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Background
Neutrosophic sets and single-valued neutrosophic sets (SVNSs) were introduced for 
the first time by Smarandache (1998). Then, interval neutrosophic sets (INSs) were pre-
sented by Wang et al. (2005). However, SVNSs and INSs are the subclasses of neutro-
sophic sets and the generalization of intuitionistic fuzzy sets (IFSs) and interval-valued 
intuitionistic fuzzy sets (IVIFSs). The characteristics of SVNS and INS are described 
independently by the truth-membership, indeterminacy-membership, and falsity-
membership degrees. The main advantage of the neutrosophic set is that it is a powerful 
general formal framework for expressing and handling incomplete, indeterminate, and 
inconsistent information, which exists in real situations; while IFSs and IVIFSs cannot 
express and deal with the indeterminate and inconsistent information. Recently, many 
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researchers have presented various algorithms and applications of SVNSs and INSs (Guo 
et al. 2014; Ye 2014a, 2015a, b; Peng et al. 2014, 2015; Majumdar and Samant 2014; Sahin 
and Kucuk 2014; Zhang et al. 2015; Biswas et al. 2015). Then, some basic operations on 
SVNSs and INSs, such as addition, exponent, and multiplication, and some correspond-
ing aggregation operators have been introduced recently. For instance, Wang et al. (2005, 
2010) introduced some basic operations of SVNSs and INSs. Ye (2014b) defined some 
basic operational laws of simplified neutrosophic sets (SNSs), which include SVNSs and 
INSs, and proposed some weighted averaging aggregation operators to aggregate simpli-
fied neutrosophic information, and then applied these aggregation operators to multiple 
attribute decision making (MADM). Then, Zhang et  al. (2014) pointed out the draw-
backs of some operational laws of SNSs and improved some operational laws of INSs 
and some aggregation operators of INSs, and then applied them to MADM problems 
with interval neutrosophic information. Further, Liu and Wang (2014) proposed single-
valued neutrosophic normalized weighted Bonferroni mean operators and applied them 
to MADM problems. Also, Liu et al. (2014) introduced some generalized neutrosophic 
number Hamacher aggregation operators and applied them to multiple attribute group 
decision making problems. Ye (2015c) proposed interval neutrosophic ordered weighted 
arithmetic and geometric averaging operators and the possibility degree ranking method 
and applied them to MADM problems under an interval neutrosophic environment. 
Zhao et  al. (2015) developed an interval neutrosophic generalized weighted aggrega-
tion operator for MADM. Furthermore, Ye (2015d) put foreword interval neutrosophic 
weighted arithmetic and geometric averaging operators with credibility information and 
applied them to interval neutrosophic MADM problems with credibility information. 
Liu and Li (2015) introduced a MADM method based on some normal neutrosophic 
Bonferroni mean operators. Liu and Teng (2015) proposed a MADM method based on 
a normal neutrosophic generalized weighted power averaging operator. Liu and Tang 
(2016) presented some power generalized aggregation operators of the interval neutro-
sophic numbers for decision making. Liu and Wang (2016) developed an interval neu-
trosophic prioritized ordered weighted average operator and its application in MADM.

However, it should be noted that in the existing literature the basic elements in the 
single-valued and interval neutrosophic weighted geometric operators consist of crisp 
values (weights) and SVNSs or INSs. Recently, Gou et  al. (2015a) defined exponential 
operational laws of IFSs, where the bases are crisp values and the exponents are IFSs, 
and presented an intuitionistic fuzzy exponential aggregation operator with crisp param-
eters and its application in MADM problems. Further, Gou et al. (2015b) defined expo-
nential operational laws of IVIFSs, where the bases are crisp values or interval numbers 
and the exponents are IVIFSs, and presented the corresponding exponential aggregation 
operators and their applications in MADM problems. In the existing decision making 
problems with single-valued neutrosophic information and interval neutrosophic infor-
mation, the exponential values (weights) of all the existing exponential operational laws 
of SVNSs and INSs and the corresponding aggregation operators are positive real num-
bers within the unit interval [0, 1]. Whereas, all the existing exponential operations and 
aggregation methods cannot handle such an issue where the bases are crisp values or 
interval numbers and the exponents are SVNSs and INSs. Hence, we lack some impor-
tant operational laws and aggregation operators with crisp parameters or interval-valued 
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parameters by using SVNSs or INSs as exponents to handle the decision making prob-
lems. Motivated by the exponential operational laws of IFSs and IVIFSs and the cor-
responding exponential aggregation methods (Gou et al. 2015a, b), it is necessary that 
we should extend the existing exponential operations of IFSs and IVIFSs to the expo-
nential operational laws of SVNSs and INSs with crisp parameters and interval-valued 
parameters and propose the corresponding exponential aggregation operators as an 
important supplement of the existing simplified neutrosophic aggregation techniques. 
Since INSs reduce to SVNSs when upper and lower ends in interval numbers are equal, 
this paper only defines the exponential operational laws of INSs with crisp parameters 
and interval-valued parameters, where the bases are crisp values and interval numbers 
and the exponents are INSs, and proposes an interval neutrosophic weighted exponen-
tial aggregation (INWEA) operator, a dual interval neutrosophic weighted exponential 
aggregation (DINWEA) operator, and comparative methods for interval neutrosophic 
numbers (INNs) and dual interval neutrosophic numbers (DINNs). Then, we develop 
MADM methods by using the INWEA and DINWEA operators, where the data in the 
decision matrix are given by using crisp values or interval numbers as the evaluation 
values of attributes and the attribute weights are provided by INNs (basic elements in 
INS). Finally, we apply these methods to solve the practical problem of selecting the best 
global supplier for some manufacturing company.

The rest of this paper is structured as follows: “Some basic knowledge and operations 
of INSs” section reviews some basic knowledge and operations of INSs. “Exponential 
operational laws of INSs” section proposes exponential operational laws of INSs with 
crisp parameters and interval-valued parameters as the extension of the existing expo-
nential operations of IVIFSs (Gou et al. 2015b). “Exponential aggregation operators of 
INNs” section presents the exponential aggregation operators of INSs based on these 
exponential operational laws and comparative methods for INNs and DINNs. MADM 
methods are developed by using the INWEA and DINWEA operators in “Decision mak-
ing methods based on the INWEA and DINWEA operators” section. In “Practical exam-
ple and comparative analysis” section, a practical example on the selecting problem of 
global suppliers is provided to illustrate the application and rationality of the developed 
methods. Some conclusions and future work are contained in “Conclusion” section.

