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Abstract: The daily fluctuation trends of a stock market are illustrated by three statuses: up,
equal, and down. These can be represented by a neutrosophic set which consists of three
functions—truth-membership, indeterminacy-membership, and falsity-membership. In this paper,
we propose a novel forecasting model based on neutrosophic set theory and the fuzzy logical
relationships between the status of historical and current values. Firstly, the original time series of
the stock market is converted to a fluctuation time series by comparing each piece of data with that
of the previous day. The fluctuation time series is then fuzzified into a fuzzy-fluctuation time series
in terms of the pre-defined up, equal, and down intervals. Next, the fuzzy logical relationships can
be expressed by two neutrosophic sets according to the probabilities of different statuses for each
current value and a certain range of corresponding histories. Finally, based on the neutrosophic
logical relationships and the status of history, a Jaccard similarity measure is employed to find the
most proper logical rule to forecast its future. The authentic Taiwan Stock Exchange Capitalization
Weighted Stock Index (TAIEX) time series datasets are used as an example to illustrate the forecasting
procedure and performance comparisons. The experimental results show that the proposed method
can successfully forecast the stock market and other similar kinds of time series. We also apply the
proposed method to forecast the Shanghai Stock Exchange Composite Index (SHSECI) to verify its
effectiveness and universality.
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1. Introduction

It is well known that there is a statistical long-range dependency between current values and
historical values at different times in certain time series [1]. Therefore, many researchers have
developed various models to predict the future of such time series based on historical data sets,
for example the regression analysis model [2], the autoregressive moving average (ARIMA) model [3],
the autoregressive conditional heteroscedasticity (ARCH) model [4], the generalized ARCH (GARCH)
model [5], and so on. However, crisp data used in those models are sometimes unavailable as such time
series contain many uncertainties. In fact, models that satisfy the constraints precisely can miss the
true optimal design within the confines of practical and realistic approximations. Therefore, Song and
Chissom proposed the fuzzy time series (FTS) forecasting model [6–8] to predict the future of such
nonlinear and complicated problems. In a financial context, FTS approaches have been widely applied
to stock index forecasting [9–13]. In order to improve the accuracy of forecasts for stock market indices,
some researchers combine fuzzy and non-fuzzy time series with heuristic optimization methods in
their forecasting strategies [14]. Other approaches even introduce neural networks and machine
learning procedures in order to find forecasting rules from historical time series [15–17].
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The major points in FTS models are related to the fuzzifying of original time series,
the establishment of fuzzy logical relationships from historical training datasets, and the forecasting
and defuzzification of the outputs. Various proposals have been considered to determine the basic
steps of the fuzzifying method, such as the effective length of intervals—e.g., determining the optimal
interval length based on averages and distribution methods [18], using statistical theory [18–23],
the unequal interval length method based on ratios of data [24], or the length determination method
based on particle swarm optimization (PSO) techniques [10], etc. To state appropriate fuzzy logical
relationships, Yu [25] proposed a weight assignation model, based on the recurrent fuzzy relationships,
for each individual relationship. Aladag et al. [26] considered artificial neural networks to be a basic
high-order method for the establishment of logical relationships. Fuzzy auto regressive (AR) models
and fuzzy auto regressive and moving average (ARMA) models are also widely used to reflect the
recurrence and weights of different fuzzy logical relationships [9,10,27–35]. These obtained logical
relationships will be used as rules during the forecasting process. However, the proportions of the
lagged variables in AR or ARMA models only represent the general best fitness for certain training
datasets, without taking into account the differences between individual relationships. Although the
weight assignation model considers the differences between individual relationships, it has to deal
with special relationships that appear in the testing dataset but never happen in the training dataset.
These FTS methods look for point forecasts without taking into account the implicit uncertainty in the
ex post forecasts.

For a financial system, if anything, future fluctuation is more important than the indicated
number itself. Therefore, the crucial ingredients for financial forecasting are the fluctuation orientations
(including up, equal, and down) and to what extent the trends would be realized. Inspired by this,
we first changed the original time series into a fluctuation time series for further rule generation.
Meanwhile, comparing the three statuses with the concept of the neutrosophic set, the trends and
weights of the relationships between historical and current statuses can be represented by the
different dimensions of the neutrosophic sets, respectively. The concept of the neutrosophic set
was originally proposed from a philosophical point of view by Smarandache [36]. A neutrosophic set is
characterized independently by a truth-membership function, an indeterminacy-membership function
and a falsity-membership function. Its similarity measure plays a key role in decision-making in
uncertain environments. Researchers have proposed various similarity measures and mainly applied
them to decision-making—e.g., Jaccard, Dice and Cosine similarity measures [37], distance-based
similarity measures [38], entropy measures [39], etc. Although neutrosophic sets have been successfully
applied to decision-making [37–42], they have rarely been applied to forecasting problems.

In this paper, we introduce neutrosophic sets to stock market forecasting. We propose a novel
forecasting model based on neutrosophic set theory and the fuzzy logical relationships between
current and historical statuses. Firstly, the original time series of the stock market is converted to a
fluctuation time series by comparing each piece of data with that of the previous day. The fluctuation
time series is then fuzzified into a fuzzy-fluctuation time series in terms of the pre-defined up, equal,
and down intervals. Next, the fuzzy logical relationships can be expressed by two neutrosophic
sets according to the probabilities for different statuses of each current value and a certain range of
corresponding histories. Finally, based on the neutrosophic logical relationships and statuses of recent
history, the Jaccard similarity measure is employed to find the most proper logical rule with which to
forecast its future.

The remaining content of this paper is organized as follows: Section 2 introduces some
preliminaries of fuzzy-fluctuation time series and concepts, and the similarity measures of neutrosophic
sets. Section 3 describes a novel approach for forecasting based on fuzzy-fluctuation trends and logical
relationships. In Section 4, the proposed model is used to forecast the stock market using Taiwan Stock
Exchange Capitalization Weighted Stock Index (TAIEX) datasets from 1997 to 2005 and Shanghai Stock
Exchange Composite Index (SHSECI) from 2007 to 2015. Conclusions and potential issues for future
research are summarized in Section 5.
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2. Preliminaries

2.1. Definition of Fuzzy-Fluctuation Time Series (FFTS)

Song and Chissom [6–8] combined fuzzy set theory with time series and defined fuzzy time series.
In this section, we extend fuzzy time series to fuzzy-fluctuation time series (FFTS) and propose the
related concepts.

Definition 1. Let L =
{

l1, l2, . . . , lg
}

be a fuzzy set in the universe of discourse U; it can be
defined by its membership function, µL : U → [0, 1] , where µL(ui) denotes the grade of membership of ui,
U = {u1, u2, . . . ui, . . . , ul}.

The fluctuation trends of a stock market can be expressed by a linguistic set L = {l1, l2, l3} =
{down, equal, up}. The element li and its subscript i are strictly monotonically increasing [43], so the
function can be defined as follows: f : li = f (i).

Definition 2. Let F(t)(t = 1, 2, . . . , T) be a time series of real numbers, where T is the number of the time series.
G(t) is defined as a fluctuation time series, where G(t) = F(t)− F(t− 1), (t = 2, 3, . . . , T). Each element of
G(t) can be represented by a fuzzy set S(t)(t = 2, 3, . . . , T) as defined in Definition 1. Then we call the time
series G(t), which is to be fuzzified into a fuzzy-fluctuation time series (FFTS), S(t).

