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Abstract: A group is an algebraic system that characterizes symmetry. As a generalization of the
concept of a group, semigroups and various non-associative groupoids can be considered as algebraic
abstractions of generalized symmetry. In this paper, the notion of generalized Abel-Grassmann’s
neutrosophic extended triplet loop (GAG-NET-Loop) is proposed and some properties are discussed.
In particular, the following conclusions are strictly proved: (1) an algebraic system is an AG-NET-Loop
if and only if it is a strong inverse AG-groupoid; (2) an algebraic system is a GAG-NET-Loop if and
only if it is a quasi strong inverse AG-groupoid; (3) an algebraic system is a weak commutative
GAG-NET-Loop if and only if it is a quasi Clifford AG-groupoid; and (4) a finite interlaced
AG-(l,l)-Loop is a strong AG-(l,l)-Loop.

Keywords: Abel-Grassmann’s neutrosophic extended triplet loop; generalized Abel-Grassmann’s
neutrosophic extended triplet loop; strong inverse AG-groupoid; quasi strong inverse AG-groupoid;
quasi Clifford AG-groupoid

1. Introduction

The concept of an Abel-Grassmann’s groupoid (AG-groupoid) was first given by Kazim and
Naseeruddin [1] in 1972 and they have called it a left almost semigroup (LA-semigroup). In [2],
the same structure is called a left invertive groupoid. In [3–9], some properties and different classes of
an AG-groupoid are investigated.

Smarandache proposed the new concept of neutrosophic set, which is an extension of fuzzy set
and intuitionistic fuzzy set [10]. Until now, neutrosophic sets have been applied to many fields
such as decision making [11–13], forecasting [14], best product selection [15], the shortest path
problem [16], minimum spanning tree [17], neutrosophic portfolios of financial assets [18], etc.
Some new theoretical studies are also developed [19–24]. In [25], Xiaohong Zhang introduced the
concept of Abel-Grassmann’s neutrosophic extended triplet loop (AG-NET-loop), and some properties
and structure about AG-NET-loop are discussed. Recently, a new algebraic system, generalized
neutrosophic extended triplet set, is proposed in [26].

In this paper, we combine the notions of generalized neutrosophic extended triplet set and
AG-groupoid, introduce the new concept of generalized Abel-Grassmann’s neutrosophic extended
triplet loop (GAG-NET-loop); that is, GAG-NET-loop is both AG-groupoid and generalized
neutrosophic extended triplet set. We deeply analyze the internal connecting link between GAG-NET-
loop and other AG-groupoid and obtain some important results.

GAG-NET-loop is an extension of AG-NET-loop. Compared with AG-NET-loop, GAG-NET-loop
relaxes the restriction on the elements in the AG-groupoid. According to our research, corresponding
to the decomposition theorem of AG-NET-loop, some GAG-NET-loops can also be decomposed
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into smaller ones. This is also the embodiment of the research method of regular semigroups to
quasi-regular semigroups in non-associative groupoid.

The paper is organized as follows. Section 2 gives the basic definitions. Some properties about
finite interlaced AG-(l,l)-Loop and some structures about strong inverse AG-groupoid are discussed in
Section 3. We proposed the GAG-NET-Loop and discussed its properties and structure in Section 4.
Finally, the summary and future work are presented in Section 5.

2. Basic Definitions

In this section, the related research and results of the AG-NET-loop are presented. Some related
notions are introduced first.

Let S be non-empty set, ∗ is a binary operation on S. If ∀a, b ∈ S, implies a ∗ b ∈ S, then (S, ∗) is
called a groupoid. A groupoid (S, ∗) is called an Abel-Grassmann’s groupoid (AG-groupoid) [27,28]
if it holds the left invertive law, that is, for all a, b, c ∈ S, (a ∗ b) ∗ c = (c ∗ b) ∗ a. In an AG-groupoid
the medial law holds, for all a, b, c,∈ S, (a ∗ b) ∗ (c ∗ d) = (a ∗ c) ∗ (b ∗ d). In an AG-groupoid (S, ∗),
for all a ∈ S, n ∈ Z+, the recursive definition of an is as follows: a1 = a, a2 = a ∗ a, a3 = a2 ∗ a =

(a ∗ a) ∗ a, a4 = a3 ∗ a, ..., an = an−1 ∗ a.

Definition 1 ([29]). Let N be a non-empty set together with a binary operation ∗. Then, N is called
a neutrosophic extended triplet set if for any a ∈ N, there exists a neutral of “a” (denoted by neut(a)),
and an opposite of “a”(denoted by anti(a)), such that neut(a) ∈ N, anti(a) ∈ N and:

a ∗ neut(a) = neut(a) ∗ a = a,

a ∗ anti(a) = anti(a) ∗ a = neut(a).

The triplet (a, neut(a), anti(a)) is called a neutrosophic extended triplet.

Note that, for a neutrosophic triplet set (N, ∗), a ∈ N, neut(a) and anti(a) may not be unique.
In order not to cause ambiguity, we use the following notations to distinguish: neut(a) denotes any
certain one of neutral of a, {neut(a)} denotes the set of all neutral of a, anti(a) denotes any certain one
of opposite of a, and {anti(a)} denotes the set of all opposite of a.

Definition 2 ([25]). Let (N, ∗) be a neutrosophic extended triplet set. Then, N is called a neutrosophic extended
triplet loop (NET-Loop), if (N, ∗) is well-defined, i.e., for any a, b ∈ N, one has a ∗ b ∈ N.

Definition 3 ([25]). Let (N, ∗) be a neutrosophic extended triplet loop (NET-Loop). Then, N is called
an AG-NET-Loop, if (N, ∗) is an AG-groupoid.

An AG-NET-Loop N is called a commutative AG-NET-Loop if for all a, b ∈ N, a ∗ b = b ∗ a.

Theorem 1 ([25]). Let (N, ∗) be an AG-NET-loop. Then, for any x, y ∈ {anti(a)},

(1) neut(a) ∗ x = x ∗ neut(a) = neut(a) ∗ y, that is,|neut(a) ∗ {anti(a)}| = 1.
(2) (x ∗ neut(a)) ∗ a = (neut(a) ∗ x) ∗ a = neut(a).
(3) a ∗ (x ∗ neut(a)) = a ∗ (neut(a) ∗ x) = neut(a).
(4) ∀a ∈ N, neut(a) ∗ neut(a) = neut(a).

Definition 4 ([5]). An element a of an AG-groupoid (S, ∗) is called a regular if there exists x ∈ S such that
a = (a ∗ x) ∗ a and S is called regular if all elements of S are regular.

An AG-groupoid (S, ∗) is called quasi regular if, for any a ∈ S, there exists a positive integer n such that
an is regular.
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Definition 5 ([6]). An element a of an AG-groupoid (S, ∗) is called a fully regular element of S if there exist
some p, q, r, s, t, u, v, w, x, y, z ∈ S (p, q, ..., z may be repeated) such that

a = (p ∗ a2) ∗ q = (r ∗ a) ∗ (a ∗ s) = (a ∗ t) ∗ (a ∗ u)

= (a ∗ a) ∗ v = w ∗ (a ∗ a) = (x ∗ a) ∗ (y ∗ a)

= (a2 ∗ z) ∗ a2.

An AG-groupoid (S, ∗) is called fully regular if all elements of S are fully regular.
An AG-groupoid (S, ∗) is called quasi fully regular if for any a ∈ S, there exists a positive integer n such

that an is fully regular.