Some basic knowledge and operations of INSs
The neutrosophic set introduced from a philosophical point of view is difficult to be 
applied in practical problems since its truth-membership, indeterminacy-membership, 
and falsity-membership functions lie in the nonstandard interval ]−0, 1+[. As a simpli-
fied form of the neutrosophic set, Wang et al. (2005) defined an INS when its three func-
tions are restricted in the real standard interval [0, 1].

Definition 1 (Wang et  al. 2005). Let X be a universe of discourse. An INS N in X is 
independently characterized by a truth-membership function TN(x), an indeterminacy- 
membership function IN(x), and a falsity-membership function FN(x) for each x  
∈ X, where TN (x) = [TL

N (x),T
U
N (x)] ⊆ [0, 1], IN (x) = [ILN (x), I

U
N (x)] ⊆ [0, 1], and F

N
(x) 

= [FL
N
(x), FU

N
(x)] ⊆ [0, 1], then they satisfy the condition 0 ≤ T

U

N
(x)+ I

U

N
(x) 
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+F
U

N
(x) ≤ 3. Thus, the INS N can be denoted as N =

{〈

x, [TL
N
(x),TU

N
(x)],

[IL
N
(x), IU

N
(x)], [FL

N
(x), FU

N
(x)]

〉

|x ∈ X
}

.

For convenience, a basic element 
〈

x, [TL
N (x),T

U
N (x)], [ILN (x), I

U
N (x)], [FL

N (x), F
U
N (x)]

〉

 in 
an INS N is denoted by a =

〈

[TL
a ,T

U
a ], [ILa , I

U
a ], [FL

a , F
U
a ]

〉

 for short, which is called an 
INN.

Let a =
〈

[TL
a ,T

U
a ], [ILa , I

U
a ], [FL

a , F
U
a ]

〉

 and b =
〈

[TL
b ,T

U
b ], [ILb , I

U
b ], [FL

b , F
U
b ]

〉

 be two 
INNs, then there are the following relations (Wang et al. 2005; Zhang et al. 2014):

1. ac =
〈

[FL
a , F

U
a ], [1− IUa , 1− ILa ], [T

L
a ,T

U
a ]

〉

 (complement of a).
2. a ⊆ b if and only if TL

a ≤ TL
b , TU

a ≤ TU
b ILa ≥ ILb , IUa ≥ IUb , FL

a ≥ FL
b , and FU

a ≥ FU
b ;

3. a = b if and only if a ⊆ b and b ⊆ a;
4. a⊕b =

〈[

TL
a + TL

b − TL
a T

L
b ,T

U
a + TU

b − TU
a TU

b

]

,
[

ILa I
L
b , I

U
a IUb

]

,
[

FL
a F

L
b , F

U
a FU

b

]〉

;

5. 
a⊗ b =

〈[

T
L
a T

L

b
, T

U
a T

U

b

]

,
[

I
L
a + I

L

b
− I

L
a I

L

b
, I

U
a + I

U

b
− I

U
a I

U

b

]

,
[

F
L
a + F

L

b
− F

L
a F

L

b
, F

U
a + F

U

b
− F

U
a F

U

b

]〉

;
 

6. µa =
〈[

1−
(

1− T
L
a

)µ
, 1−

(

1− T
U
a

)µ]
,
[(

I
L
a

)µ
,
(

I
U
a

)µ]
,
[(

F
L
a

)µ
,
(

F
U
a

)µ]〉 for μ > 0;
7. aµ =

〈[(

T
L
a

)µ
,
(

T
U
a

)µ]
,
[

1−
[

1− I
L
a

]µ
, 1−

(

1− I
U
a

)µ]
,
[

1−
(

1− F
L
a

)µ
, 1−

(

1− F
U
a

)µ]〉 
for μ > 0.

Let aj =
〈

[TL
aj
,TU

aj
], [ILaj , I

U
aj
], [FL

aj
, FU

aj
]

〉

(j = 1, 2, …, n) be a collection of INNs. Based 
on the weighted aggregation operators of INNs (Zhang et al. 2014), we can introduce the 
following interval neutrosophic weighted arithmetic and geometric average operators 
(Zhang et al. 2014):

where wj (j = 1, 2, …, n) is the weight of aj (j = 1, 2, …, n) with wj ∈ [0, 1] and 
∑n

j=1 wj = 1 .

(1)

INWAA(a1, a2, . . . , an)

=

n
∑

j=1

wjaj

=

〈

[

1−
n
∏

j=1

(

1− T
L
aj

)w
j

, 1−
n
∏

j=1

(

1− T
U
aj

)w
j

]

,

[

n
∏

j=1

(

I
L
aj

)w
j

,
n
∏

j=1

(

I
U
aj

)w
j

]

,

[

n
∏

j=1

(

F
L
aj

)w
j

,
n
∏

j=1

(

F
U
aj

)w
j

]

〉

,

(2)

INWGA(a1, a2, . . . , an) =

n
∏

j=1

a
wj

j =

〈

[

n
∏

j=1

(

TL
aj

)w
j
,

n
∏

j=1

(

TU
aj

)w
j

]

,

[

1−
n
∏

j=1

(

1− ILaj

)w
j
, 1−

n
∏

j=1

(

1− IUaj

)w
j

]

,

[

1−
n
∏

j=1

(

1− FL
aj

)w
j
, 1−

n
∏

j=1

(

1− FU
aj

)w
j

]

〉

,
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Exponential operational laws of INSs
Exponential operations of INSs with crisp parameters

As an extension of existing operational laws of IVIFSs, we define the new exponential 
operational law of INSs, where the bases are crisp values and the exponents are INSs.

Definition 2 Let X be a universe of discourse and N =
{〈

x, [TL
N
(x),TU

N
(x)], [IL

N
(x),

I
U

N
(x)], [FL

N
(x), FU

N
(x)]

〉

|x ∈ X
}

 be an INS. Then, the exponential operational law of the 
INS N with a crisp parameter μ is defined as follows:

Obviously, μN is also an INS. Let us discuss the following two cases:

1. If μ ∈ [0, 1], the truth-membership, indeterminacy-membership, and fal-
sity-membership functions are [µ1−TL

N (x),µ1−TU
N (x)]⊆ [0, 1], [µILN (x),µIUN (x)]

⊆ [0, 1], and [µFL
N (x),µFU

N (x)]⊆ [0, 1] for any x∈ X, respectively. Thus 
{〈

x, [µ1−TL
N (x),µ1−TU

N (x)], [1− µILN (x), 1− µIUN (x)], [1− µFL
N (x), 1− µFU

N (x)]

〉

|x ∈ X
}

 
is an INS.