Definition 3. Let S(t) (t = n + 1, n + 2, . . . , T, n ≥ 1) be a FFTS. If S(t) is determined by
S(t− 1), S(t− 2), . . . , S(t− n), then the fuzzy-fluctuation logical relationship is represented by:

S(t− 1), S(t− 2), . . . , S(t− n)→ S(t) (1)

and it is called the nth-order fuzzy-fluctuation logical relationship (FFLR) of the fuzzy-fluctuation time series,
where S(t− n), . . . , S(t− 2)S(t− 1) is called the left-hand side (LHS) and S(t) is called the right-hand side
(RHS) of the FFLR, and S(k)(k = t, t− 1, t− 2, . . . , t− n) ∈ L.

2.2. Basic Concept of Neutrosophic Logical Relationship (NLR)

Smarandache [36] originally presented the neutrosophic set theory. Based on neutrosophic set
theory, we propose the concept of the fuzzy-neutrosophic logical relationship, which employs the three
terms of a neutrosophic set to reflect the fuzzy-fluctuation trends and weights of an nth-order FFLR.

Definition 4. Let Pi
A(t) be the probabilities of each element li(li ∈ L) in the LHS of an nth-order FFLR

S(t− 1), S(t− 2), . . . , S(t− n)→ S(t) , and it can be generated by:

Pi
A(t) =

n
∑

j=1
wi,j

n
i = 1, 2, 3 (2)

where wi,j = 1 if S(t − j) = i and 0 otherwise. Let X be a universal set, and the left-hand side of a neutrosophic
logical relationship is defined by:

A(t) =
{〈

x, P1
A(t), P2

A(t), P3
A(t)

〉
|x ∈ X

}
(3)

Definition 5. For S(t)(t = n + 1, n + 2, . . . , T) is a FFTS and A(t) is the LHS of a neutrosophic logical
relationship. The FFLRs with the same A(t) can be grouped into a FFLRG by putting all their RHSs together as
on the RHS of the FFLRG. The RHSs of the FFRLG for A(t) can be represented by a neutrosophic set as described
by Definition 4:

BA(t) =
{〈

x, P1
BA(t)

, P2
BA(t)

, P3
BA(t)

〉
|x ∈ X

}
(4)
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where Pi
BA(t)

(i = 1, 2, 3) represent the down, equal or up probability of the RHSs of the FFRLG for A(t).

Pi
BA(t)

(i = 1, 2, 3) is called the righ-hand side of a neutrosophic logical relationship.

In this way, the FFLR S(t− 1), S(t− 2), . . . , S(t− n)→ S(t) can be represented by a neutrosophic
logical relationship (NLR) A(t)→ BA(t) .

Definition 6 [37]. Let A(t1) and A(t2) be two neutrosophic sets. The Jaccard similarity measure between A(t1)
and A(t2) in vector space is defined as follows:

J(A(t1), A(t2)) =

3
∑

i=1
Pi

A(t1)
Pi

A(t2)

3
∑

i=1
(Pi

A(t1)
)

2
+

3
∑

i=1
(Pi

A(t2)
)

2 −
3
∑

i=1
Pi

A(t1)
Pi

A(t2)

(5)

3. A Novel Forecasting Model Based on Neutrosophic Logical Relationships

In this paper, we propose a novel forecasting model based on high-order neutrosophic logical
relationships and Jaccard similarity measures. In order to compare the forecasting results with other
researchers’ work [9,17,23,25,44–48], the authentic TAIEX (Taiwan Stock Exchange Capitalization
Weighted Stock Index) is employed to illustrate the forecasting process. The data from January 1999 to
October 1999 are used as the training time series and the data from November 1999 to December 1999
are used as the testing dataset. The basic steps of the proposed model are shown in Figure 1.
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47.48, S(2) = 3. In this way, the historical training dataset can be represented by a fuzzified fluctuation 
dataset as shown in Table A1. 

Step 2: Based on the FFTS from 5 January to 30 October 1999—shown in Table A1—the nth-order 
FFLRs for the forecasting model are established as shown in Table A2. The subscript i is used to 
represent element il  in the FFLRs for convenience. 
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Step 1. Construct FFTS for the historical training data

For each element F(t)(t = 1, 2, . . . , T) in the historical training time series, its fluctuation trend
is determined by G(t) = F(t)− F(t− 1), (t = 2, 3, . . . , T). According to the range and orientation
of the fluctuations, G(t)(t = 2, 3, . . . , T) can be fuzzified into a linguistic set {down, equal, up}.
Let len be the whole mean of all elements in the fluctuation time series G(t)(t = 2, 3, . . . , T),
define u1 = [−∞,−len/2], u2 = [−len/2, len/2], u3 = [len/2,+∞], and then G(t)(t = 2, 3, . . . , T)
can be fuzzified into a fuzzy-fluctuation time series S(t)(t = 2, 3, . . . , T).

Step 2. Establish nth-order FFLRs for the training data set

According to Definition 3, each S(t)(t > n) in the historical training data set can be represented
by its previous n days’ fuzzy-fluctuation numbers to establish the training FFLRs.

Step 3. Convert the FFLRs to NLRs

According to Definition 4, the LHS of each FFLR can be expressed by a neutrosophic set A(t).
Then, we can generate the RHSs BA(t) for different LHSs respectively, as described in Definition 5.
Thus, the FFLRs for the historical training dataset are converted into NLRs.

Step 4. Forecast test time series

For each observed point F(i) in the test time series, we can use a neutrosophic set A(i) to represent
its nth-order fuzzy-fluctuation trends. Then, for each A(t) obtained in step 3, compare A(i) with A(t)
respectively, and find the most similar one based on the Jaccard similarity measure method described
in Definition 6. Next, use the corresponding BA(t) as the forecasting rule to predict the fluctuation
value G′(i + 1) of the next point. Finally, obtain the forecasting value by F′(i + 1) = F(i) + G′(i + 1).

4. Empirical Analysis

4.1. Forecasting Taiwan Stock Exchange Capitalization Weighted Stock Index

Many studies use TAIEX1999 as an example to illustrate their proposed forecasting
methods [9,17,25,34,44–48]. In order to compare the accuracy with their models, we also use
TAIEX1999 to illustrate the proposed method.

Step 1: Calculate the fluctuation trend for each element in the historical training dataset of
TAIEX1999. Then, we use the whole mean of the fluctuation numbers of the training dataset to fuzzify
the fluctuation trends into FFTS. For example, the whole mean of the historical dataset of TAIEX1999
from January to October is 85. That is to say, len = 85. For F(1) = 6152.43 and F(2) = 6199.91, G(2) = 47.48,
S(2) = 3. In this way, the historical training dataset can be represented by a fuzzified fluctuation dataset
as shown in Table A1.

Step 2: Based on the FFTS from 5 January to 30 October 1999—shown in Table A1—the nth-order
FFLRs for the forecasting model are established as shown in Table A2. The subscript i is used to
represent element li in the FFLRs for convenience.

Step 3: In order to convert the FFLRs to NLRs, first of all the LHSs of the FFLRs in Table A2 are
represented by a neutrosophic set, respectively (shown in Table A2). Then, the RHSs of the FFLRs are
grouped with the same LHS neutrosophic set value into the RHSs group. A neutrosophic set is used to
represent the RHSs group. For example, the LHS of FFLR 2,3,1,1,1,2,2,3,3→1 can be represented by
the neutrosophic set (0.33,0.33,0.33). The detailed grouping and converting processes are shown in
Figure 2.
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Figure 2. Group and converting processes for FFLR 2,3,1,1,1,2,2,3,3→2.

In this way, the FFLR 2,3,1,1,1,2,2,3,3→1 and other members of the same group are converted into
an NLR (0.33,0.33,0.33)→(0.4,0.3,0.3). Therefore, the FFLRs in Table A2 can be converted into NLRs as
shown in Table 1.