3. Strong Inverse AG-Groupoid and Finite Interlaced AG-Groupoid

Definition 6 ([30]). An AG-groupoid (S, ∗) is called an inverse AG-groupoid if for each element a ∈ S,
there exists an element x in S such that a = (a ∗ x) ∗ a and x = (x ∗ a) ∗ x.

Definition 7. An AG-groupoid (S, ∗) is called a strong inverse AG-groupoid if for any a ∈ S, there exists
a unary operation a→ a−1 on S such that

(a−1)−1 = a, (a ∗ a−1) ∗ a = a ∗ (a ∗ a−1) = a, a ∗ a−1 = a−1 ∗ a.

The following example shows that an inverse AG-groupoid may not be a strong inverse
AG-groupoid.

Example 1. Let S = {1, 2, 3, 4}, an operation ∗ on S is defined as in Table 1. Being 1 = (1 ∗ 3) ∗ 1, 3 =

(3 ∗ 1) ∗ 3, 2 = (2 ∗ 4) ∗ 2, 4 = (4 ∗ 2) ∗ 4, from Definition 6, S is an inverse AG-groupoid. Being (1 ∗ 1) ∗ 1 =

3 6= 1, (1 ∗ 2) ∗ 1 = 4 6= 1, (1 ∗ 3) ∗ 1 = 1 6= 3 = 1 ∗ (1 ∗ 3), (1 ∗ 4) ∗ 1 = 2 6= 1, from Definition 7, S is not
a strong inverse AG-groupoid.

Table 1. The operation table of Example 1.

∗ 1 2 3 4

1 2 4 3 1
2 3 1 2 4
3 1 3 4 2
4 4 2 1 3

Proposition 1. Let (N, ∗) be an AG-NET-loop. Then, for any a ∈ N, x ∈ {anti(a)},

neut(neut(a) ∗ x) ∗ anti(neut(a) ∗ x) = a.

Proof. For any x ∈ {anti(a)}, we have

(neut(a) ∗ x) ∗ neut(a) = (neut(a) ∗ x) ∗ (a ∗ x)

= (neut(a) ∗ a) ∗ (x ∗ x) (applying the medial law)

= (a ∗ neut(a)) ∗ (x ∗ x)

= (a ∗ x) ∗ (neut(a) ∗ x) (applying the medial law)

= neut(a) ∗ (neut(a) ∗ x),
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neut(a) ∗ (neut(a) ∗ x) = (x ∗ a) ∗ (neut(a) ∗ x)

= (x ∗ neut(a)) ∗ (a ∗ x) (applying the medial law)

= (x ∗ neut(a)) ∗ neut(a)

= (neut(a) ∗ neut(a)) ∗ x

= neut(a) ∗ x, (by Proposition 1(4))

we have (neut(a) ∗ x) ∗ neut(a) = neut(a) ∗ (neut(a) ∗ x) = neut(a) ∗ x.
From Theorem 1 (2) and (3), we have

neut(neut(a) ∗ x) = neut(a), a ∈ anti{neut(a) ∗ x}.

From Theorem 1 (1) neut(a) ∗ x is unique, we have

neut(neut(a) ∗ x) ∗ anti(neut(a) ∗ x) = neut(a) ∗ a = a.

Example 2. Let N = {a, b, c}, an operation ∗ on N is defined as in Table 2. Since neut(a) = a, anti(a) =
a, neut(b) = a, anti(b) = c, neut(c) = a, anti(c) = b, so (N, ∗) is an AG-NET-Loop. Being

neut(neut(a) ∗ a) ∗ anti(neut(a) ∗ a) = a ∗ a = a,

neut(neut(b) ∗ c) ∗ anti(neut(b) ∗ c) = neut(c) ∗ anti(c) = b,

neut(neut(c) ∗ b) ∗ anti(neut(c) ∗ b) = neut(b) ∗ anti(b) = c,

that is for any a ∈ N, x ∈ {anti(a)}, neut(neut(a) ∗ x) ∗ anti(neut(a) ∗ x) = a.

Table 2. An AG-NET-Loop of Example 2.

∗ a b c

a a b c
b b c a
c c a b

Theorem 2. Let (N, ∗) be a groupoid. Then, N is an AG-NET-Loop if and only if it is a strong inverse
AG-groupoid.

Proof. Necessity: Suppose N is an AG-NET-Loop, from Definition 3, for each a ∈ N, such that a has
the neutral element and opposite element, denoted by neut(a) and anti(a), respectively. Set

a−1 = neut(a) ∗ anti(a),

by Theorem 1 (1), neut(a) ∗ anti(a) is unique, so a−1 is unique. By Proposition 1, we have

(a−1)−1 = neut(neut(a) ∗ anti(a)) ∗ anti(neut(a) ∗ anti(a)) = a.

Being

a−1 ∗ a = (neut(a) ∗ anti(a)) ∗ a = (a ∗ anti(a)) ∗ neut(a) = neut(a) ∗ neut(a) = neut(a),
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a ∗ a−1 = a ∗ (neut(a) ∗ anti(a))

= (neut(a) ∗ a) ∗ (neut(a) ∗ anti(a))

= (neut(a) ∗ neut(a)) ∗ (a ∗ anti(a))

= (neut(a) ∗ neut(a)) ∗ neut(a)

= neut(a),

(a ∗ a−1) ∗ a = neut(a) ∗ a = a,

a ∗ (a ∗ a−1) = a ∗ neut(a) = a,

we have
a−1 ∗ a = a ∗ a−1,

(a ∗ a−1) ∗ a = a ∗ (a ∗ a−1) = a.

From Definition 7, N is a strong inverse AG-groupoid.
Sufficiency: If N is a strong inverse AG-groupoid and a−1 ∈ N, such that a ∗ a−1 = a−1 ∗ a and

(a ∗ a−1) ∗ a = a ∗ (a ∗ a−1) = a. Set
neut(a) = a ∗ a−1,

then neut(a) ∗ a = (a ∗ a−1) ∗ a = a ∗ (a ∗ a−1) = a ∗ neut(a) = a, a ∗ (a)−1 = (a)−1 ∗ a = neut(a).
From Definition 3, we have that N is an AG-NET-Loop and a−1 ∈ {anti(a)}.

Example 3. Apply (S, ∗) in Example 2, we know that it is an AG-NET-Loop. We show that it is a strong
inverse AG-groupoid in the following.

For b, there exists a inverse element b−1 = c, such that (b−1)−1 = b, (b ∗ b−1) ∗ b = b ∗ (b ∗ b−1) =

b, b ∗ b−1 = b−1 ∗ b = a, so b is strong inverse. a and c are strong inverse for the same reason, so (S, ∗) is
a strong inverse AG-groupoid by Definition 7.

An AG-groupoid (S, *) is called interlaced if it satisfies (a ∗ a) ∗ b = a ∗ (a ∗ b), a ∗ (b ∗ b) = (a ∗ b) ∗ b
for all a, b in S. An AG-groupoid (S, *) is called locally associative if it satisfies (a ∗ a) ∗ a = a ∗ (a ∗ a)
for all a in S.

Theorem 3. Let(D, ∗) be a locally associative AG-groupoid with respect to *. If D is finite, there is an idempotent
element in D. That is, ∃a ∈ D, a ∗ a = a.

Proof. Assume that D is a finite locally associative AG-groupoid with respect to *. Then, for any a ∈ D,
a, a ∗ a = a2, a ∗ a ∗ a = a3, ..., an, ... ∈ D. Since D is finite, there exists natural number m,k such that
am = am+k.