2. If μ  >  1, then there is 0  <  1/μ  <  1. Obviously, 
{〈

x, [(1/µ)1−T
L
N
(x), (1/µ)1−T

U
N
(x)],

[1− (1/µ)I
L
N
(x), 1− (1/µ)I

U
N
(x)], [1− (1/µ)F

L
N
(x), 1− (1/µ)F

U
N
(x)]

〉

|x ∈ X

}

 is also an 
INS.

Similarly, we can also propose the operational law of an INN.
Let a =

〈

[TL
a ,T

U
a ], [ILa , I

U
a ], [FL

a , F
U
a ]

〉

 be an INN, which is a basic element in an INS. 
Then the exponential operational law of the INN a with a crisp parameter μ is denoted 
as follows:

It is obvious that μa is also an INN. Let us consider the following example.

Example 1 Assume that an INN is a = �[0.5, 0.6], [0.2, 0.3], [0.3, 0.5]� and two real 
numbers are μ1 = 0.6 and μ2 = 5 (1/μ2 = 1/5 = 0.2). Then, by Eq. (4), we can obtain the 
following results:

(3)

µN =























��

x,

�

µ1−T
L
N
(x), µ1−T

U
N
(x)

�

,

�

1− µI
L
N
(x) , 1− µI

U
N
(x)

�

,

�

1− µF
L
N
(x), 1− µF

U
N
(x)

��

|x ∈ X

�

, µ ∈ [0, 1]










�

x,

�

(1/µ)1−T
L
N
(x)

, (1/µ)1−T
U
N
(x)

�

,

�

1− (1/µ)I
L
N
(x)

, 1− (1/µ)I
U
N
(x)

�

,

�

1− (1/µ)F
L
N
(x)

, 1− (1/µ)F
U
N
(x)

�

�

|x ∈ X











, µ > 1
.

(4)

µa =







�

x,

�

µ1−T
L
a , µ1−T

U
a

�

,

�

1− µI
L
a , 1− µI

U
a

�

,

�

1− µF
L
a , 1− µF

U
a

��

, µ ∈ [0, 1]
�

x,

�

(1/µ)1−T
L
a , (1/µ)1−T

U
a

�

,

�

1− (1/µ)I
L
a , 1− (1/µ)I

U
a

�

,

�

1− (1/µ)I
L
a , 1− (1/µ)I

U
a

��

, µ > 1
.

µa
1 = 0.6

�[0.5,0.6],[0.2,0.3],[0.3,0.5]� =

〈[

0.6
1−0.5

, 0.6
1−0.6

]

,

[

1− 0.6
0.2
, 1− 0.6

0.3
]

,

[

1− 0.6
0.3
, 1− 0.6

0.5
]〉

= �[0.7746, 0.8152], [0.0971, 0.1421], [0.1421, 0.2254]�,

µa
2 = 5

�[0.5,0.6],[0.2,0.3],[0.3,0.5]� =

〈[

0.2
1−0.5

, 0.2
1−0.6

]

,

[

1− 0.2
0.2
, 1− 0.2

0.3
]

,

[

1− 0.2
0.3
, 1− 0.2

0.5
]〉

= �[0.4472, 0.5253], [0.2752, 0.3830], [0.3830, 0.5528]�.
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It is noted that the bigger the value of μ, the smaller the results derived from the expo-
nential operational law.

To compare INNs, we can introduce the following cosine measure function and com-
parative method for INNs based on the cosine measure function of SNSs (Ye 2015a).

Definition 3 Let a =
〈

[TL
a ,T

U
a ], [ILa , I

U
a ], [FL

a , F
U
a ]

〉

 be any INN and the maximum INN 
be a∗ = �[1, 1], [0, 0], [0, 0]�. Then, the cosine measure function based on the Hamming 
distance between a and a* can be defined as

Obviously, the meaning of the cosine measure function C(a) of any INN 
a can be explained as follows: the closer the INN a is to the maximum INN 
a∗ = �[1, 1], [0, 0], [0, 0]�, the bigger the value of a. Hence, we can give a comparative 
method for INNs according to the cosine measure function C(a).

Definition 4 Let a =
〈

[TL
a ,T

U
a ], [ILa , I

U
a ], [FL

a , F
U
a ]

〉

 and b =
〈

[TL
b ,T

U
b ], [ILb , I

U
b ], [FL

b , F
U
b ]

〉

 
be two INNs, then the comparative method based on the cosine measure function C(a) can be 
defined as follows:

1. If C(a) > C(b), then a ≻ b,
2. If C(a) = C(b), then a = b.

In the following, we only discuss some basic properties of the exponential operational 
laws of INNs when μ ∈ [0, 1] because the properties of μa for μ > 1 are similar to the case 
of μ ∈ [0, 1].

Theorem 1 Let a =
〈

[TL
a ,T

U
a ], [ILa , I

U
a ], [FL

a , F
U
a ]

〉

 and b =
〈

[TL
b ,T

U
b ], [ILb , I

U
b ], [FL

b , F
U
b ]

〉

 
be two INNs and μ ∈ [0, 1] be a real number, then there are the following commutative 
laws:

1. µa ⊕ µb = µb ⊕ µa;
2. µa ⊗ µb = µb ⊗ µa.

Obviously, the commutative laws are true. Hence, their proofs are omitted here.
Theorem  2 Let a =

〈

[TL
a ,T

U
a ], [ILa , I

U
a ], [FL

a , F
U
a ]

〉

, b =
〈

[TL
b ,T

U
b ], [ILb , I

U
b ], [FL

b , F
U
b ]

〉

, 
and c =

〈

[TL
c ,T

U
c ], [ILc , I

U
c ], [FL

c , F
U
c ]

〉

 be three INNs and μ ∈ [0, 1] be a real number, then 
there are the following associative laws:

1. (µa ⊕ µb)⊕ µc = µa ⊕ (µb ⊕ µc);
2. (µa ⊗ µb)⊗ µc = µa ⊗ (µb ⊗ µc).

It is obvious that the associative laws are also true. Hence, their proofs are omitted.
Theorem  3 Let a =

〈

[TL
a ,T

U
a ], [ILa , I

U
a ], [FL

a , F
U
a ]

〉

 be an INN. When μ1 ≥  μ2, we can 
obtain (μ1)a ≥ (μ2)a for μ1, μ2 ∈ [0, 1] and (μ1)a ≤ (μ2)a for μ1, μ2 > 1.