Table 1. Neutrosophic logical relationships (NLRs) for the historical training data of TAIEX1999.

NLRs NLRs NLRs

(0.33,0.33,0.33)→(0.4,0.3,0.3) (0.22,0.33,0.44)→(0,0.6,0.4) (0.22,0.78,0)→(0.5,0.5,0)
(0.44,0.33,0.22)→(0.23,0.46,0.31) (0.22,0.44,0.33)→(0.33,0.33,0.33) (0.33,0.67,0)→(0,0,1)
(0.44,0.44,0.11)→(0.4,0.33,0.27) (0.11,0.56,0.33)→(0.17,0.5,0.33) (0.11,0.11,0.78)→(0,1,0)
(0.33,0.44,0.22)→(0.54,0.23,0.23) (0.11,0.67,0.22)→(0.17,0.33,0.5) (0,0.22,0.78)→(0,1,0)
(0.33,0.56,0.11)→(0.25,0.5,0.25) (0.22,0.56,0.22)→(0.25,0.5,0.25) (0,0.33,0.67)→(0,1,0)
(0.56,0.33,0.11)→(0.36,0.27,0.36) (0.11,0.44,0.44)→(0,0.38,0.63) (0.56,0.22,0.22)→(0.25,0.25,0.5)

(0.67,0.22,0.11)→(0,1,0) (0.11,0.33,0.56)→(0.33,0.17,0.5) (0.44,0.11,0.44)→(0.5,0.5,0)
(0.56,0.44,0)→(0,0,1) (0.11,0.22,0.67)→(0.43,0.43,0.14) (0.56,0.11,0.33)→(1,0,0)

(0.44,0.22,0.33)→(0.29,0.43,0.29) (0,0.56,0.44)→(0.33,0,0.67) (0.67,0,0.33)→(0,1,0)
(0.33,0.22,0.44)→(0.31,0.38,0.31) (0,0.44,0.56)→(0.14,0.43,0.43) (0.67,0.11,0.22)→(0.5,0.25,0.25)
(0.22,0.22,0.56)→(0.25,0.25,0.5) (0.11,0.78,0.11)→(0,0.8,0.2) (0.22,0.67,0.11)→(0,0,1)

(0.33,0.11,0.56)→(0,0.5,0.5) (0,0.89,0.11)→(0.25,0.75,0)
(0.22,0.11,0.67)→(0.29,0.29,0.43) (0.11,0.89,0)→(0.5,0.5,0)

Step 4: Use the NLRs obtained from historical training data to forecast the test dataset
from 1 November to 30 December 1999. For example, the forecasting value of the TAIEX on
1 November 1999 is calculated as follows:

First, the ninth-order historical fuzzy-fluctuation trends 3,2,2,2,2,3,1,2,2 on 1 November 1999 can
be represented by a neutrosophic set (0.11,0.67,0.22). Then, we use the Jaccard similarity measure
method as described by Definition 6 to choose the most optimal NLR from the NLRs listed in Table 1.
The NLR (0.11,0.67,0.22)→(0.17,0.33,0.5) is evidently the best rule for further forecasting. Therefore,
the forecasted fuzzy-fluctuation number is:
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S′(i + 1) = (−0.17) + 0.5 = 0.33

The forecasted fluctuation from the current value to the next value can be obtained by defuzzifying
the fluctuation fuzzy number:

G′(i + 1) = S′(i + 1)× len = 0.33× 85 = 28.05

Finally, the forecasted value can be obtained by the current value and the fluctuation value:

F′(i + 1) = F(i) + G′(i + 1) = 7854.85 + 28.05 = 7882.9

The other forecasting results are shown in Table 2 and Figure 3.
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Table 2. Forecasting results from 1 November 1999 to 30 December 1999.

Date
(MM/DD/YYYY) Actual Forecast (Forecast − Actual)2 Date

(MM/DD/YYYY) Actual Forecast (Forecast − Actual)2

11/1/1999 7814.89 7882.90 4625.36 12/1/1999 7766.20 7720.87 2054.81
11/2/1999 7721.59 7842.94 14,725.82 12/2/1999 7806.26 7766.20 1604.80
11/3/1999 7580.09 7721.59 20,022.25 12/3/1999 7933.17 7797.76 18,335.87
11/4/1999 7469.23 7580.09 12,289.94 12/4/1999 7964.49 7924.67 1585.63
11/5/1999 7488.26 7469.23 362.14 12/6/1999 7894.46 7955.99 3785.94
11/6/1999 7376.56 7488.26 12,476.89 12/7/1999 7827.05 7885.96 3470.39
11/8/1999 7401.49 7365.51 1294.56 12/8/1999 7811.02 7827.05 256.96
11/9/1999 7362.69 7390.44 770.06 12/9/1999 7738.84 7802.52 4055.14

11/10/1999 7401.81 7351.64 2517.03 12/10/1999 7733.77 7745.64 140.90
11/11/1999 7532.22 7486.82 2061.16 12/13/1999 7883.61 7707.42 31,042.92
11/15/1999 7545.03 7521.17 569.30 12/14/1999 7850.14 7857.26 50.69
11/16/1999 7606.20 7545.03 3741.77 12/15/1999 7859.89 7823.79 1303.21
11/17/1999 7645.78 7606.20 1566.58 12/16/1999 7739.76 7859.89 14,431.22
11/18/1999 7718.06 7673.83 1956.29 12/17/1999 7723.22 7728.71 30.14
11/19/1999 7770.81 7731.66 1532.72 12/18/1999 7797.87 7723.22 5572.62
11/20/1999 7900.34 7799.71 10,126.40 12/20/1999 7782.94 7797.87 222.90
11/22/1999 8052.31 7924.99 16,210.38 12/21/1999 7934.26 7782.94 22,897.74
11/23/1999 8046.19 8052.31 37.45 12/22/1999 8002.76 7947.86 3014.01
11/24/1999 7921.85 8046.19 15,460.44 12/23/1999 8083.49 8056.32 738.21
11/25/1999 7904.53 7936.30 1009.33 12/24/1999 8219.45 8137.05 6789.76
11/26/1999 7595.44 7918.98 104,678.13 12/27/1999 8415.07 8233.90 32,822.57
11/29/1999 7823.90 7629.44 37,814.69 12/28/1999 8448.84 8390.42 3412.90
11/30/1999 7720.87 7845.15 15,445.52 Root Mean Square Error(RMSE) 98.76

The forecasting performance can be assessed by comparing the difference between the forecasted
values and the actual values. The widely used indicators in time series model comparisons are the
mean squared error (MSE), the root of the mean squared error (RMSE), the mean absolute error
(MAE), and the mean percentage error (MPE), etc. To compare the performance of different forecasting
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methods, the Diebold-Mariano test statistic (S) is also widely used [49]. These indicators are defined
by Equations (6)–(10):

MSE =

n
∑

t=1
( f orecast(t)− actual(t))2

n
(6)

RMSE =

√√√√√ n
∑

t=1
( f orecast(t)− actual(t))2

n
(7)

MAE =

n
∑

t=1
|( f orecast(t)− actual(t))|

n
(8)

MPE =

n
∑

t=1
|( f orecast(t)− actual(t))|/actual(t)

n
(9)

S =
d

(Variance(d))
1/2 , d =

n
∑

t=1
(error o f f orecast1)

2
t −

n
∑

t=1
(error o f f orecast2)

2
t

n
(10)

where n denotes the number of values forecasted, forecast(t) and actual(t) denote the predicted value
and actual value at time t, respectively. S is a test statistic of the Diebold method that is used to
compare the predictive accuracy of two forecasts obtained by different methods. Forecast1 represents
the dataset obtained by method 1, and Forecast2 represents another dataset from method 2. If S > 0
and |S| > Z = 1.64 at the 0.05 significance level, then Forecast2 has better predictive accuracy than
Forecast1. With respect to the proposed method for the ninth order, the MSE, RMSE, MAE, and MPE
are 9753.63, 98.76, 76.32, and 0.01, respectively.