Case 1: If k = m, then am = a2m, that is, am = am ∗ am, am is an idempotent element in D.
Case 2: If k > m, then from am = am+k we can get

ak = am ∗ ak−m = am+k ∗ ak−m = a2k = ak ∗ ak.

This means that ak is an idempotent element in D.
Case 3: If k < m, then from am = am+k we can get

am = am+k = am ∗ ak = am+k ∗ ak = am+2k;

am = am+2k = am ∗ a2k = am+k ∗ a2k = am+3k;

. . . . . .

am = am+mk.
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Since m and k are natural numbers, then mk ≥ m. Therefore, from am = am+mk, applying Case 1
or Case 2, we know that there exists an idempotent element in D.

Definition 8 ([31]). Let (N, ∗) be an AG-groupoid. Then, N is called an AG-(l, l)-Loop, if for any a ∈ N,
there exist two elements b and c in N that satisfy the condition: b ∗ a = a, and c ∗ a = b. In an AG-(l,l)-Loop,
a neutral of “a” denoted by neut(l,l)(a).

Definition 9 ([31]). Let (N, ∗) be an AG-(l, l)-Loop. Then, N is a strong AG-(l, l)-Loop if neut(l,l)(a) ∗
neut(l,l)(a) = neut(l,l)(a), ∀a ∈ N.

Definition 10. Let (D, ∗) be an AG-(l,l)-Loop. Then, D is called an interlaced AG-(l,l)-Loop, if it satisfies(a ∗
a) ∗ b = a ∗ (a ∗ b), a ∗ (b ∗ b) = (a ∗ b) ∗ b, for all a, b in D.

Theorem 4. Let(D, ∗) be an interlaced AG-(l, l)-Loop with respect to *. If D is finite, there is an idempotent
left neutral element in D. That is, ∀a ∈ D, ∃s, p ∈ D, s ∗ a = a, p ∗ a = s, s ∗ s = s.

Proof. Assume that D is a finite interlaced AG-(l,l)-Loop with respect to *. Then, for any a ∈ D,
∃s, p ∈ D, s ∗ a = a, p ∗ a = s, we have s ∗ a = (p ∗ a) ∗ a = (a ∗ a) ∗ p = a ∗ (a ∗ p) = a,

a ∗ s = (a ∗ (a ∗ p)) ∗ s

= (s ∗ (a ∗ p)) ∗ a (by the le f t invertive law)

= ((p ∗ a) ∗ (a ∗ p)) ∗ a

= (((a ∗ p) ∗ a) ∗ p) ∗ a (by the le f t invertive law)

= (a ∗ p) ∗ ((a ∗ p) ∗ a) (by the le f t invertive law)

= ((a ∗ p) ∗ (a ∗ p)) ∗ a (by the interlaced law)

= (a ∗ (a ∗ p)) ∗ (a ∗ p) (by the le f t invertive law)

= a ∗ (a ∗ p) = a,

s2 ∗ a = (s ∗ s) ∗ a = (a ∗ s) ∗ s = a,

s3 ∗ a = (s2 ∗ s) ∗ a = (a ∗ s) ∗ s2 = a ∗ s2 = a ∗ (s ∗ s) = (a ∗ s) ∗ s = a ∗ s = a.

When m > 3, m ≡ 0(mod 2), we have

sm ∗ a = (sm−2 ∗ s2) ∗ a

= (a ∗ s2) ∗ sm−2

= a ∗ sm−2

= a ∗ (s(m−2)/2 ∗ s(m−2)/2)

= (a ∗ s(m−2)/2) ∗ s(m−2)/2 (by the interlaced law)

= (s(m−2)/2 ∗ s(m−2)/2) ∗ a (by the le f t invertive law)

= sm−2 ∗ a

= ......

= s2 ∗ a = a.
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When m > 3, m ≡ 1(mod 2), we have

sm ∗ a = (sm−1 ∗ s) ∗ a

= (a ∗ s) ∗ sm−1

= a ∗ sm−1

= a ∗ (s(m−1)/2 ∗ s(m−1)/2)

= (a ∗ s(m−1)/2) ∗ s(m−1)/2 (by the interlaced law)

= (s(m−1)/2 ∗ s(m−1)/2) ∗ a

= sm−1 ∗ a

= ......

= s2 ∗ a = a.

Thus, s, s2, s3......sm...... are all left neutral element.
Applying Theorem 3, we know that there exists an idempotent left neutral element in D.

Theorem 5. Assume that (N, ∗) is a finite interlaced AG-(l,l)-Loop. Then, for all a in N, if neut(l,l)(a) is
an idempotent element, then it is unique.

Proof. Assume that N is a finite interlaced AG-(l,l)-Loop with respect to *. Suppose that there exist
x, y ∈ {neut(l,l)(a)}, a ∈ N. By Definition 8, x ∗ a = a, y ∗ a = a, and there exist p, q ∈ N which satisfy
p ∗ a = x, q ∗ a = y. If x ∗ x = x, y ∗ y = y, we have

x = x ∗ x = (p ∗ a) ∗ x = (x ∗ a) ∗ p = a ∗ p,

y = y ∗ y = (q ∗ a) ∗ y = (y ∗ a) ∗ q = a ∗ q,

x ∗ y = (p ∗ a) ∗ y = (y ∗ a) ∗ p = a ∗ p = x,

y ∗ x = (q ∗ a) ∗ x = (x ∗ a) ∗ q = a ∗ q = y,

x = x ∗ y = (x ∗ x) ∗ y = (y ∗ x) ∗ x = y ∗ x = y.

We know that x = y, neut(l,l)(a) is unique.

Theorem 6. Let (N, ∗) be a finite interlaced AG-(l,l)-Loop. Then, N is a strong AG-(l,l)-Loop.

Proof. For any a in N, applying Theorem 4, we have ∃s, p ∈ N, s ∗ a = a, p ∗ a = s, s ∗ s = s. From this
and Definition 9, we know that N is a strong AG-(l,l)-Loop.

Example 4. Let S = {1, 2, 3}, an operation ∗ on S is defined as in Table 3. Being (1 ∗ 1) ∗ 2 = 1 ∗ (1 ∗ 2) =
2, 1 ∗ (2 ∗ 2) = (1 ∗ 2) ∗ 2 = 3, (1 ∗ 1) ∗ 3 = 1 ∗ (1 ∗ 3) = 3, 1 ∗ (3 ∗ 3) = (1 ∗ 3) ∗ 3 = 2, (2 ∗ 2) ∗ 3 =

2 ∗ (2 ∗ 3) = 2, 2 ∗ (3 ∗ 3) = (2 ∗ 3) ∗ 3 = 3, and 1 ∗ 1 = 1, 1 ∗ 2 = 2, 3 ∗ 2 = 1, 1 ∗ 3 = 3, 2 ∗ 3 = 1, we have
S is a finite interlaced AG-(l,l)-Loop by Definition 10. Being neut(l,l)(1) = neut(l,l)(2) = neut(l,l)(3) = 1,
1*1=1, we have S is a strong AG-(l,l)-Loop by Definition 9.

Table 3. A finite interlaced AG-(l,l)-Loop of Example 4.

∗ 1 2 3

1 1 2 3
2 2 3 1
3 3 1 2
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The following example shows that a strong AG-(l,l)-Loop may not be an interlaced AG-(l,l)-Loop.