(5)C(a) = cos

[ π

12

(

1− TL
a + 1− TU

a + ILa + IUa + FL
a + FU

a

)

]

for C(a) ∈ [0, 1].
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Proof If μ1 ≥ μ2 and μ1, μ2 ∈ [0, 1], based on the exponential operational law of INN, we 
have the following operational results:

Since (µ1)
1−TL

a ≥ (µ2)
1−TL

a , (µ1)
1−TU

a ≥ (µ2)
1−TU

a  1− (µ1)
ILa ≤ 1− (µ2)

ILa, 1− (µ1)
I
U
a

≤ 1− (µ2)
I
U
a , 1− (µ1)

FL
a ≤ 1− (µ2)

FL
a , and 1− (µ1)

FU
a ≤ 1− (µ2)

FU
a  for μ1 ≥ μ2, by 

Eq. (5) there is the following cosine measure relation:

Obviously, there is (μ1)a ≥ (μ2)a for μ1 ≥ μ2 and μ1, μ2 ∈ [0, 1].
When μ1, μ2 > 1 and μ1 ≥ μ2, we can know 0 < 1/μ1 ≤ 1/μ2 ≤ 1. As discussed above, we 

can also obtain (μ1)a ≤ (μ2)a.
This completes the proofs. □
Taking some values of μ, we can reveals some special values of μa:

1. If μ = 1, then µa =

〈

[µ1−T
L
a ,µ1−T

U
a ], [1− µI

L
a , 1− µI

U
a ], [1− µI

L
a , 1− µI

U
a ]

〉

= �[1, 1], [0, 0], [0, 0]� 
for each INN a;

2. If a = �[1, 1], [0, 0], [0, 0]� , then µs =

〈

[µ1−T
L
a ,µ1−T

U
a ], [1− µI

L
a , 1− µI

U
a ],

[1− µI
L
a , 1− µI

U
a ]

〉

= �[1, 1], [0, 0], [0, 0]� for each value of μ;

3. If a = �[0, 0], [1, 1], [1, 1]�, then µs =

〈

[µ1−T
L
a ,µ1−T

U
a ], [1− µI

L
a , 1− µI

U
a ],

[1− µF
L
a , 1− µF

U
a ]

〉

 = �[µ,µ], [1− µ, 1− µ], [1− µ, 1− µ]� for each value of μ.

Exponential operations of INNs with interval‑valued parameters

Firstly, we define a DINN to give the exponential operational law of an INN with inter-
val-valued parameters.

Definition 5 Let a =
〈

[TL
a ,T

U
a ], [ILa , I

U
a ], [FL

a , F
U
a ]

〉

 and b =
〈

[TL
b ,T

U
b ], [ILb , I

U
b ], [FL

b , F
U
b ]

〉

 
be two INNs. If [TL

a ,T
U
a ] ≤ [TL

b ,T
U
b ], [ILa , IUa ] ≥ [ILb , I

U
b ] , and [FL

a , F
U
a ] ≥ [FL

b , F
U
b ], there is a 

≤ b. Then we call d̃ = [a, b] a DINN.

If the exponent is represented by an INN and the base is used by an interval number, 
then we can give the following exponential operational law of an INN.
Definition 6 Let a =

〈

[TL
a ,T

U
a ], [ILa , I

U
a ], [FL

a , F
U
a ]

〉

 be an INN and µ̃ = [μL, μU] be an 
interval number, then the exponential operational law of the INN a is defined as

(µ1)
a =

〈[

(µ1)
1−T

L
a , (µ1)

1−T
U
a

]

,

[

1− (µ1)
I
L
a , 1− (µ1)

I
U
a

]

,

[

1− (µ1)
I
L
a , 1− (µ1)

I
U
a

]〉

,

(µ2)
a =

〈[

(µ2)
1−T

L
a , (µ2)

1−T
U
a

]

,

[

1− (µ2)
I
L
a , 1− (µ2)

I
U
a

]

,

[

1− (µ2)
F
L
a , 1− (µ2)

F
U
a

]〉

.

C((µ1)
a) = cos

{[

1− (µ1)
1−T

L
a +

(

1− (µ1)
I
L
a

)

+

(

1− (µ1)
F
L
a

)

+1− (µ1)
1−T

U
a +

(

1− (µ1)
I
U
a

)

+

(

1− (µ1)
F
U
a

)]

π/12

}

≥ C((µ2)
a) = cos

{[

1− (µ2)
1−T

L
a +

(

1− (µ2)
I
L
a

)

+

(

1− (µ2)
F
L
a

)

+1− (µ2)
1−T

U
a +

(

1− (µ2)
I
U
a

)

+

(

1− (µ2)
F
U
a

)]

π/12

}

.
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Obviously, the value of µ̃a is a DINN since it is similar to the exponential operational 
laws of two INNs.

Example 2 Let a = �[0.5, 0.6], [0.2, 0.3], [0.3, 0.5]� be an INN and two interval num-
bers are µ̃a

1 =  [0.4, 0.6] and µ̃a
2 =  [4, 6]. Then, by Eq.  (6), we can obtain the following 

results:

Then, we need to define some basic operations, such as addition and multiplication, for 
DINNs.

Definition 7 Let d̃j = [aLj , a
U
j ] (j = 1, 2) be DINNs and μ be a real number. Then we 

can define the following operations:

1. d̃1 ⊕ d̃2 = [aL1, a
U
1 ] ⊕ [aL2, a

U
2 ] = [aL1 ⊕ aL2, a

U
1 ⊕ aU2 ];

2. d̃1 ⊗ d̃2 = [aL1, a
U
1 ] ⊗ [aL2, a

U
2 ] = [aL1 ⊗ aL2, a

U
1 ⊗ aU2 ];

3. µd̃1 = µ[aL1, a
U
1 ] = [µaL1,µa

U
1 ];

4. (d̃1)µ = [aL1, a
U
1 ]

µ = [(aL1)
µ, (aU1 )

µ].

(6)

µ̃a =





















































































































































































��

�

µL
�1−T

L
a
,
�

µL
�1−T

U
a

�

,

�

1−
�

µL
�I

L
a
, 1−

�

µL
�I

U
a

�

,

�

1−
�

µL
�F

L
a
, 1−

�

µL
�F

U
a

��

,

��

�

µU
�1−T

L
a
,
�

µU
�1−T

U
a

�

,

�

1−
�

µU
�I

L
a
, 1−

�

µU
�I

U
a

�

,

�

1−
�

µU
�F

L
a
, 1−

�

µU
�F

U
a

��



















































, if 0 ≤ µL ≤ µU ≤ 1



















































��

�

1/µU
�1−T

L
a
,
�

1/µU
�1−T

U
a

�

,

�

1−
�

1/µU
�I

L
a
, 1−

�

1/µU
�I

U
a

�

,

�

1−
�

1/µU
�F

L
a
, 1−

�

1/µU
�F

U
a

��

,

��

�

1/µL
�1−T

L
a
,
�

1/µL
�1−T

U
a

�

,

�

1−
�

1/µL
�I

L
a
, 1−

�

1/µL
�I

U
a

�

,

�

1−
�

1/µL
�F

L
a
, 1−

�

1/µL
�F

U
a

��



















































, if 1 < µL ≤ µU

.