Let the order number n vary from two to 10; the RMSEs for different nth-order forecasting models
are listed in Table 3. The item “Average” refers to the RMSE for the average forecasting results of these
different nth-order (n = 2, 3, ..., 10) models.

Table 3. Comparison of forecasting errors for different nth orders.

n
Average

2 3 4 5 6 7 8 9 10

RMSE 100.22 100.9 100.66 99.81 102.83 103.48 100.36 98.76 108.99 99.03

In practical forecasting, the average of the results of different nth-order (n = 2, 3, ..., 9) forecasting
models is adopted to avoid the uncertainty. The proposed method is employed to forecast the TAIEX
from 1997 to 2005. The forecasting results and errors are shown in Figure 4 and Table 4.
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Figure 4. The stock market fluctuation for the TAIEX test dataset (1997–2005).

Table 4. RMSEs of forecast errors for TAIEX 1997 to 2005.

Year

1997 1998 1999 2000 2001 2002 2003 2004 2005

RMSE 141.89 119.85 99.03 128.62 125.64 66.29 53.2 56.11 55.83

Table 5 shows a comparison between the RMSEs of different methods for forecasting the
TAIEX1999. From this table, we can see that the performance of the proposed method is acceptable.
The greatest advantage of the proposed method is that it does not need to determine the boundary
of discourse or the intervals for number fuzzifying. Meanwhile, the introduction of neutrosophic
sets into the expression of logical relationships makes it possible to employ a similar comparison
method to locate the most appropriate rules for further forecasting. Therefore, the proposed method,
to some extent, is more rigorous than other methods that just use meaningless values in the case
of missing rules in the training data. Though the RMSEs of some of the other methods outperform
the proposed method, they often need to determine complex discretization partitioning rules or use
adaptive expectation models to justify the final forecasting results. The method proposed in this paper
is simpler and more easily realized by a computer program.

Table 5. A comparison of RMSEs for different methods for forecasting the TAIEX1999.

Methods RMSE S

Yu’s Method (2005) [25] 145 1.82 **
Hsieh et al.’s Method (2011) [48] 94 −0.42
Chang et al.’s Method (2011) [45] 100 0.21
Cheng et al.’s Method (2013) [47] 103 0.42
Chen et al.’s Method (2013) [46] 102.11 0.39

Chen and Chen’s Method (2015) [9] 103.9 0.29
Chen and Chen’s Method (2015) [44] 92 −0.51

Zhao et al.’s Method (2016) [23] 110.85 1.16
Jia et al.’s Method (2017) [17] 99.31 0.11

The Proposed Method 99.03 -

** The proposed method has better predictive accuracy than the method at the 5% significance level.
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4.2. Forecasting Shanghai Stock Exchange Composite Index

The SHSECI is the most famous stock market index in China. In the following, we apply the
proposed method to forecast the SHSECI from 2007 to 2015. For each year, the authentic datasets of the
historical daily SHSECI closing prices between January and October are used as the training data, and
the datasets from November to December are used as the testing data. The RMSEs of forecast errors
are shown in Table 6.

From Table 6, we can see that the proposed method can successfully predict the SHSECI
stock market.

Table 6. RMSEs of forecast errors for SHSECI from 2007 to 2015.

Year

2007 2008 2009 2010 2011 2012 2013 2014 2015

RMSE 113.47 71.6 49.14 45.35 27.74 25.83 19.95 41.42 64.6

5. Conclusions

In this paper, a novel forecasting model is proposed based on neutrosophic logical relationships,
the Jaccard similarity measure, and on fluctuations of the time series. The high-order fuzzy-fluctuation
logical relationships are represented by neutrosophic logical relationships. Therefore, we can use the
Jaccard similarity measure method to find the optimal forecasting rules. The biggest advantage of this
method is that it can deal with the problem of lack of rules. Considering the fact that future fluctuation
is more important than the indicated number itself, this method focuses on the forecasting of fluctuation
orientations in terms of the extent of the fluctuation rather than on the real numbers. Meanwhile,
utilizing NLRs instead of FLRs makes it possible to select the most appropriate rules for further
forecasting. Therefore, the proposed method is more rigorous and interpretable. Experiments show
that the parameters generated by the training dataset can be successfully used for future datasets as
well. In order to compare the performance with that of other methods, we took the TAIEX 1999 as an
example. We also forecasted TAIEX 1997–2005 and SHSECI 2007–2015 to verify its effectiveness and
universality. In the future, we will consider other factors that might affect the fluctuation of the stock
market, such as the trade volume, the beginning value, the end value, etc. We will also consider the
influence of other stock markets, such as the Dow Jones, the National Association of Securities Dealers
Automated Quotations (NASDAQ), the M1b, and so on.
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Appendix A

Table A1. Historical training data and fuzzified fluctuation data of TAIEX 1999.

Date (MM/DD/YYYY) TAIEX Fluctuation Fuzzified Date (MM/DD/YYYY) TAIEX Fluctuation Fuzzified Date (MM/DD/YYYY) TAIEX Fluctuation Fuzzified