Example 5. Let S = {1, 2, 3}, an operation ∗ on S is defined as in Table 4. Being 1 ∗ 1 = 1, 1 ∗ 2 = 2, 2 ∗ 2 =

1, 1 ∗ 3 = 3, 3 ∗ 3 = 1, we have S is a strong AG-(l,l)-Loop by Definition 9. However, it is not an interlaced
AG-(l,l)-Loop because 2 ∗ (3 ∗ 3) = 3 6= 2 = (2 ∗ 3) ∗ 3.

Table 4. A strong AG-(l,l)-Loop of Example 5.

∗ 1 2 3

1 1 2 3
2 3 1 2
3 2 3 1

4. GAG-NET-Loop

Definition 11 ([26]). Let N be a non-empty set together with a binary operation ∗. Then, N is called
a generalized neutrosophic extended triplet set if for any a ∈ N, at least exists a positive integer n,
an exists neutral element ( denoted by neut(an)) and opposite element (denoted by anti(an)), such that
neut(an) ∈ N, anti(an) ∈ N and

an ∗ neut(an) = neut(an) ∗ an = an, an ∗ anti(an) = anti(an) ∗ an = neut(an).

The triplet (a, neut(an), anti(an)) is called a generalized neutrosophic extended triplet with degree n.

Definition 12. Let (N, ∗) be a generalized neutrosophic extended triplet set. Then, N is called a generalized
Abel-Grassmann’s neutrosophic extended triplet loop (GAG-NET-Loop), if the following conditions are satisfied:
for all a, b, c ∈ N, (a ∗ b) ∗ c = (c ∗ b) ∗ a.

A GAG-NET-Loop N is called a commutative GAG-NET-Loop if for all a, b ∈ N, a ∗ b = b ∗ a.

Example 6. Let S = {a, b, c}, an operation ∗ on S is defined as in Table 5. We can see that (a, a, a), (a, a, b),
and (a, a, c) are neutrosophic extended triplets, but b and c do not have the neutral element and opposite element.
Thus, S is not an AG-NET-Loop. Moreover, b2 = c2 = a has the neutral element and opposite element,
thus (S, ∗) is a GAG-NET-Loop. (b, a, a) and (c, a, a) are generalized neutrosophic extended triplets with degree
2. We can infer that (S, ∗) is a GAG-NET-Loop but not an AG-NET-Loop. Moreover it is not a commutative
GAG-NET-Loop being b ∗ c 6= c ∗ b.

Table 5. A GAG-NET-Loop of Example 6.

∗ a b c

a a a a
b a a c
c a b a

The algebraic system (Zn,⊗), ⊗ is the classical mod multiplication, where Zn = {[0], [1], · · · , [n−
1]} and n ∈ Z+, n ≥ 2.

Example 7. Consider (Z4,⊗), an operation ⊗ on Z4 is defined as in Table 6. We have:

(1) [0], [1] and [3] have the neutral element and opposite element.
(2) [2] does not have the neutral element and opposite element, but we can see that [2]2 = [0] has the neutral

element and opposite element.



Mathematics 2019, 7, 1206 9 of 20

Table 6. The operation table of Z4.

⊗ [0] [1] [2] [3]

[0] [0] [0] [0] [0]
[1] [0] [1] [2] [3]
[2] [0] [2] [0] [2]
[3] [0] [3] [2] [1]

Thus, Z4 is a generalized neutrosophic extended triplet set, but it is not a neutrosophic extended
triplet set. Moreover, (Z4,⊗) is a commutative GAG-NET-Loop.

Proposition 2. Let (N, ∗) be a GAG-NET-Loop, a ∈ N and (a, neut(an), anti(an)) is a generalized
neutrosophic extended triplet with degree n. We have:

(1) neut(an) is unique.
(2) neut(an) ∗ neut(an) = neut(an).

Proof. Assume c, d ∈ {neut(an)}, so an ∗ c = c ∗ an = an, an ∗ d = d ∗ an = an, and there exists x, y ∈ N
such that

an ∗ x = x ∗ an = c, an ∗ y = y ∗ an = d.

We can obtain
c ∗ d = (x ∗ an) ∗ d = (d ∗ an) ∗ x = an ∗ x = c,

c ∗ d = (an ∗ x) ∗ (y ∗ an)

= (an ∗ y) ∗ (x ∗ an)

= (an ∗ y) ∗ c

= (y ∗ an) ∗ c

= (c ∗ an) ∗ y

= an ∗ y = d.

We have c = d = c ∗ d. Thus, neut(an) is unique and neut(an) ∗ neut(an) = neut(an).

Proposition 3. Let (N, ∗) be a GAG-NET-Loop, a ∈ N and (a, neut(an), anti(an)) is a generalized
neutrosophic extended triplet with degree n. Then,

(1) (an ∗ an) ∗ an = an ∗ (an ∗ an).
(2) neut(an) ∗ x = neut(an) ∗ y, for any x, y ∈ {anti(an)}.
(3) neut(neut(an)) = neut(an).
(4) an ∗ (x ∗ neut(an)) = (x ∗ neut(an)) ∗ an = neut(an), for any x ∈ {anti(an)}.
(5) an ∗ (neut(an) ∗ x) = (neut(an) ∗ x) ∗ an = neut(an), for any x ∈ {anti(an)}.
(6) (neut(an) ∗ x) ∗ neut(an) = neut(an) ∗ (neut(an) ∗ x) = neut(an) ∗ x, for any x ∈ {anti(an)}.
(7) neut(neut(an) ∗ x) ∗ anti(neut(an) ∗ x) = an, for any x ∈ {anti(an)}.

Proof.

(1) For a ∈ N, neut(an) ∗ an = an ∗ neut(an) = an, we have

(an ∗ an) ∗ an = (an ∗ an) ∗ (neut(an) ∗ an) = (an ∗ neut(an)) ∗ (an ∗ an) = an ∗ (an ∗ an).

(2) For any x, y ∈ {anti(an)}, we have neut(an) ∗ x = (y ∗ an) ∗ x = (x ∗ an) ∗ y = neut(an) ∗ y.

(3) From Proposition 2, we have neut(an) exists neutral element and opposite element. For any
x ∈ {anti(an)} and y ∈ {anti(neut(an))},
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(y ∗ x) ∗ an = (an ∗ x) ∗ y = neut(an) ∗ y = neut(neut(an)).

Moreover,

((y ∗ x) ∗ an) ∗ neut(an) = (neut(an) ∗ y) ∗ neut(an)

= (y ∗ neut(an)) ∗ neut(an)

= (neut(an) ∗ neut(an)) ∗ y

= neut(an) ∗ y

= neut(neut(an)).

Thus, neut(an) = neut(neut(an)) ∗ neut(an) = ((y ∗ x) ∗ an) ∗ neut(an) = neut(neut(an)).

(4) For any x ∈ {anti(an)}, from Definition 11 and Proposition 2, we have

an ∗ (x ∗ neut(an)) = (an ∗ neut(an)) ∗ (x ∗ neut(an))

= (an ∗ x) ∗ (neut(an) ∗ neut(an))

= neut(an) ∗ neut(an)

= neut(an),

(x ∗ neut(an)) ∗ an = (an ∗ neut(an)) ∗ x = an ∗ x = neut(an).

Thus, an ∗ (x ∗ neut(an)) = (x ∗ neut(an)) ∗ an = neut(an), for any x ∈ {anti(an)}.

(5) For any x ∈ {anti(an)}, we have

(neut(an) ∗ x) ∗ an = (neut(an) ∗ x) ∗ (neut(an) ∗ an)

= (neut(an) ∗ neut(an)) ∗ (x ∗ an)

= neut(an) ∗ neut(an)

= neut(an),

an ∗ (neut(an) ∗ x) = (neut(an) ∗ an) ∗ (neut(an) ∗ x)

= (neut(an) ∗ neut(an)) ∗ (an ∗ x)

= neut(an) ∗ neut(an)

= neut(an).