µ̃a
1 = [0.4, 0.6]�[0.5,0.6],[0.2,0.3],[0.3,0.5]�

=

{ 〈[

0.41−0.5, 0.41−0.6
]

,
[

1− 0.40.2, 1− 0.40.3
]

,
[

1− 0.40.3, 1− 0.40.5
]〉

,
〈[

0.61−0.5, 0.61−0.6
]

,
[

1− 0.60.2, 1− 0.60.3
]

,
[

1− 0.60.3, 1− 0.60.5
]〉

}

=

{

�0.6325, 0.6931], [0.1674, 0.2403], [0.2403, 0.3675]�,

�[0.7746, 0.8152], [0.0971, 0.1421], [0.1421, 0.2254]�

}

,

µ̃a
2 = [4, 6]<[0.5,0.6],[0.2,0.3],[0.3,0.5]>

=











�

[(1/6)1−0.5
, (1/6)1−0.6], [1− (1/6)0.2, 1− (1/6)0.3], [1− (1/6)0.3, 1− (1/6)0.5]

�

,

�

[(1/4)1−0.5
, (1/4)1−0.6], [1− (1/4)0.2, 1− (1/4)0.3], [1− (1/4)0.3, 1− (1/4)0.5]

�











=

�

�[0.4082, 0.4884], [0.3012, 0.4158], [0.4158, 0.5918]�,

�[0.5000, 0.5743], [0.2421, 0.3402], [0.3402, 0.5000]�

�

.



Page 9 of 18Ye  SpringerPlus  (2016) 5:1488 

In the above operations, we firstly use the interval operational laws and the rest of the 
operations are calculated between INNs or real numbers. Hence they not only ensure 
the rationality of interval operations, but also conform to the operational laws of INNs.

Similarly, the exponential operational law of INN with interval-valued parameters also 
satisfies some properties.

Theorem 4 Let a =
〈

[TL
a ,T

U
a ], [ILa , I

U
a ], [FL

a , F
U
a ]

〉

 and b =
〈

[TL
b ,T

U
b ], [ILb , I

U
b ], [FL

b , F
U
b ]

〉

 
be two INNs and µ̃j = [µL

j ,µ
U
j ](j = 1, 2) be interval numbers for 0 ≤ µL

j ≤ µU
j ≤ 1. Then 

there are the following commutative laws:

1. (µ̃1)
a ⊕ (µ̃2)

b = (µ̃2)
b ⊕ (µ̃1)

a;
2. (µ̃1)

a ⊗ (µ̃2)
b = (µ̃2)

b ⊗ (µ̃1)
a.

Theorem  5 Let a =
〈

[TL
a ,T

U
a ], [ILa , I

U
a ], [FL

a , F
U
a ]

〉

, b =
〈

[TL
b ,T

U
b ], [ILb , I

U
b ], [FL

b , F
U
b ]

〉

 , 
and c =

〈

[TL
c ,T

U
c ], [ILc , I

U
c ], [FL

c , F
U
c ]

〉

 be three INNs and µ̃j = [µL
j ,µ

U
j ](j =  1, 2, 3) be 

interval numbers for 0 ≤ µL
j ≤ µU

j ≤ 1. Then there are the following associative laws:

[(µ̃1)
a ⊕ (µ̃2)

b] ⊕ (µ̃3)
c = (µ̃1)

a ⊕ [(µ̃2)
b ⊕ (µ̃3)

c];
[(µ̃1)

a ⊗ (µ̃2)
b] ⊗ (µ̃3)

c = (µ̃1)
a ⊗ [(µ̃2)

b ⊗ (µ̃3)
c].

Obviously, the above two theorems are very straightforward. Hence, their proofs are 
omitted.

Based on the above cosine measure function and corresponding comparative method 
for INNs, we can also propose the following cosine measure function and corresponding 
comparative method for DINNs.

Definition 8 Let d̃ =

{〈

[TL

aL
,TU

aL
], [IL

aL
, IU
aL
], [FL

aL
, FU

aL
]

〉

,

〈

[TL

aU
,TU

aU
], [IL

aU
, IU
aU

], [FL

aU
, FU

aU
]

〉}

  

be a DINN and d̃∗ = {�[1, 1], [0, 0], [0, 0]�, �[1, 1], [0, 0], [0, 0]�} be the maximum DINN. 
The cosine measure function based on the Hamming distance between d̃ and d̃∗ can be 
defined as

Similarly, the meaning of the cosine measure function C(d̃) of the DINN d̃ 
can be explained as follows: the closer the DINN d̃ is to the maximum DINN 
d̃∗ = {�[1, 1], [0, 0], [0, 0]�, �[1, 1], [0, 0], [0, 0]�}, the bigger the value of d̃. Hence, 
we can give a comparative method for DINNs.

Definition 9 Let d̃1 =
{〈

[TL

a
L
1

,TU

a
L
1

], [IL
a
L
1

, IU
a
L
1

], [FL

a
L
1

, FU

a
L
1

]

〉

,

〈

[TL

a
U
1

,TU

a
U
1

], [IL
a
U
1

, IU
a
U
1

], [FL

a
U
1

, FU

a
U
1

]

〉}

 

and d̃2 =
{〈

[TL
aL2
,TU

aL2
], [IL

aL2
, IU
aL2
], [FL

aL2
, FU

aL2
]

〉

,

〈

[TL
aU2

,TU
aU2

], [IL
aU2

, IU
aU2

], [FL
aU2

, FU
aU2

]

〉}

 be two 

DINNs. Then the comparative method based on the cosine measure functions for d̃1 and 

d̃2 can be defined as follows:

(7)

C(d̃) = cos

{

π
24
(1− TL

aL
+ 1− TU

aL
+ IL

aL
+ IU

aL
+ FL

aL
+ FU

aL

+1− TL
aU

+ 1− TU
aU

+ IL
aU

+ IU
aU

+ FL
aU

+ FU
aU

)

}

for C(d̃) ∈ [0, 1].
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1. If C(d̃1) > C(d̃2), then d̃1 ≻ d̃2;
2. If C(d̃1) = C(d̃2), then d̃1 = d̃2.