1/5/1999 6152.43 - - 4/17/1999 7581.5 114.68 3 7/26/1999 7595.71 −128.81 1
1/6/1999 6199.91 47.48 3 4/19/1999 7623.18 41.68 2 7/27/1999 7367.97 −227.74 1
1/7/1999 6404.31 204.4 3 4/20/1999 7627.74 4.56 2 7/28/1999 7484.5 116.53 3
1/8/1999 6421.75 17.44 2 4/21/1999 7474.16 −153.58 1 7/29/1999 7359.37 −125.13 1
1/11/1999 6406.99 −14.76 2 4/22/1999 7494.6 20.44 2 7/30/1999 7413.11 53.74 3
1/12/1999 6363.89 −43.1 1 4/23/1999 7612.8 118.2 3 7/31/1999 7326.75 −86.36 1
1/13/1999 6319.34 −44.55 1 4/26/1999 7629.09 16.29 2 8/2/1999 7195.94 −130.81 1
1/14/1999 6241.32 −78.02 1 4/27/1999 7550.13 −78.96 1 8/3/1999 7175.19 −20.75 2
1/15/1999 6454.6 213.28 3 4/28/1999 7496.61 −53.52 1 8/4/1999 7110.8 −64.39 1
1/16/1999 6483.3 28.7 2 4/29/1999 7289.62 −206.99 1 8/5/1999 6959.73 −151.07 1
1/18/1999 6377.25 −106.05 1 4/30/1999 7371.17 81.55 3 8/6/1999 6823.52 −136.21 1
1/19/1999 6343.36 −33.89 2 5/3/1999 7383.26 12.09 2 8/7/1999 7049.74 226.22 3
1/20/1999 6310.71 −32.65 2 5/4/1999 7588.04 204.78 3 8/9/1999 7028.01 −21.73 2
1/21/1999 6332.2 21.49 2 5/5/1999 7572.16 −15.88 2 8/10/1999 7269.6 241.59 3
1/22/1999 6228.95 −103.25 1 5/6/1999 7560.05 −12.11 2 8/11/1999 7228.68 −40.92 2
1/25/1999 6033.21 −195.74 1 5/7/1999 7469.33 −90.72 1 8/12/1999 7330.24 101.56 3
1/26/1999 6115.64 82.43 3 5/10/1999 7484.37 15.04 2 8/13/1999 7626.05 295.81 3
1/27/1999 6138.87 23.23 2 5/11/1999 7474.45 −9.92 2 8/16/1999 8018.47 392.42 3
1/28/1999 6063.41 −75.46 1 5/12/1999 7448.41 −26.04 2 8/17/1999 8083.43 64.96 3
1/29/1999 5984 −79.41 1 5/13/1999 7416.2 −32.21 2 8/18/1999 7993.71 −89.72 1
1/30/1999 5998.32 14.32 2 5/14/1999 7592.53 176.33 3 8/19/1999 7964.67 −29.04 2
2/1/1999 5862.79 −135.53 1 5/15/1999 7576.64 −15.89 2 8/20/1999 8117.42 152.75 3
2/2/1999 5749.64 −113.15 1 5/17/1999 7599.76 23.12 2 8/21/1999 8153.57 36.15 2
2/3/1999 5743.86 −5.78 2 5/18/1999 7585.51 −14.25 2 8/23/1999 8119.98 −33.59 2
2/4/1999 5514.89 −228.97 1 5/19/1999 7614.6 29.09 2 8/24/1999 7984.39 −135.59 1
2/5/1999 5474.79 −40.1 2 5/20/1999 7608.88 −5.72 2 8/25/1999 8127.09 142.7 3
2/6/1999 5710.18 235.39 3 5/21/1999 7606.69 −2.19 2 8/26/1999 8097.57 −29.52 2
2/8/1999 5822.98 112.8 3 5/24/1999 7588.23 −18.46 2 8/27/1999 8053.97 −43.6 1
2/9/1999 5723.73 −99.25 1 5/25/1999 7417.03 −171.2 1 8/30/1999 8071.36 17.39 2
2/10/1999 5798 74.27 3 5/26/1999 7426.63 9.6 2 8/31/1999 8157.73 86.37 3
2/20/1999 6072.33 274.33 3 5/27/1999 7469.01 42.38 2 9/1/1999 8273.33 115.6 3
2/22/1999 6313.63 241.3 3 5/28/1999 7387.37 −81.64 1 9/2/1999 8226.15 −47.18 1
2/23/1999 6180.94 −132.69 1 5/29/1999 7419.7 32.33 2 9/3/1999 8073.97 −152.18 1
2/24/1999 6238.87 57.93 3 5/31/1999 7316.57 −103.13 1 9/4/1999 8065.11 −8.86 2
2/25/1999 6275.53 36.66 2 6/1/1999 7397.62 81.05 3 9/6/1999 8130.28 65.17 3
2/26/1999 6318.52 42.99 3 6/2/1999 7488.03 90.41 3 9/7/1999 7945.76 −184.52 1
3/1/1999 6312.25 −6.27 2 6/3/1999 7572.91 84.88 3 9/8/1999 7973.3 27.54 2
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Table A1. Cont.

Date (MM/DD/YYYY) TAIEX Fluctuation Fuzzified Date (MM/DD/YYYY) TAIEX Fluctuation Fuzzified Date (MM/DD/YYYY) TAIEX Fluctuation Fuzzified

3/2/1999 6263.54 −48.71 1 6/4/1999 7590.44 17.53 2 9/9/1999 8025.02 51.72 3
3/3/1999 6403.14 139.6 3 6/5/1999 7639.3 48.86 3 9/10/1999 8161.46 136.44 3
3/4/1999 6393.74 −9.4 2 6/7/1999 7802.69 163.39 3 9/13/1999 8178.69 17.23 2
3/5/1999 6383.09 −10.65 2 6/8/1999 7892.13 89.44 3 9/14/1999 8092.02 −86.67 1
3/6/1999 6421.73 38.64 2 6/9/1999 7957.71 65.58 3 9/15/1999 7971.04 −120.98 1
3/8/1999 6431.96 10.23 2 6/10/1999 7996.76 39.05 2 9/16/1999 7968.9 −2.14 2
3/9/1999 6493.43 61.47 3 6/11/1999 7979.4 −17.36 2 9/17/1999 7916.92 −51.98 1
3/10/1999 6486.61 −6.82 2 6/14/1999 7973.58 −5.82 2 9/18/1999 8016.93 100.01 3
3/11/1999 6436.8 −49.81 1 6/15/1999 7960 −13.58 2 9/20/1999 7972.14 −44.79 1
3/12/1999 6462.73 25.93 2 6/16/1999 8059.02 99.02 3 9/27/1999 7759.93 −212.21 1
3/15/1999 6598.32 135.59 3 6/17/1999 8274.36 215.34 3 9/28/1999 7577.85 −182.08 1
3/16/1999 6672.23 73.91 3 6/21/1999 8413.48 139.12 3 9/29/1999 7615.45 37.6 2
3/17/1999 6757.07 84.84 3 6/22/1999 8608.91 195.43 3 9/30/1999 7598.79 −16.66 2
3/18/1999 6895.01 137.94 3 6/23/1999 8492.32 −116.59 1 10/1/1999 7694.99 96.2 3
3/19/1999 6997.29 102.28 3 6/24/1999 8589.31 96.99 3 10/2/1999 7659.55 −35.44 2
3/20/1999 6993.38 −3.91 2 6/25/1999 8265.96 −323.35 1 10/4/1999 7685.48 25.93 2
3/22/1999 7043.23 49.85 3 6/28/1999 8281.45 15.49 2 10/5/1999 7557.01 −128.47 1
3/23/1999 6945.48 −97.75 1 6/29/1999 8514.27 232.82 3 10/6/1999 7501.63 −55.38 1
3/24/1999 6889.42 −56.06 1 6/30/1999 8467.37 −46.9 1 10/7/1999 7612 110.37 3
3/25/1999 6941.38 51.96 3 7/2/1999 8572.09 104.72 3 10/8/1999 7552.98 −59.02 1
3/26/1999 7033.25 91.87 3 7/3/1999 8563.55 −8.54 2 10/11/1999 7607.11 54.13 3
3/29/1999 6901.68 −131.57 1 7/5/1999 8593.35 29.8 2 10/12/1999 7835.37 228.26 3
3/30/1999 6898.66 −3.02 2 7/6/1999 8454.49 −138.86 1 10/13/1999 7836.94 1.57 2
3/31/1999 6881.72 −16.94 2 7/7/1999 8470.07 15.58 2 10/14/1999 7879.91 42.97 3
4/1/1999 7018.68 136.96 3 7/8/1999 8592.43 122.36 3 10/15/1999 7819.09 −60.82 1
4/2/1999 7232.51 213.83 3 7/9/1999 8550.27 −42.16 2 10/16/1999 7829.39 10.3 2
4/3/1999 7182.2 −50.31 1 7/12/1999 8463.9 −86.37 1 10/18/1999 7745.26 −84.13 1
4/6/1999 7163.99 −18.21 2 7/13/1999 8204.5 −259.4 1 10/19/1999 7692.96 −52.3 1
4/7/1999 7135.89 −28.1 2 7/14/1999 7888.66 −315.84 1 10/20/1999 7666.64 −26.32 2
4/8/1999 7273.41 137.52 3 7/15/1999 7918.04 29.38 2 10/21/1999 7654.9 −11.74 2
4/9/1999 7265.7 −7.71 2 7/16/1999 7411.58 −506.46 1 10/22/1999 7559.63 −95.27 1
4/12/1999 7242.4 −23.3 2 7/17/1999 7366.23 −45.35 1 10/25/1999 7680.87 121.24 3
4/13/1999 7337.85 95.45 3 7/19/1999 7386.89 20.66 2 10/26/1999 7700.29 19.42 2
4/14/1999 7398.65 60.8 3 7/20/1999 7806.85 419.96 3 10/27/1999 7701.22 0.93 2
4/15/1999 7498.17 99.52 3 7/21/1999 7786.65 −20.2 2 10/28/1999 7681.85 −19.37 2
4/16/1999 7466.82 −31.35 2 7/22/1999 7678.67 −107.98 1 10/29/1999 7706.67 24.82 2
4/17/1999 7581.5 114.68 3 7/23/1999 7724.52 45.85 3 10/30/1999 7854.85 148.18 3
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Table A2. The FFLRs and the converted left hand side of NLRs for historical training data of TAIEX1999.