Thus, an ∗ (neut(an) ∗ x) = (neut(an) ∗ x) ∗ an = neut(an).

(6) For any x ∈ {anti(an)}, we have

(neut(an) ∗ x) ∗ neut(an) = (neut(an) ∗ x) ∗ (an ∗ x)

= (neut(an) ∗ an) ∗ (x ∗ x)

= (an ∗ neut(an)) ∗ (x ∗ x)

= (an ∗ x) ∗ (neut(an) ∗ x)

= neut(an) ∗ (neut(an) ∗ x),

neut(an) ∗ (neut(an) ∗ x) = (x ∗ an) ∗ (neut(an) ∗ x)

= (x ∗ neut(an)) ∗ (an ∗ x)

= (x ∗ neut(an)) ∗ neut(an)

= (neut(an) ∗ neut(an)) ∗ x

= neut(an) ∗ x.
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Thus, (neut(an) ∗ x) ∗ neut(an) = neut(an) ∗ (neut(an) ∗ x) = neut(an) ∗ x.

(7) From (5) and (6), we have neut(neut(an) ∗ x) = neut(an), an ∈ anti{neut(an) ∗ x}. From (2),
neut(an) ∗ anti(an) is unique, we have

neut(neut(an) ∗ x) ∗ anti(neut(an) ∗ x) = neut(neut(an) ∗ x) ∗ an = neut(an) ∗ an = an.

Example 8. Let S = {a, b, c, d}, an operation ∗ on S is defined as in Table 7. Since neut(a) = a, {anti(a)} =
{a, b, c}, neut(d) = a, anti(d) = d and b2 = a, c2 = a, so (S, ∗) is a GAG-NET-Loop. We can get that
(Corresponding to the results of Proposition 3):

Table 7. A GAG-NET-Loop of Example 8.

∗ a b c d

a a a a d
b a a c d
c a b a d
d d d d a

(1) Being (b2 ∗ b2) ∗ b2 = b2 ∗ (b2 ∗ b2), (d1 ∗ d1) ∗ d1 = d1 ∗ (d1 ∗ d1), that is (an ∗ an) ∗ an = an ∗ (an ∗ an).
(2) Being a ∗ a = a ∗ b = a ∗ c, that is for any x, y ∈ {anti(c2)}, neut(c2) ∗ x = neut(c2) ∗ y.
(3) Being neut(neut(a1)) = neut(a1) = a, neut(neut(d1)) = neut(d1) = a, neut(neut(b2)) =

neut(b2) = a, neut(neut(c2)) = neut(c2) = a, that is neut(neut(an)) = neut(an).
(4) Being c2 ∗ (a ∗ neut(c2)) = a, (a ∗ neut(c2)) ∗ c2 = a = neut(c2), c2 ∗ (b ∗ neut(c2)) = a, (b ∗

neut(c2)) ∗ c2 = a = neut(c2), c2 ∗ (c ∗ neut(c2)) = a, (c ∗ neut(c2)) ∗ c2 = a = neut(c2), that is c2 ∗
(x ∗ neut(c2)) = (x ∗ neut(c2)) ∗ c2 = neut(c2), for any x ∈ {anti(c2)}. Being d1 ∗ (d ∗ neut(d1)) =

a, (d ∗ neut(d1)) ∗ d1 = a = neut(d1), that is d1 ∗ (x ∗ neut(d1)) = (x ∗ neut(d1)) ∗ d1 = neut(d1),
for any x ∈ {anti(d1)}.

(5) Being c2 ∗ (neut(c2) ∗ a) = a, (neut(c2) ∗ a) ∗ c2 = a = neut(c2), c2 ∗ (neut(c2) ∗ b) = a, (neut(c2) ∗
b) ∗ c2 = a = neut(c2), c2 ∗ (neut(c2) ∗ c) = a, (neut(c2) ∗ c) ∗ c2 = a = neut(c2), that is c2 ∗
(neut(c2) ∗ x) = (neut(c2) ∗ x) ∗ c2 = neut(c2), for any x ∈ {anti(c2)}. Being d1 ∗ (neut(d1) ∗ d) =
a, (neut(d1) ∗ d) ∗ d1 = a = neut(d1), that is d1 ∗ (neut(d1) ∗ x) = (neut(d1) ∗ x) ∗ d1 = neut(d1),
for any x ∈ {anti(d1)}.

(6) Being neut(c2) ∗ a = a, (neut(c2) ∗ a) ∗ neut(c2) = a, neut(c2) ∗ (neut(c2) ∗ a) = a; neut(c2) ∗ b = a,
(neut(c2) ∗ b) ∗ neut(c2) = a, neut(c2) ∗ (neut(c2) ∗ b) = a; neut(c2) ∗ c = a, (neut(c2) ∗ c) ∗
neut(c2) = a, neut(c2) ∗ (neut(c2) ∗ a) = a; that is (neut(c2) ∗ x) ∗neut(c2) = neut(c2) ∗ (neut(c2) ∗
x) = neut(c2) ∗ x, for any x ∈ {anti(c2)}. Being neut(d1) ∗ d = d, (neut(d1) ∗ d) ∗ neut(d1) = d,
neut(d1) ∗ (neut(d1) ∗ d) = d, that is (neut(d1) ∗ x) ∗ neut(d1) = neut(d1) ∗ (neut(d1) ∗ x) =

neut(d1) ∗ x, for any x ∈ {anti(d1)}.
(7) Being neut(neut(c2) ∗ a) ∗ anti(neut(c2) ∗ a) = a = c2; neut(neut(c2) ∗ b) ∗ anti(neut(c2) ∗ b) =

a = c2; neut(neut(c2) ∗ c) ∗ anti(neut(c2) ∗ c) = a = c2; that is neut(neut(c2) ∗ x) ∗ anti(neut(c2) ∗
x) = c2, for any x ∈ {anti(c2)}. Being neut(neut(d1) ∗ d) ∗ anti(neut(d1) ∗ d) = d1, that is
neut(neut(d1) ∗ x) ∗ anti(neut(d1) ∗ x) = d1, for any x ∈ {anti(d1)}.

Proposition 4. Let (N, ∗) be a GAG-NET-Loop, then ∀a, b ∈ N, there are two positive integers n and m such
that the following hold:

(1) neut(an) ∗ neut(bm) = neut(an ∗ bm).
(2) anti(an) ∗ anti(bm) ∈ {anti(an ∗ bm)}.
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Proof. Being (N, ∗) be a GAG-NET-Loop, then for a ∈ N, there is a positive integer n, such that an has
the neutral element and opposite element, denoted by neut(an) and anti(an), respectively. For b ∈ N,
there is a positive integer m, such that bm has the neutral element and opposite element, denoted by
neut(bm) and anti(bm), respectively. Thus,

(neut(an) ∗ neut(bm)) ∗ (an ∗ bm) = (neut(an) ∗ an) ∗ (neut(bm) ∗ bm)

= an ∗ bm.

In the same way, we have (an ∗ bm) ∗ (neut(an) ∗ neut(bm)) = an ∗ bm.
That is,

(an ∗ bm) ∗ (neut(an) ∗ neut(bm)) = (neut(an) ∗ neut(bm)) ∗ (an ∗ bm) = an ∗ bm.