Exponential aggregation operators of INNs
According to the exponential operational laws of Eqs. (4) and (6), this section proposes 
the INWEA and DINWEA operators, where the bases are a collection of real numbers 
or interval numbers and the exponents are a collection of INNs.

Definition 10 Let aj =
〈

[TL
aj
,TU

aj
], [ILaj , I

U
aj
], [FL

aj
, FU

aj
]

〉

 for j =  1, 2, …, n be a collec-
tion of INNs and μj for j = 1, 2, …, n be a collection of real numbers, and let a mapping 
INWEA: Ωn → Ω. Then, the INWEA operator is defined as

where aj (j = 1, 2, …, n) is the exponential weight of μj (j = 1, 2, …, n).

Theorem 6 Let aj =
〈

[TL
aj
,TU

aj
], [ILaj , I

U
aj
], [FL

aj
, FU

aj
]

〉

 for j = 1, 2, …, n be a collection of 
INNs and μj for j = 1,2, …, n be a collection of real numbers, then the aggregated value of 
the INWEA operator is also an INN, where

and aj (j = 1, 2, …, n) is the exponential weight of μj (j = 1, 2, …, n).

Proof By using mathematical induction, we can prove Eq. (9) if μj ∈ [0, 1] for j = 1, 2, 
…, n.

1. If n = 2, we can obtain

(8)INWEA(a1, a2, . . . , an) =

n
∏

j=1

(µj)
aj ,

(9)

INWEA(a1, a2, . . . , an) =







































































































�

�

n
�

j=1

(µj)
1−TL

aj ,
n
�

j=1

(µj)
1−TU

aj

�

,

�

1−
n
�

j=1

(µj)
ILaj , 1−

n
�

j=1

(µj)
IUaj

�

,

�

1−
n
�

j=1

(µj)
FL
aj , 1−

n
�

j=1

(µj)
FU
aj

�

�

, if µ ∈ [0, 1]

�

�

n
�

j=1

(1/µj)
1−TL

aj ,
n
�

j=1

(1/µj)
1−TU

aj

�

,

�

1−
n
�

j=1

(1/µj)
ILaj , 1−

n
�

j=1

(1/µj)
IUaj

�

,

�

1−
n
�

j=1

(1/µj)
FL
aj , 1−

n
�

j=1

(1/µj)
FU
aj

�

�

, if µ > 1
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2. If n = k, by Eq. (9) there is the following formula:

3. If n = k + 1, by the operational law of Eq. (4) and combining Eqs. (10) and (11), we 
have

From the above results, we can obtain that Eq. (9) holds for any n for μj ∈ [0, 1].

(10)

INWEA(a1, a2) = (µ1)
a1 ⊗ (µ2)

a1

=

�

�

(µ1)
1−T

L
a1 (µ2)

1−T
L
a2 , (µ1)

1−T
U
a1 (µ2)

1−T
U
a2

�

,

[1− (µ1)
I
L
a1 + 1− (µ2)

I
L
a2 −

�

1− (µ1)
I
L
a1

��

1− (µ2)
I
L
a2

�

,

1− (µ1)
I
U
a1 + 1− (µ2)

I
U
a2 −

�

1− (µ1)
I
U
a1

��

1− (µ2)
I
U
a2

�

],

[1− (µ1)
F
L
a1 + 1− (µ2)

F
L
a2 −

�

1− (µ1)
F
L
a1

��

1− (µ2)
F
L
a2

�

,

1− (µ1)
F
U
a1 + 1− (µ2)

F
U
a2 −

�

1− (µ1)
F
U
a1

��

1− (µ2)
F
U
a2

�

]

�

=

�





2
�

j=1

(µj)
1−T

L
aj ,

2
�

j=1

(µj)
1−T

U
aj



,



1−

2
�

j=1

(µj)
I
L
aj , 1−

2
�

j=1

(µj)
I
U
aj



,



1−

2
�

j=1

(µj)
F
L
aj , 1−

2
�

j=1

(µj)
F
U
aj





�

.

(11)
INWEA(a1, a2, . . . , ak) =

〈

[

k
∏

j=1

(µj)
1−TL

aj ,
k
∏

j=1

(µj)
1−TU

aj

]

,

[

1−
k
∏

j=1

(µj)
ILaj , 1−

k
∏

j=1

(µj)
IUaj

]

,

[

1−
k
∏

j=1

(µj)
FL
aj , 1−

k
∏

j=1

(µj)
FU
aj

]

〉

.

INWEA(a1, a2, . . . , ak , ak+1) =

�

�

k
�

j=1

(µj)
1−TL

aj ,
k
�

j=1

(µj)
1−TU

aj

�

,

�

1−
k
�

j=1

(µj)
ILaj , 1−

k
�

j=1

(µj)
IUaj

�

,

�

1−
k
�

j=1

(µj)
FL
aj , 1−

k
�

j=1

(µj)
FU
aj

�

�

⊗ (µk+1)
a
k+1

=

�





k+1
�

j=1

(µj)
1−TL

aj ,

k+1
�

j=1

(µj)
1−TU

aj



,



1−

k+1
�

j=1

(µj)
ILaj , 1−

k+1
�

j=1

(µj)
IUaj



,



1−

k+1
�

j=1

(µj)
FL
aj , 1−

k+1
�

j=1

(µj)
FU
aj





�

.
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If μj > 1 and 0 < 1/μj < 1 for j = 1, 2, …, n, by the above similar proof we can also obtain 
the following aggregation operator:

Thus, the proof of Eq. (9) is completed. □

Based on the INWEA operator and the exponential operational law of INNs with 
interval-valued parameters, we can establish another exponential aggregation operator 
of INNs.

Definition 11 Let aj =
〈

[TL
aj
,TU

aj
], [ILaj , I

U
aj
], [FL

aj
, FU

aj
]

〉

 for j = 1, 2, …, n be a collection 

of INNs and µ̃j = [µL
j ,µ

U
j ] (j = 1, 2, …, n) be a collection of interval numbers, and let a 

mapping DINWEA: Ωn → Ω. Then, the DINWEA operator is defined as

where aj (j = 1, 2, …, n) is the exponential weight of µ̃j (j = 1, 2, …, n).