Date
(MM/DD/YYYY) FFLR LHS of NLR Date

(MM/DD/YYYY) FFLR LHS of NLR Date
(MM/DD/YYYY) FFLR LHS of NLR Date

(MM/DD/YYYY) FFLR LHS of NLR

1/18/1999 2,3,1,1,1,2,2,3,3→2 (0.33,0.33,0.33) 4/3/1999 3,3,2,2,1,3,3,1,1→3 (0.33,0.22,0.44) 6/11/1999 2,3,3,3,3,2,3,3,3→2 (0,0.22,0.78) 8/21/1999 3,2,1,3,3,3,3,2,3→3 (0.11,0.22,0.67)
1/19/1999 1,2,3,1,1,1,2,2,3→1 (0.44,0.33,0.22) 4/6/1999 1,3,3,2,2,1,3,3,1→1 (0.33,0.22,0.44) 6/14/1999 2,2,3,3,3,3,2,3,3→2 (0,0.33,0.67) 8/23/1999 2,3,2,1,3,3,3,3,2→2 (0.11,0.33,0.56)
1/20/1999 2,1,2,3,1,1,1,2,2→2 (0.44,0.44,0.11) 4/7/1999 2,1,3,3,2,2,1,3,3→2 (0.22,0.33,0.44) 6/15/1999 2,2,2,3,3,3,3,2,3→2 (0,0.44,0.56) 8/24/1999 2,2,3,2,1,3,3,3,3→2 (0.11,0.33,0.56)
1/21/1999 2,2,1,2,3,1,1,1,2→2 (0.44,0.44,0.11) 4/8/1999 2,2,1,3,3,2,2,1,3→2 (0.22,0.44,0.33) 6/16/1999 2,2,2,2,3,3,3,3,2→2 (0,0.56,0.44) 8/25/1999 1,2,2,3,2,1,3,3,3→1 (0.22,0.33,0.44)
1/22/1999 2,2,2,1,2,3,1,1,1→2 (0.44,0.44,0.11) 4/9/1999 3,2,2,1,3,3,2,2,1→3 (0.22,0.44,0.33) 6/17/1999 3,2,2,2,2,3,3,3,3→3 (0,0.44,0.56) 8/26/1999 3,1,2,2,3,2,1,3,3→3 (0.22,0.33,0.44)
1/25/1999 1,2,2,2,1,2,3,1,1→1 (0.44,0.44,0.11) 4/12/1999 2,3,2,2,1,3,3,2,2→2 (0.11,0.56,0.33) 6/21/1999 3,3,2,2,2,2,3,3,3→3 (0,0.44,0.56) 8/27/1999 2,3,1,2,2,3,2,1,3→2 (0.22,0.44,0.33)
1/26/1999 1,1,2,2,2,1,2,3,1→1 (0.44,0.44,0.11) 4/13/1999 2,2,3,2,2,1,3,3,2→2 (0.11,0.56,0.33) 6/22/1999 3,3,3,2,2,2,2,3,3→3 (0,0.44,0.56) 8/30/1999 1,2,3,1,2,2,3,2,1→1 (0.33,0.44,0.22)
1/27/1999 3,1,1,2,2,2,1,2,3→3 (0.33,0.44,0.22) 4/14/1999 3,2,2,3,2,2,1,3,3→3 (0.11,0.44,0.44) 6/23/1999 3,3,3,3,2,2,2,2,3→3 (0,0.44,0.56) 8/31/1999 2,1,2,3,1,2,2,3,2→2 (0.22,0.56,0.22)
1/28/1999 2,3,1,1,2,2,2,1,2→2 (0.33,0.56,0.11) 4/15/1999 3,3,2,2,3,2,2,1,3→3 (0.11,0.44,0.44) 6/24/1999 1,3,3,3,3,2,2,2,2→1 (0.11,0.44,0.44) 9/1/1999 3,2,1,2,3,1,2,2,3→3 (0.22,0.44,0.33)
1/29/1999 1,2,3,1,1,2,2,2,1→1 (0.44,0.44,0.11) 4/16/1999 3,3,3,2,2,3,2,2,1→3 (0.11,0.44,0.44) 6/25/1999 3,1,3,3,3,3,2,2,2→3 (0.11,0.33,0.56) 9/2/1999 3,3,2,1,2,3,1,2,2→3 (0.22,0.44,0.33)
1/30/1999 1,1,2,3,1,1,2,2,2→1 (0.44,0.44,0.11) 4/17/1999 2,3,3,3,2,2,3,2,2→2 (0,0.56,0.44) 6/28/1999 1,3,1,3,3,3,3,2,2→1 (0.22,0.22,0.56) 9/3/1999 1,3,3,2,1,2,3,1,2→1 (0.33,0.33,0.33)
2/1/1999 2,1,1,2,3,1,1,2,2→2 (0.44,0.44,0.11) 4/19/1999 3,2,3,3,3,2,2,3,2→3 (0,0.44,0.56) 6/29/1999 2,1,3,1,3,3,3,3,2→2 (0.22,0.22,0.56) 9/4/1999 1,1,3,3,2,1,2,3,1→1 (0.44,0.22,0.33)
2/2/1999 1,2,1,1,2,3,1,1,2→1 (0.56,0.33,0.11) 4/20/1999 2,3,2,3,3,3,2,2,3→2 (0,0.44,0.56) 6/30/1999 3,2,1,3,1,3,3,3,3→3 (0.22,0.11,0.67) 9/6/1999 2,1,1,3,3,2,1,2,3→2 (0.33,0.33,0.33)
2/3/1999 1,1,2,1,1,2,3,1,1→1 (0.67,0.22,0.11) 4/21/1999 2,2,3,2,3,3,3,2,2→2 (0,0.56,0.44) 7/2/1999 1,3,2,1,3,1,3,3,3→1 (0.33,0.11,0.56) 9/7/1999 3,2,1,1,3,3,2,1,2→3 (0.33,0.33,0.33)
2/4/1999 2,1,1,2,1,1,2,3,1→2 (0.56,0.33,0.11) 4/22/1999 1,2,2,3,2,3,3,3,2→1 (0.11,0.44,0.44) 7/3/1999 3,1,3,2,1,3,1,3,3→3 (0.33,0.11,0.56) 9/8/1999 1,3,2,1,1,3,3,2,1→1 (0.44,0.22,0.33)
2/5/1999 1,2,1,1,2,1,1,2,3→1 (0.56,0.33,0.11) 4/23/1999 2,1,2,2,3,2,3,3,3→2 (0.11,0.44,0.44) 7/5/1999 2,3,1,3,2,1,3,1,3→2 (0.33,0.22,0.44) 9/9/1999 2,1,3,2,1,1,3,3,2→2 (0.33,0.33,0.33)
2/6/1999 2,1,2,1,1,2,1,1,2→2 (0.56,0.44,0) 4/26/1999 3,2,1,2,2,3,2,3,3→3 (0.11,0.44,0.44) 7/6/1999 2,2,3,1,3,2,1,3,1→2 (0.33,0.33,0.33) 9/10/1999 3,2,1,3,2,1,1,3,3→3 (0.33,0.22,0.44)
2/8/1999 3,2,1,2,1,1,2,1,1→3 (0.56,0.33,0.11) 4/27/1999 2,3,2,1,2,2,3,2,3→2 (0.11,0.56,0.33) 7/7/1999 1,2,2,3,1,3,2,1,3→1 (0.33,0.33,0.33) 9/13/1999 3,3,2,1,3,2,1,1,3→3 (0.33,0.22,0.44)
2/9/1999 3,3,2,1,2,1,1,2,1→3 (0.44,0.33,0.22) 4/28/1999 1,2,3,2,1,2,2,3,2→1 (0.22,0.56,0.22) 7/8/1999 2,1,2,2,3,1,3,2,1→2 (0.33,0.44,0.22) 9/14/1999 2,3,3,2,1,3,2,1,1→2 (0.33,0.33,0.33)
2/10/1999 1,3,3,2,1,2,1,1,2→1 (0.44,0.33,0.22) 4/29/1999 1,1,2,3,2,1,2,2,3→1 (0.33,0.44,0.22) 7/9/1999 3,2,1,2,2,3,1,3,2→3 (0.22,0.44,0.33) 9/15/1999 1,2,3,3,2,1,3,2,1→1 (0.33,0.33,0.33)
2/20/1999 3,1,3,3,2,1,2,1,1→3 (0.44,0.22,0.33) 4/30/1999 1,1,1,2,3,2,1,2,2→1 (0.44,0.44,0.11) 7/12/1999 2,3,2,1,2,2,3,1,3→2 (0.22,0.44,0.33) 9/16/1999 1,1,2,3,3,2,1,3,2→1 (0.33,0.33,0.33)