Moreover, for any anti(an) ∈ {anti(an)} and anti(bm) ∈ {anti(bm)}, we can get

(anti(an) ∗ anti(bm)) ∗ (an ∗ bm) = (anti(an) ∗ an) ∗ (anti(bm) ∗ bm)

= neut(an) ∗ neut(bm).

Similarly, we have (an ∗ bm) ∗ (anti(an) ∗ anti(bm)) = neut(an) ∗ neut(bm). That is:

(an ∗ bm) ∗ (anti(an) ∗ anti(bm)) = (anti(an) ∗ anti(bm)) ∗ (an ∗ bm) = neut(an) ∗ neut(bm).

Thus, we have
neut(an) ∗ neut(bm) ∈ {neut(an ∗ bm)}.

From this, by Proposition 2, we get neut(an) ∗ neut(bm) = neut(an ∗ bm). Therefore, we get anti(an) ∗
anti(bm) ∈ {anti(an ∗ bm)}.

Example 9. Apply the (S, ∗) in Example 8, since neut(a) = a, {anti(a)} = {a, b, c}, neut(d) =

a, anti(d) = d and b2 = a, c2 = a, so (S, ∗) is a GAG-NET-Loop, we can get:

(1) Being neut(c2) ∗ neut(d1) = a, neut(c2 ∗ d1) = a, that is neut(c2) ∗ neut(d1) = neut(c2 ∗ d1).
(2) Being a ∗ d = b ∗ d = c ∗ d = d, that is anti(c2) ∗ anti(d1) ∈ {anti(c2 ∗ d1)}

Theorem 7. Let (N, ∗) be a GAG-NET-Loop. Then, N is a quasi regular AG-groupoid.

Proof. For any a in N, by Definition 11 we have (an ∗ anti(an)) ∗ an = neut(an) ∗ an = an. From this
and Definition 4, we know that N is a quasi regular AG-groupoid.

The following example shows that a quasi regular AG-groupoid may not be a GAG-NET-loop.

Example 10. Apply the (S, ∗) in Example 1, Being 1 = (1 ∗ 3) ∗ 1, 2 = (2 ∗ 4) ∗ 2, 3 = (3 ∗ 1) ∗ 3, 4 =

(4 ∗ 2) ∗ 4, From Definition 4, S is a quasi regular AG-groupoid. However, it is not a GAG-NET-Loop.

Theorem 8. Let (N, ∗) be a GAG-NET-Loop. Then, N is a quasi fully regular AG-groupoid.

Proof. Suppose a ∈ N and (a, neut(an), anti(an)) is a generalized neutrosophic extended triplet with
degree n, then there exists m ∈ {anti(an)}, an ∗m = m ∗ an = neut(an). Denote p = m ∗ neut(an), q =

neut(an); r = m, s = neut(an); t = m, u = neut(an); v = m; w = m ∗ neut(an); x = m, y = neut(an),
then
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(p ∗ (an)2) ∗ q = ((m ∗ neut(an)) ∗ (an)2) ∗ neut(an)

= (((an)2 ∗ neut(an)) ∗m) ∗ neut(an) (by the le f t invertive law)

= (((an ∗ an) ∗ neut(an)) ∗m) ∗ neut(an)

= (((neut(an) ∗ an) ∗ an) ∗m) ∗ neut(an) (by the le f t invertive law)

= ((an ∗ an) ∗m) ∗ neut(an)

= ((m ∗ an) ∗ an) ∗ neut(an) (by the le f t invertive law)

= (neut(an) ∗ an) ∗ neut(an)

= an ∗ neut(an) = an,

(r ∗ an) ∗ (an ∗ s) = (m ∗ an) ∗ (an ∗ neut(an)) = neut(an) ∗ an = an,

(an ∗ t) ∗ (an ∗ u) = (an ∗m) ∗ (an ∗ neut(an)) = neut(an) ∗ an = an,

(an ∗ an) ∗ v = (an ∗ an) ∗m = (m ∗ an) ∗ an = neut(an) ∗ an = an,

w ∗ (an ∗ an) = (m ∗ neut(an)) ∗ (an ∗ an)

= (m ∗ an) ∗ (neut(an) ∗ an) (by the medial law)

= (m ∗ an) ∗ an

= neut(an) ∗ an = an,

(x ∗ an) ∗ (y ∗ an) = (m ∗ an) ∗ (neut(an) ∗ an) = neut(an) ∗ an = an.

Moreover, from Proposition 4, we get:

neut(an) ∗ neut(bm) = neut(an ∗ bm), anti(an) ∗ anti(bm) ∈ {anti(an ∗ bm)}.

If bm = an, we have neut(an) ∗ neut(an) = neut(an ∗ an), anti(an) ∗ anti(an) ∈ {anti(an ∗ an)},
there exists k ∈ {anti(an ∗ an)}. Denote z = k ∗m, then

((an)2 ∗ z) ∗ (an)2 = ((an ∗ an) ∗ z) ∗ (an)2

= ((z ∗ an) ∗ an) ∗ (an)2 (applying the le f t invertive law)

= ((an)2 ∗ an) ∗ (z ∗ an) (applying the le f t invertive law)

= ((an)2 ∗ an) ∗ ((k ∗m) ∗ an)

= ((an)2 ∗ an) ∗ ((an ∗m) ∗ k) (by the le f t invertive law)

= ((an)2 ∗ an) ∗ (neut(an) ∗ k) (by m ∈ {anti(an)})
= ((an ∗ an) ∗ (neut(an) ∗ an)) ∗ (neut(an) ∗ k)

= ((an ∗ neut(an)) ∗ (an ∗ an)) ∗ (neut(an) ∗ k) (applying the medial law)

= (an ∗ (an)2) ∗ (neut(an) ∗ k)

= (an ∗ neut(an)) ∗ ((an)2 ∗ k) (applying the medial law)

= an ∗ neut(an ∗ an) (by the de f inition o f k ∈ {anti(an ∗ an)})
= an ∗ (neut(an) ∗ neut(an))

= an ∗ neut(an) (by Proposition 2 (2))

= an.

Therefore, combining above results, by Definition 5, we know that N is a quasi fully
regular AG-groupoid.
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The following example shows that a quasi fully regular AG-groupoid may not be
a GAG-NET-loop.

Example 11. Applying the (S, ∗) in Example 1, when a = 1,p = 1, q = 3, r = 4, s = 3, t = 2, u = 3, v =

2, w = 2, x = 4, y = 2, z = 3, we have a2 = 2, and

1 = (1 ∗ 2) ∗ 3 = (4 ∗ 1) ∗ (1 ∗ 3) = (1 ∗ 2) ∗ (1 ∗ 3)

= (1 ∗ 1) ∗ 2 = 2 ∗ (1 ∗ 1) = (4 ∗ 1) ∗ (2 ∗ 1)

= (2 ∗ 3) ∗ 2.

When a = 4,p = 1, q = 3, r = 4, s = 4, t = 3, u = 2, v = 3, w = 3, x = 4, y = 4, z = 2, we have
a2 = 3, and

4 = (1 ∗ 3) ∗ 3 = (4 ∗ 4) ∗ (4 ∗ 4) = (4 ∗ 3) ∗ (4 ∗ 2)

= (4 ∗ 4) ∗ 3 = 3 ∗ (4 ∗ 4) = (4 ∗ 4) ∗ (4 ∗ 4)

= (3 ∗ 2) ∗ 3.

Being 22 = 1, 33 = 1, from Definition 5, S is a quasi fully regular AG-groupoid. However, it is not
a GAG-NET-Loop.