Theorem 7 Let aj =
〈

[TL
aj
,TU

aj
], [ILaj , I

U
aj
], [FL

aj
, FU

aj
]

〉

 for j = 1,2, …, n be a collection of 
INNs and µ̃j = [µL

j ,µ
U
j ] (j = 1,2, …, n) be a collection of interval numbers, and then the 

aggregated value of the DINWEA operator is given by

INWEA(a1, a2, . . . , an) =

〈

[

n
∏

j=1

(1/µj)
1−TL

aj ,
n
∏

j=1

(1/µj)
1−TU

aj

]

,

[

1−
n
∏

j=1

(1/µj)
ILaj , 1−

n
∏

j=1

(1/µj)
IUaj

]

,

[

1−
n
∏

j=1

(1/µj)
FL
aj , 1−

n
∏

j=1

(1/µj)
FU
aj

]

〉

.

(12)DINWEA(a1, a2, . . . , an) =

n
∏

j=1

(µ̃j)
aj ,
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By the similar proof of the INWEA operator in Theorem 6, it is obvious that the DIN-
WEA operator in Theorem 7 holds for all n and its aggregated value is also a DINN.

Decision making methods based on the INWEA and DINWEA operators
Based on the INWEA and DINWEA operators, we can deal with some decision making 
problems, where the weights of attributes are expressed by INNs and the attribute values 
are represented by crisp values or interval numbers. Thus, we can establish the decision 
making methods.

In a MADM problem, assume that Y = {y1, y2, …, ym} is a set of alternatives and X = {x1, 
x2, …, xn} is a set of attributes. Then the suitability judgment of an alternative Yi (i = 1, 
2, …, m) on an attribute xj (j = 1, 2, …, n) is expressed by a crisp value μij ∈ [0, 1] or an 
interval number µ̃ij = [µL

ij ,µ
U
ij ] ⊆ [0, 1](i = 1, 2, …, m; j = 1, 2, …, n). Thus, we can give 

an decision matrix D = (μij)m×n or D̃ =
(

µ̃ij

)

m×n
. Whereas, the weight of the attribute xj 

(j = 1, 2, …, n) is given by the INN aj =
〈

Taj
, Iaj , Faj

〉

=

〈

[TL
aj
,TU

aj
], [ILaj , I

U
aj
], [FL

aj
, FU

aj
]

〉

 , 
where Taj ⊆ [0, 1] indicates the degree that the decision maker prefers to the attribute 

(13)

DINWEA(a1, a2, . . . , an) =
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xj, Iaj ⊆ [0, 1] reveals the indeterminate degree that the decision maker prefers/does not 
prefer to the attribute xj, and Faj ⊆ [0, 1] indicates the degree that the decision maker 
does not prefer to the attribute xj. As for the decision making problem, the steps are 
described as follows:

Step 1. By using the aggregation operator of Eq. (9) or Eq. (13), we obtain the overall 
aggregated value di = INWEA(a1, a2, …, an) or d̃i = DINWEA(a1, a2, …, an) (i = 1, 2, 
…, m) for each alternative yi (i = 1, 2, …, m).
Step 2. According to the measure function of Eq. (5) or Eq. (7), we calculate the meas-
ure value of C(di) or C(d̃i) (i = 1, 2, …, m).
Step 3. Based on the measure values, we rank the alternatives and select the best one.
Step 4. End.

Practical example and comparative analysis
Practical example

This section provides a practical example on the selecting problem of global suppliers to 
illustrate the application of the proposed decision making methods with crisp values or 
interval numbers and interval neutrosophic weights.

Some manufacturing company needs to select the best global supplier corresponding 
to the core competencies of suppliers. The manufacturing company presents a set of four 
suppliers Y = {y1, y2, y3, y4}, whose core competencies are evaluated by the four attrib-
utes: (1) x1 is the level of technology innovation; (2) x2 is the degree of reputation; (3) x3 
is the ability of management; (4) x4 is the level of service. Then, the weight vector for the 
four attributes is expressed by the INS N = {a1, a2, a3, a4} = {〈[0.6, 0.8], [0.1, 0.3], [0.1, 
0.2]〉, 〈[0.6, 0.7], [0.1, 0.3], [0.1, 0.3]〉, 〈[0.6, 0.7], [0.1, 0.3], [0.1, 0.3]〉, 〈[0.7, 0.8], [0.1, 0.3], 
[0.2, 0.3]〉}, which is given by the decision maker.

Then, the decision maker is required to make the suitability judgment of an alternative 
yi (i = 1, 2, 3, 4) with respect to an attribute xj (j = 1, 2, 3, 4) and to give the evaluation 
information of crisp values of μij ∈ [0, 1], which can be structured as the following deci-
sion matrix:

Then, the proposed decision making method based on the INWEA operator can be 
applied to solve the selecting problem of suppliers and the decision making steps are 
described as follows:

Step 1. By using Eq. (9), we calculate the overall aggregated values of attributes for each 
supplier yi (i = 1, 2, 3, 4):

 When i = 1, we can get the following result:

D = (µij)m×n =







0.7 0.6 0.7 0.8

0.7 0.6 0.7 0.9

0.7 0.7 0.8 0.8

0.8 0.7 0.7 0.8






.
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 By the similar calculation, we can obtain the following overall aggregated values:
 d2 = 〈[0.5938, 0.7028], [0.1245, 0.3289], [0.1337, 0.3045]〉 , d3 = 〈[0.6430, 0.7483], 
[0.1095, 0.2938], [0.1291, 0.2682]〉, and d4  =  〈[0.6430, 0.7384], [0.1095, 0.2938], 
[0.1291, 0.2779]〉.

Step 2. By using Eq. (5), we calculate the measure values of di (i = 1, 2, 3, 4):
 C(d1) = 0.9015, C(d2) = 0.9141, C(d3) = 0.9327, and C(d4) = 0.9308.
Step 3. Since the ranking order of the measure values is C(d3) > C(d4) > C(d2) > C(d1), 
the ranking order of the four alternatives is y3 ≻ y4 ≻ y2 ≻ y1. Hence, the alternative y3 is 
the best supplier among the four suppliers.