2/22/1999 3,3,1,3,3,2,1,2,1→3 (0.33,0.22,0.44) 5/3/1999 3,1,1,1,2,3,2,1,2→3 (0.44,0.33,0.22) 7/13/1999 1,2,3,2,1,2,2,3,1→1 (0.33,0.44,0.22) 9/17/1999 2,1,1,2,3,3,2,1,3→2 (0.33,0.33,0.33)
2/23/1999 3,3,3,1,3,3,2,1,2→3 (0.22,0.22,0.56) 5/4/1999 2,3,1,1,1,2,3,2,1→2 (0.44,0.33,0.22) 7/14/1999 1,1,2,3,2,1,2,2,3→1 (0.33,0.44,0.22) 9/18/1999 1,2,1,1,2,3,3,2,1→1 (0.44,0.33,0.22)
2/24/1999 1,3,3,3,1,3,3,2,1→1 (0.33,0.11,0.56) 5/5/1999 3,2,3,1,1,1,2,3,2→3 (0.33,0.33,0.33) 7/15/1999 1,1,1,2,3,2,1,2,2→1 (0.44,0.44,0.11) 9/20/1999 3,1,2,1,1,2,3,3,2→3 (0.33,0.33,0.33)
2/25/1999 3,1,3,3,3,1,3,3,2→3 (0.22,0.11,0.67) 5/6/1999 2,3,2,3,1,1,1,2,3→2 (0.33,0.33,0.33) 7/16/1999 2,1,1,1,2,3,2,1,2→2 (0.44,0.44,0.11) 9/27/1999 1,3,1,2,1,1,2,3,3→1 (0.44,0.22,0.33)
2/26/1999 2,3,1,3,3,3,1,3,3→2 (0.22,0.11,0.67) 5/7/1999 2,2,3,2,3,1,1,1,2→2 (0.33,0.44,0.22) 7/17/1999 1,2,1,1,1,2,3,2,1→1 (0.56,0.33,0.11) 9/28/1999 1,1,3,1,2,1,1,2,3→1 (0.56,0.22,0.22)
3/1/1999 3,2,3,1,3,3,3,1,3→3 (0.22,0.11,0.67) 5/10/1999 1,2,2,3,2,3,1,1,1→1 (0.44,0.33,0.22) 7/19/1999 1,1,2,1,1,1,2,3,2→1 (0.56,0.33,0.11) 9/29/1999 1,1,1,3,1,2,1,1,2→1 (0.67,0.22,0.11)
3/2/1999 2,3,2,3,1,3,3,3,1→2 (0.22,0.22,0.56) 5/11/1999 2,1,2,2,3,2,3,1,1→2 (0.33,0.44,0.22) 7/20/1999 2,1,1,2,1,1,1,2,3→2 (0.56,0.33,0.11) 9/30/1999 2,1,1,1,3,1,2,1,1→2 (0.67,0.22,0.11)
3/3/1999 1,2,3,2,3,1,3,3,3→1 (0.22,0.22,0.56) 5/12/1999 2,2,1,2,2,3,2,3,1→2 (0.22,0.56,0.22) 7/21/1999 3,2,1,1,2,1,1,1,2→3 (0.56,0.33,0.11) 10/1/1999 2,2,1,1,1,3,1,2,1→2 (0.56,0.33,0.11)
3/4/1999 3,1,2,3,2,3,1,3,3→3 (0.22,0.22,0.56) 5/13/1999 2,2,2,1,2,2,3,2,3→2 (0.11,0.67,0.22) 7/22/1999 2,3,2,1,1,2,1,1,1→2 (0.56,0.33,0.11) 10/2/1999 3,2,2,1,1,1,3,1,2→3 (0.44,0.33,0.22)
3/5/1999 2,3,1,2,3,2,3,1,3→2 (0.22,0.33,0.44) 5/14/1999 2,2,2,2,1,2,2,3,2→2 (0.11,0.78,0.11) 7/23/1999 1,2,3,2,1,1,2,1,1→1 (0.56,0.33,0.11) 10/4/1999 2,3,2,2,1,1,1,3,1→2 (0.44,0.33,0.22)
3/6/1999 2,2,3,1,2,3,2,3,1→2 (0.22,0.44,0.33) 5/15/1999 3,2,2,2,2,1,2,2,3→3 (0.11,0.67,0.22) 7/26/1999 3,1,2,3,2,1,1,2,1→3 (0.44,0.33,0.22) 10/5/1999 2,2,3,2,2,1,1,1,3→2 (0.33,0.44,0.22)
3/8/1999 2,2,2,3,1,2,3,2,3→2 (0.11,0.56,0.33) 5/17/1999 2,3,2,2,2,2,1,2,2→2 (0.11,0.78,0.11) 7/27/1999 1,3,1,2,3,2,1,1,2→1 (0.44,0.33,0.22) 10/6/1999 1,2,2,3,2,2,1,1,1→1 (0.44,0.44,0.11)
3/9/1999 2,2,2,2,3,1,2,3,2→2 (0.11,0.67,0.22) 5/18/1999 2,2,3,2,2,2,2,1,2→2 (0.11,0.78,0.11) 7/28/1999 1,1,3,1,2,3,2,1,1→1 (0.56,0.22,0.22) 10/7/1999 1,1,2,2,3,2,2,1,1→1 (0.44,0.44,0.11)
3/10/1999 3,2,2,2,2,3,1,2,3→3 (0.11,0.56,0.33) 5/19/1999 2,2,2,3,2,2,2,2,1→2 (0.11,0.78,0.11) 7/29/1999 3,1,1,3,1,2,3,2,1→3 (0.44,0.22,0.33) 10/8/1999 3,1,1,2,2,3,2,2,1→3 (0.33,0.44,0.22)
3/11/1999 2,3,2,2,2,2,3,1,2→2 (0.11,0.67,0.22) 5/20/1999 2,2,2,2,3,2,2,2,2→2 (0,0.89,0.11) 7/30/1999 1,3,1,1,3,1,2,3,2→1 (0.44,0.22,0.33) 10/11/1999 1,3,1,1,2,2,3,2,2→1 (0.33,0.44,0.22)
3/12/1999 1,2,3,2,2,2,2,3,1→1 (0.22,0.56,0.22) 5/21/1999 2,2,2,2,2,3,2,2,2→2 (0,0.89,0.11) 7/31/1999 3,1,3,1,1,3,1,2,3→3 (0.44,0.11,0.44) 10/12/1999 3,1,3,1,1,2,2,3,2→3 (0.33,0.33,0.33)
3/15/1999 2,1,2,3,2,2,2,2,3→2 (0.11,0.67,0.22) 5/24/1999 2,2,2,2,2,2,3,2,2→2 (0,0.89,0.11) 8/2/1999 1,3,1,3,1,1,3,1,2→1 (0.56,0.11,0.33) 10/13/1999 3,3,1,3,1,1,2,2,3→3 (0.33,0.22,0.44)
3/16/1999 3,2,1,2,3,2,2,2,2→3 (0.11,0.67,0.22) 5/25/1999 2,2,2,2,2,2,2,3,2→2 (0,0.89,0.11) 8/3/1999 1,1,3,1,3,1,1,3,1→1 (0.67,0,0.33) 10/14/1999 2,3,3,1,3,1,1,2,2→2 (0.33,0.33,0.33)
3/17/1999 3,3,2,1,2,3,2,2,2→3 (0.11,0.56,0.33) 5/26/1999 1,2,2,2,2,2,2,2,3→1 (0.11,0.78,0.11) 8/4/1999 2,1,1,3,1,3,1,1,3→2 (0.56,0.11,0.33) 10/15/1999 3,2,3,3,1,3,1,1,2→3 (0.33,0.22,0.44)
3/18/1999 3,3,3,2,1,2,3,2,2→3 (0.11,0.44,0.44) 5/27/1999 2,1,2,2,2,2,2,2,2→2 (0.11,0.89,0) 8/5/1999 1,2,1,1,3,1,3,1,1→1 (0.67,0.11,0.22) 10/16/1999 1,3,2,3,3,1,3,1,1→1 (0.44,0.11,0.44)
3/19/1999 3,3,3,3,2,1,2,3,2→3 (0.11,0.33,0.56) 5/28/1999 2,2,1,2,2,2,2,2,2→2 (0.11,0.89,0) 8/6/1999 1,1,2,1,1,3,1,3,1→1 (0.67,0.11,0.22) 10/18/1999 2,1,3,2,3,3,1,3,1→2 (0.33,0.22,0.44)
3/20/1999 3,3,3,3,3,2,1,2,3→3 (0.11,0.22,0.67) 5/29/1999 1,2,2,1,2,2,2,2,2→1 (0.22,0.78,0) 8/7/1999 1,1,1,2,1,1,3,1,3→1 (0.67,0.11,0.22) 10/19/1999 1,2,1,3,2,3,3,1,3→1 (0.33,0.22,0.44)
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Table A2. Cont.