Definition 13. An AG-groupoid (S, ∗) is called a quasi strong inverse AG-groupoid, if the following conditions
are satisfied: for any a ∈ S, there exists a positive integer n, an ∈ S, and a unary operation an → (an)−1 on S
such that

((an)−1)−1 = an, (an ∗ (an)−1) ∗ an = an ∗ (an ∗ (an)−1) = an, an ∗ (an)−1 = (an)−1 ∗ an.

Theorem 9. Let (N, ∗) be a groupoid. Then, N is a GAG-NET-Loop if and only if it is a quasi strong inverse
AG-groupoid.

Proof. Necessity: Suppose N is a GAG-NET-Loop, from Definition 12, for each a ∈ N, there exists
a generalized neutrosophic extended triplet with degree n denoted by (a, neut(an), anti(an)). Set

(an)−1 = neut(an) ∗ anti(an),

by Proposition 3(2), neut(an) ∗ anti(an) is unique, so (an)−1 is unique. By Proposition 3(7), we have

((an)−1)−1 = neut(neut(an) ∗ anti(an)) ∗ anti(neut(an) ∗ anti(an)) = an.

Being

(an)−1 ∗ an = (neut(an) ∗ anti(an)) ∗ an = (an ∗ anti(an)) ∗ neut(an) = neut(an) ∗ neut(an) = neut(an),

an ∗ (an)−1 = an ∗ (neut(an) ∗ anti(an))

= (neut(an) ∗ an) ∗ (neut(an) ∗ anti(an))

= (neut(an) ∗ neut(an)) ∗ (an ∗ anti(an))

= neut(an),

we have
(an)−1 ∗ an = an ∗ (an)−1,

(an ∗ (an)−1) ∗ an = neut(an) ∗ an = an,
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an ∗ (an ∗ (an)−1) = an ∗ neut(an) = an,

(an ∗ (an)−1) ∗ an = an ∗ (an ∗ (an)−1) = an.

From Definition 13, N is a quasi strong inverse AG-groupoid.
Sufficiency: If N is a quasi strong inverse AG-groupoid, and (an)−1 ∈ N, such that an ∗ (an)−1 =

(an)−1 ∗ an and (an ∗ (an)−1) ∗ an = an ∗ (an ∗ (an)−1) = an. Set

neut(an) = an ∗ (an)−1,

then neut(an) ∗ an = (an ∗ (an)−1) ∗ an = an ∗ (an ∗ (an)−1) = an ∗ neut(an) = an,

an ∗ (an)−1 = (an)−1 ∗ an = neut(an).

From Definition 12, we have that N is a GAG-NET-Loop and (an)−1 ∈ {anti(an)}.

Example 12. Applying (S, ∗) in Example 8, we know that it is a GAG-NET-Loop. We will show that it is
a quasi strong inverse AG-groupoid in the following.

For d, there exists an inverse element d−1 = d, such that (d−1)−1 = d, (d ∗ d−1) ∗ d = d ∗ (d ∗ d−1) =

d, d ∗ d−1 = d−1 ∗ d = a, so d is quasi strong inverse. a is quasi strong inverse for the same reason. Moreover,
being b2 = a, c2 = a, b and c are quasi strong inverse, thus (S, ∗) is a quasi strong inverse AG-groupoid by
Definition 13.

Definition 14. Let (N, ∗) be a GAG-NET-Loop. N is called a weak commutative GAG-NET-Loop if ∀a, b ∈ N,
there exist a generalized neutrosophic extended triplet with degree n (denoted by (a, neut(an), anti(an))) and
a generalized neutrosophic extended triplet with degree m (denoted by (b, neut(bm), anti(bm))), n, m ∈ Z+,
an ∗ neut(bm) = neut(bm) ∗ an.

Example 13. Let S = {1, 2, 3, 4, 5, 6, 7}, an operation ∗ on S is defined as in Table 8. Since (1, 1, 1), (2, 2, 2)
and (6, 6, 6) are neutrosophic extended triplets, but 3, 4, 5, 7 do not have the neutral element and opposite element,
thus S is not an AG-NET-Loop. Moreover 32 = 1, 42 = 1, 52 = 2, 72 = 6 have the neutral element and opposite
element, so (S, ∗) is a GAG-NET-Loop. It is not a commutative GAG-NET-Loop being 3 ∗ 1 6= 1 ∗ 3. We can
show that it is a weak commutative GAG-NET-Loop.

For 1, 2, 3, 4, 5, 6 and 7, there exist positive integers 1, 1, 2, 2, 2, 1 and 2, respectively, thus S′ =

{11, 21, 32, 42, 52, 61, 72} = {1, 2, 6} being 32 = 1, 42 = 1, 52 = 2, 72 = 6. We know that neut(1) =

1, neut(2) = 2, neut(6) = 6, thus {neut(1), neut(2), neut(6)} ⊆ S′. In Table 8, we can get the sub
algebra system (S′, ∗) of (S, ∗) as in Table 9, and (S′, ∗) is commutative. Thus, (S, ∗) is a weak commutative
GAG-NET-Loop.

Table 8. The operation table of Example 13.

∗ 1 2 3 4 5 6 7

1 1 2 3 4 5 6 7
2 2 2 2 2 2 2 2
3 4 2 1 3 5 6 7
4 3 2 4 1 5 6 7
5 5 2 5 5 2 2 2
6 6 2 6 6 2 6 6
7 7 2 7 7 2 6 6
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Table 9. The sub algebra system S′ of S in Example 13.

∗ 1 2 6

1 1 2 6
2 2 2 2
6 6 2 6

Example 14. Let S = {1, 2, 3, 4}, an operation ∗ on S is defined as in Table 10. Being neut(1) ∗ 2 = 4 6= 3 =

2 ∗ neut(1), S is not a weak commutative GAG-NET-Loop. Moreover, it is not a commutative AG-NET-Loop.

Table 10. The operation table of Example 14.

∗ 1 2 3 4

1 1 4 2 3
2 3 2 4 1
3 4 1 3 2
4 2 3 1 4

Proposition 5. Let (N, ∗) be a GAG-NET-Loop. Then, (N, ∗) is a weak commutative GAG-NET-Loop if and
only if N satisfies the following conditions: ∀a, b ∈ N, there exist a generalized neutrosophic extended triplet
with degree n (denoted by (a, neut(an), anti(an))) and a generalized neutrosophic extended triplet with degree
m (denoted by (b, neut(bm), anti(bm))), n, m ∈ Z+, an ∗ bm = bm ∗ an.

Proof. Necessity: If (N, ∗) is a weak commutative GAG-NET-Loop, then there are two positive integers
n, m, such that an and bm have the neutral element and opposite element. Thus, from Definition 14,
∀a, b ∈ N, we have

an ∗ bm = (neut(an) ∗ an) ∗ (bm ∗ neut(bm))

= (neut(an) ∗ bm) ∗ (an ∗ neut(bm))

= (bm ∗ neut(an)) ∗ (neut(bm) ∗ an)

= (bm ∗ neut(bm)) ∗ (neut(an) ∗ an)

= bm ∗ an.

Sufficiency: If (N, ∗) is a GAG-NET-Loop, then for a ∈ N, there is a positive integer n, such
that an has the neutral element and opposite element, denoted by neut(an) and anti(an), respectively.
For b ∈ N, there is a positive integer m, such that bm has the neutral element and opposite element,
denoted by neut(bm) and anti(bm), respectively. Suppose that (N, ∗) satisfies the conditions an ∗ bm =

bm ∗ an, From Proposition 2, we have neut(bm) exists neutral element and opposite element. We get
an ∗ neut(bm) = neut(bm) ∗ an. From Definition 14, we know that (N, ∗) is a weak commutative
GAG-NET-Loop.