If the suitability judgments of each alternative yi (i  =  1, 2, 3, 4) with respect 
to each attribute yi (i  =  1, 2, 3, 4) are represented by the interval numbers of 
µ̃ij = [µL

ij ,µ
U
ij ] ⊆ [0, 1](i =  1, 2, …, m; j =  1, 2, …, n), which can be structured as the 

interval-valued decision matrix:

In such a decision making problem, the proposed decision making method based on 
the DINWEA operator can be applied to solve the selecting problem of suppliers and the 
decision making steps are described as follows:

Step 1. By using Eq.  (13), we calculate the overall aggregated values of attributes for 
each supplier yi (i = 1, 2, 3, 4):

d1 = INWEA(a1, a2, a3, a4) =

〈

[

4
∏

j=1

(µ1j)
1−TL

aj ,
4
∏

j=1

(µ1j)
1−TU

aj

]

,

[

1−
4
∏

j=1

(µ1j)
ILaj , 1−

4
∏

j=1

(µ1j)
IUaj

]

,

[

1−
4
∏

j=1

(µ1j)
FL
aj , 1−

4
∏

j=1

(µ1j)
FU
aj

]

〉

= �[0.5731, 0.6865], [0.1347, 0.3522], [0.1538, 0.3287]�

D̃ = (µ̃ij)m×n =







[0.7, 0.8] [0.6, 0.7] [0.7, 0.8] [0.8, 0.9]

[0.8, 0.9] [0.6, 0.7] [0.7, 0.8] [0.9, 1.0]

[0.7, 0.8] [0.8, 0.9] [0.6, 0.8] [0.7, 0.8]

[0.7, 0.9] [0.6, 0.8] [0.7, 0.8] [0.7, 0.9]






.
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 When i = 1, we can obtain the following result:

 Similarly, we can obtain the following overall aggregated values:

Step 2. By using Eq. (7), we calculate the measure values of d̃i (i = 1, 2, 3, 4):
 C(d̃1) = 0.9306, C(d̃2) = 0.9516, C(d̃3) = 0.9386, and C(d̃4) = 0.9379.
Step 3. Since the ranking order of the measure values is C(d̃2) > C(d̃3) > C(d̃4) > C(d̃1), 
the ranking order of the four alternatives is y2 ≻ y3 ≻ y4 ≻ y1. Hence, the alternative y2 is 
the best supplier among the four suppliers.

Comparative analysis

For convenient comparison, we use the INWAA operator in the decision making prob-
lem with crisp values.

Step 1 By using the INWAA operator of Eq. (1), we calculate overall aggregated values 
of attributes for each supplier yi (i = 1, 2, 3, 4):

d̃1 = DINWEA(a1, a2, a3, a4) =
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�[0.5731, 0.6865], [0.1347, 0.3522], [0.1538, 0.3287]�,

�[0.7027, 0.7869], [0.0868, 0.2385], [0.0964, 0.2213]�

�

.

d̃2 = {�[0.6263, 0.7218], [0.1127, 0.3015], [0.1220, 0.2857]�,

�[0.7603, 0.8228], [0.0662, 0.1858], [0.0662, 0.1772]�};

d̃3 = {�[0.5809, 0.6957], [0.1347, 0.3522], [0.1651, 0.3287]�,

�[0.7501, 0.8288], [0.0746, 0.2074], [0.0950, 0.1895]�};

d̃4 = {�[0.5506, 0.6684], [0.1462, 0.3777], [0.1761, 0.3551]�,

�[0.7770, 0.8386], [0.0636, 0.1789], [0.0734, 0.1702]�}.
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 When i = 1, we can obtain the following result:

 Similarly, we can calculate the overall aggregated values of the attributes for the 
rest alternatives of yi (i = 2, 3, 4):
 d2′  =  〈[0.9459, 0.9841], [0.0013, 0.0305], [0.0023, 0.0229]〉, d3′  =  〈[0.9492, 
0.9853], [0.0010, 0.0270], [0.0017, 0.0203]〉, and d4′  =  〈[0.9492, 0.9859], [0.0010, 
0.0270], [0.0017, 0.0195]〉.

Step 2. By using Eq. (5), we calculate the measure values of di’ (i = 1, 2, 3, 4):
 C(d1′) = 0.9993, C(d2′) = 0.9994 C(d3′) = 0.9995, and C(d4′) = 0.9996.
Step 3. Corresponding to the ranking order of the four measure values C(d4′) > C(d3′) 
> C(d2′) > C(d1′), the ranking order of the four alternatives is y4 ≻ y3 ≻ y2 ≻ y1 and the 
best supplier is y4.

Thus, we can give the comparative analysis between the INWEA or DINWEA opera-
tor and the INWAA operator as follows:

1. In Step 1, the INWEA or DINWEA operator utilizes the attribute weights of the INN 
aj and the characteristic value μij ∈ [0, 1] or µ̃j = [µL

j ,µ
U
j ] ⊆ [0, 1] (i, j = 1, 2, 3, 4) 

of an attribute xj for an alternative yi. However, when we use the INWAA operator, it 
needs to exchange the roles of aj and μij, i.e., the attribute weight is μij ∈ [0, 1] and the 
characteristic value of an attribute xj is aj. Furthermore, the INWA operator cannot 
deal with the information aggregation operation with the attribute weights of inter-
val numbers. Obviously, the INWAA operator used in these cases is unreasonable; 
while the INWEA and DINWEA operators used in these cases reveal their rational-
ity because we do not change the meanings and the positions of the weights and the 
attribute values (crisp values or interval numbers).

2. The two ranking results given by using the INWEA operator and the INWAA opera-
tor reveal obvious difference. The main reason is that the positions and meanings of 
the weights and the attribute values are exchanged respectively, which may result in 
unreasonable decision making results.

Conclusion
To extend the existing exponential operations of IVIFSs (Gou et al. 2015b), this paper 
presented the exponential operational laws of INSs and INNs as a useful supplement of 
the existing operational laws of INSs and INNs, where the bases are crisp values or inter-
val numbers and the exponents are INSs and INNs. Then, we proposed the INWEA and 
DINWEA operators with crisp parameters and interval-valued parameters and the com-
parative methods based on cosine measure functions for INNs and DINNs. Next, we 
developed the MADM methods based on the INWEA and DINWEA operators. Finally, 
a practical example was presented to demonstrate the application and rationality of the 
developed methods. In the future work, the developed methods will be further extended 

d′1 = INWAA(a1, a2, a3, a4) =

4
∑

j=1

µ1jaj =

〈

[

1−
n
∏

j=1

(

1− TL
aj

)µ1j
, 1−

n
∏

j=1

(

1− TU
aj

)µ1j

]

,

[

n
∏

j=1

(

ILaj

)µ1j
,

n
∏

j=1

(

IUaj

)µ1j

]

,

[

n
∏

j=1

(

FL
aj

)µ1j
,

n
∏

j=1

(

FU
aj

)µ1j

]

〉

= �[0.9389, 0.9813], [0.0016, 0.0344], [0.0028, 0.0259]�.
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to the neutrosophic overset/underset/offset introduced in (Smarandache 2016) and 
other fields, such as medical diagnosis, image processing, and clustering analysis.
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