Date
(MM/DD/YYYY) FFLR LHS of NLR Date

(MM/DD/YYYY) FFLR LHS of NLR Date
(MM/DD/YYYY) FFLR LHS of NLR Date

(MM/DD/YYYY) FFLR LHS of NLR

3/22/1999 2,3,3,3,3,3,2,1,2→2 (0.11,0.33,0.56) 5/31/1999 2,1,2,2,1,2,2,2,2→2 (0.22,0.78,0) 8/9/1999 3,1,1,1,2,1,1,3,1→3 (0.67,0.11,0.22) 10/20/1999 1,1,2,1,3,2,3,3,1→1 (0.44,0.22,0.33)
3/23/1999 3,2,3,3,3,3,3,2,1→3 (0.11,0.22,0.67) 6/1/1999 1,2,1,2,2,1,2,2,2→1 (0.33,0.67,0) 8/10/1999 2,3,1,1,1,2,1,1,3→2 (0.56,0.22,0.22) 10/21/1999 2,1,1,2,1,3,2,3,3→2 (0.33,0.33,0.33)
3/24/1999 1,3,2,3,3,3,3,3,2→1 (0.11,0.22,0.67) 6/2/1999 3,1,2,1,2,2,1,2,2→3 (0.33,0.56,0.11) 8/11/1999 3,2,3,1,1,1,2,1,1→3 (0.56,0.22,0.22) 10/22/1999 2,2,1,1,2,1,3,2,3→2 (0.33,0.44,0.22)
3/25/1999 1,1,3,2,3,3,3,3,3→1 (0.22,0.11,0.67) 6/3/1999 3,3,1,2,1,2,2,1,2→3 (0.33,0.44,0.22) 8/12/1999 2,3,2,3,1,1,1,2,1→2 (0.44,0.33,0.22) 10/25/1999 1,2,2,1,1,2,1,3,2→1 (0.44,0.44,0.11)
3/26/1999 3,1,1,3,2,3,3,3,3→3 (0.22,0.11,0.67) 6/4/1999 3,3,3,1,2,1,2,2,1→3 (0.33,0.33,0.33) 8/13/1999 3,2,3,2,3,1,1,1,2→3 (0.33,0.33,0.33) 10/26/1999 3,1,2,2,1,1,2,1,3→3 (0.44,0.33,0.22)
3/29/1999 3,3,1,1,3,2,3,3,3→3 (0.22,0.11,0.67) 6/5/1999 2,3,3,3,1,2,1,2,2→2 (0.22,0.44,0.33) 8/16/1999 3,3,2,3,2,3,1,1,1→3 (0.33,0.22,0.44) 10/27/1999 2,3,1,2,2,1,1,2,1→2 (0.44,0.44,0.11)
3/30/1999 1,3,3,1,1,3,2,3,3→1 (0.33,0.11,0.56) 6/7/1999 3,2,3,3,3,1,2,1,2→3 (0.22,0.33,0.44) 8/17/1999 3,3,3,2,3,2,3,1,1→3 (0.22,0.22,0.56) 10/28/1999 2,2,3,1,2,2,1,1,2→2 (0.33,0.56,0.11)
3/31/1999 2,1,3,3,1,1,3,2,3→2 (0.33,0.22,0.44) 6/8/1999 3,3,2,3,3,3,1,2,1→3 (0.22,0.22,0.56) 8/18/1999 3,3,3,3,2,3,2,3,1→3 (0.11,0.22,0.67) 10/29/1999 2,2,2,3,1,2,2,1,1→2 (0.33,0.56,0.11)
4/1/1999 2,2,1,3,3,1,1,3,2→2 (0.33,0.33,0.33) 6/9/1999 3,3,3,2,3,3,3,1,2→3 (0.11,0.22,0.67) 8/19/1999 1,3,3,3,3,2,3,2,3→1 (0.11,0.22,0.67) 10/30/1999 2,2,2,2,3,1,2,2,1→2 (0.22,0.67,0.11)
4/2/1999 3,2,2,1,3,3,1,1,3→3 (0.33,0.22,0.44) 6/10/1999 3,3,3,3,2,3,3,3,1→3 (0.11,0.11,0.78) 8/20/1999 2,1,3,3,3,3,2,3,2→2 (0.11,0.33,0.56)
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