. Liu, Rough set theory based on two universal sets and its applications,
Knowledge-Based Systems 23 (2010) 110-115.

[52] Z.Xiao, X. Yang, Y. Pang, X. Dang, The prediction for listed companies’ financial
distress by using multiple prediction methods with rough set and dempster-
shafer evidence theory, Knowledge-Based Systems (2011).

[53] J.B. Yang, Y.M. Wang, D.L. Xu, K.S. Chin, The evidential reasoning approach for
MADA under both probabilistic and fuzzy uncertainties, European Journal of
Operational Research 171 (2006) 309-343.

[54] Y.M. Wang, ].B. Yang, D.L. Xu, K.S. Chin, The evidential reasoning approach for
multiple attribute decision analysis using interval belief degrees, European
Journal of Operational Research 175 (2006) 35-66.

[55] D.L. Xu, J.B. Yang, Y.M. Wang, The evidential reasoning approach for multi-
attribute decision analysis under interval uncertainty, European Journal of
Operational Research 174 (2006) 1914-1943.

[56] H. Guo, W. Shi, Y. Deng, Evaluating sensor reliability in classification problems
based on evidence theory, IEEE Transactions on Systems Man and Cybernetics
Part B-Cybernetics 36 (2006) 970-981.

[57] Y. Deng, W. Jiang, R. Sadigq, Modeling contaminant intrusion in water
distribution networks: a new similarity-based dst method, Expert Systems
with Applications 38 (2011) 571-578.

[58] J. Liu, E.T.S. Chan, Y. Li, Y.J. Zhang, Y. Deng, A new optimal consensus method
with minimum cost in fuzzy group decision, Knowledge-Based Systems
(2012), http://dx.doi.org/10.1016/j.knosys.2012.04.015.

[59] F. voorbraak, On the justification of dempster’s rule of combination, Artificial
Intelligence 48 (1991) 171-197.

[60] Y. Boutalis, T.L. Kottas, M. Christodoulou, Adaptive estimation of fuzzy
cognitive maps with proven stability and parameter convergence, IEEE
Transaction on Fuzzy Systems 17 (2009) 874-889.


http://dx.doi.org/10.1016/j.knosys.2012.04.015

	Evidential cognitive maps
	1 Introduction
	2 Preliminaries
	2.1 FCM
	2.2 Dempster–Shafer (DS) theory of evidence
	2.3 Basic operations of interval numbers

	3 Evidential cognitive map (ECM)
	3.1 Edge weight of the cognitive map
	3.2 Aggregate knowledge under conflict environment
	3.3 Transformation using the belief function and plausibility function
	3.4 ECM dynamics

	4 Application framework of ECMs
	4.1 Knowledge acquisition
	4.2 Knowledge aggregation
	4.3 Training ECM
	4.4 Interpreting ECM

	5 Qualitative comparison with FCM and NCM
	6 An application of ECM to a socio-economic model
	7 Conclusions
	Acknowledgments
	References