Definition 15. A GAG-NET-Loop (S, ∗) is called a quasi Clifford AG-groupoid, if it is a quasi strong inverse
AG-groupoid and for any a, b ∈ S, there are two positive integers n, m such that

an ∗ (bm ∗ (bm)−1) = (bm ∗ (bm)−1) ∗ an.

Theorem 10. Let (N, ∗) be a groupoid. Then, N is a weak commutative GAG-NET-Loop if and only if it is
a quasi Clifford AG-groupoid.
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Proof. Necessity: Suppose that N is a weak commutative GAG-NET-Loop. By Theorem 9, we know
that N is a quasi strong inverse AG-groupoid, then ∀a, b ∈ N there are two positive integers n, m, such
that an and bm have the neutral element and opposite element. Set

(an)−1 = neut(an) ∗ anti(an).

For any a, b ∈ N, we have

an ∗ (bm ∗ (bm)−1) = an ∗ neut(bm) = neut(bm) ∗ an = (bm ∗ (bm)−1) ∗ an.

From Definition 15, we know that N is a quasi Clifford AG-groupoid.
Sufficiency: Assume that N is a quasi Clifford AG-groupoid, from Definition 15, it is a quasi

strong inverse AG-groupoid. By Theorem 9, we know that N is a GAG-NET-Loop. Then, ∀a, b ∈ N
there are two positive integers n, m, such that an and bm have the neutral element and opposite element,
(an)−1 ∈ N, (bm)−1 ∈ N. Set

neut(an) = an ∗ (an)−1, neut(bm) = bm ∗ (bm)−1.

From Definition 15, being an ∗ (bm ∗ (bm)−1) = (bm ∗ (bm)−1) ∗ an, we have an ∗ neut(bm) =

neut(bm) ∗ an. We can get that N is a weak commutative GAG-NET-Loop by Definition 14.

Example 15. Let S = {1, 2, 3, 4, 5, 6, 7, 8}, an operation ∗ on S is defined as in Table 11. It is a weak
commutative GAG-NET-Loop. We show that it is a quasi Clifford AG-groupoid. From Theorem 9, we can see
that (S, ∗) is a quasi strong inverse AG-groupoid. We just show for any x, y ∈ S, there are two positive integers
n and m such that xn ∗ (ym ∗ (ym)−1) = (ym ∗ (ym)−1) ∗ xn.

In Example 15, 1, 2, 3, 4, 5, 6, 7 and 8, there exist positive integers 1, 1, 2, 2, 2, 1, 2 and 2, respectively, and
set 1−1 = 1, 2−1 = 2, (32)−1 = 1, (42)−1 = 1, (52)−1 = 2, 6−1 = 6, (72)−1 = 6, (82)−1 = 6. For any
x, y ∈ {11, 21, 32, 42, 52, 61, 72, 82}, without losing generality, let x = 1, y = 2, we can get 11 ∗ (21 ∗ (21)−1) =

(21 ∗ (21)−1) ∗ 11 = 2. We can verify other cases, thus (S, ∗) is a quasi Clifford AG-groupoid.

Table 11. The operation table of Example 15.

∗ 1 2 3 4 5 6 7 8

1 1 2 3 4 5 6 7 8
2 2 2 2 2 2 2 2 2
3 4 2 1 3 5 6 7 8
4 3 2 4 1 5 6 7 8
5 5 2 5 5 2 2 2 2
6 6 2 6 6 2 6 6 6
7 7 2 7 7 2 6 6 6
8 8 2 8 8 2 6 6 6

Example 16. Let S = {1, 2, 3, 4, 5}, an operation ∗ on S is defined as in Table 12. it is not a weak commutative
GAG-NET-Loop. We show that there exist x, y ∈ S, for any two positive integers n and m such that xn ∗ (ym ∗
(ym)−1) 6= (ym ∗ (ym)−1) ∗ xn.

In Example 16, for any n, m ∈ Z+, 1n = 1, 2m = 2 and (1n)−1 = 1, (2m)−1 = 2, but 1n ∗ (2m ∗
(2m)−1) = 4 6= 3 = (2m ∗ (2m)−1) ∗ 1n. That is, for 1, 2 ∈ S, there are not two positive integers n, m such
that 1n ∗ (2m ∗ (2m)−1) = (2m ∗ (2m)−1) ∗ 1n. Thus, (S, ∗) is not a quasi Clifford AG-groupoid.
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Table 12. The operation table of Example 16.

∗ 1 2 3 4 5

1 1 4 2 3 1
2 3 2 4 1 3
3 4 1 3 2 4
4 2 3 1 4 2
5 1 4 2 3 5

5. Conclusions

We thoroughly study the GAG-NET-Loop from the perspective of the AG-groupoid theory and
obtained some important results. Figures 1 and 2 give the relations of the GAG-NET-Loop and other
algebraic structures.

Weak commutative GAG-NET-LOOP

GAG-NET-LOOP

AG-NET-LOOPStrong inverse AG-groupoid

Quasi strong inverse AG-groupoid

Quasi Clifford AG-groupoid

Regular AG-groupoidInverse AG-groupoid

Figure 1. The relations of GAG-NET-Loop and other algebraic structures.

AG-groupoid

GAG-NET-LOOP

AG-NET-LOOPRegular AG-groupoid

Quasi regular AG-groupoid Quasi fully regular AG-groupoid

Fully regular AG-groupoid

Figure 2. The relations of GAG-NET-Loop and other AG-groupoids.

As can be seen in Figure 1, we prove that the AG-NET-Loop is equal to the strong inverse
AG-groupoid, the GAG-NET-Loop is equal to the quasi strong inverse AG-groupoid, and the weak
commutative GAG-NET-Loop is equal to the quasi Clifford AG-groupoid.

As can be seen in Figure 2, we prove that a GAG-NET-loop is a quasi regular AG-groupoid, but a
quasi regular AG-groupoid may not be a GAG-NET-loop; a GAG-NET-loop is a quasi fully regular
AG-groupoid, but a quasi fully regular AG-groupoid may not be a GAG-NET-loop.

Figure 3 can be used to further express the relationships among GAG-NET-Loop and some
algebraic systems. Here, as shown in Example 2, A represents a commutative AG-NET-Loop; as shown
in Example 15, B represents a weak commutative GAG-NET-Loop, but it is not an AG-NET-Loop; as i s
shown in Example 14, C represents a non-commutative AG-NET-Loop; D represents a GAG-NET- Loop,
but it is neither an AG-NET-Loop nor a weak commutative GAG-NET-Loop; as shown in Example 10,
E represents a quasi regular AG-groupoid, but it is not a GAG-NET-Loop; and as shown in Example 11,
F represents a quasi fully regular AG-groupoid, but it is not a GAG-NET-Loop. A+B represents
a weak commutative GAG-NET-Loop, A+C represents an AG-NET-Loop, A+B+C+D represents a
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GAG-NET-Loop, A+B+C+D+E represents a quasi regular AG-groupoid, and A+B+C+D+F represents
a quasi fully regular AG-groupoid.

AB C

DE F

Figure 3. The relationships among some algebraic systems and GAG-NET-Loop.

All these results are interesting for the exploration of the structure characterization of
GAG-NET-Loop. As the next research topics, we want to find some special GAG-NET-Loops which
can be decomposed into some smaller GAG-NET-Loops, and explore the relationship between these
special GAG-NET-Loops and the related AG-groupoids.
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