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Abstract: In order to quantify the fuzziness in the simplified neutrosophic setting, this paper
proposes a generalized distance-based entropy measure and a dimension root entropy measure
of simplified neutrosophic sets (NSs) (containing interval-valued and single-valued NSs) and verifies
their properties. Then, comparison with the existing relative interval-valued NS entropy measures
through a numerical example is carried out to demonstrate the feasibility and rationality of the
presented generalized distance-based entropy and dimension root entropy measures of simplified
NSs. Lastly, a decision-making example is presented to illustrate their applicability, and then the
decision results indicate that the presented entropy measures are effective and reasonable. Hence,
this study enriches the simplified neutrosophic entropy theory and measure approaches.

Keywords: simplified neutrosophic set; simplified neutrosophic generalized distance-based entropy;
simplified neutrosophic dimension root entropy; decision making

1. Introduction

Since entropy is an effective measure approach in quantifying the uncertainty degree of the objects,
with the development of fuzzy theory, a lot of research on fuzzy entropy has been done so far. Zadeh [1]
first defined fuzzy entropy for fuzzy sets regarding the probability distribution of a fuzzy event. Then,
De-Luca and Termini [2] formulated axioms of fuzzy entropy and proposed a non-probabilistic
logarithm of fuzzy entropy. Exponential fuzzy entropy was presented by Pal and Pal [3]. Yager [4]
put forward the metric distance-based entropy by measuring the lack of distinction between the fuzzy
set and its complement. The weighted fuzzy entropy with trigonometric functions of membership
degree was constructed by Parkash and Sharma [5]. Thereafter, the generalized parametric exponential
fuzzy entropy of order-α was introduced by Verma and Sharma [6], which reduces to the Pal and Pal
exponential entropy [3] when α = 1, and becomes the De-Luca and Termini logarithmic entropy [2]
when α→ 0. However, for an intuitionistic fuzzy set (IFS) extended by adding a non-membership
degree to a fuzzy set (FS), Burillo and Bustince [7] first proposed IFS and interval-valued IFS entropy
measures and their axiom requirements. Then, Szmidt and Kacprzyk [8] redefined De-Luca and
Termini’s axioms [2] in IFS setting and presented an intuitionistic non-probabilistic fuzzy entropy
measure by a geometric interpretation and a ratio of distance of IFSs. Valchos and Sergiadis [9]
constructed a new entropy logarithm of IFS on the basis of the De-Luca and Termini fuzzy entropy
logarithm [2]. As an extension of logarithmic entropy [2], Zhang and Jiang [10] proposed vague
entropy by the intersection and union of the non-membership degree and membership degree for
vague sets, and defined vague cross-entropy for IFSs. Further, the cosine and sine entropy of IFS was
defined by Ye [11]. An exponential entropy measure of IFS was proposed by Verma and Sharma [12],
and then intuitionistic fuzzy entropy was proposed corresponding to the order-α [13] and R-norm [14].
Additionally, for an interval-valued IFS (IvIFS), Ye [15] put forward the sine and cosine entropy of
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IvIFS. Wei et al. [16] also presented entropy and similarity measures of IvIFS and described their
relationships. Then, Zhang et al. [17] defined the distance-based entropy of IvIFS and its relative axiom
requirement. Tian et al. [18] proposed a pair of generalized entropy measure on IFSs and IvIFSs.

Recently, the neutrosophic set (NS) was introduced to describe the uncertainty and inconsistency
information by an indeterminacy degree added to the IFS. After that, a single-valued NS (SvNS),
an interval-valued NS (IvNS), and a simplified NS containing SvSN and IvNS were proposed as
subsets of NS and successively used for practical applications. To measure the fuzziness of the
NSs, Majumder and Samanta [19] developed the entropy of SvNSs. Aydoğdu [20] introduced the
entropy and similarity measures of IvNSs. Then Ye and Du [21] put forward the distances, entropy,
and similarity measures of IvNSs and depicted their relationship. Ye and Cui further proposed
exponential entropy [22] and sine entropy [23] for simplified NSs. However, some distances-based
entropy measures are not developed for simplified NSs in existing literature. Hence, it is necessary to
add some distances-based entropy measures of simplified NSs as their complement.

Motivated by distance measures and dimension root similarity measure [24], we proposed the
generalized distance-based entropy and dimension root entropy of simplified NSs in this paper. As for
the framework of this paper, we introduce some concepts of simplified NSs in Section 2, and then
Section 3 proposes the simplified neutrosophic generalized distance-based entropy and dimension root
entropy. In Section 4, the comparative analysis of entropy measures for IvNSs is carried out to show
the effectiveness and rationality of the presented entropy measures. In Section 5, a decision-making
example is used to illustrate the applicability of the novel entropy measures. Lastly, the conclusions
and future work of this study are given in Section 6.

2. Simplified Neutrosophic Sets

Simplified NS, which contains both SvNS and IvNS, was presented by Ye [25] as a subset of NS for
convenient application. Assume there is a universal set A = {a1, a2, ..., an}, then a simplified NS B in A can
be given by B = {<ai, TB(ai), UB(ai), FB(ai)> | ai ∈ A}, where B is a SvNS if TB(ai), UB(ai), FB(ai) ∈ [0, 1]
and 0 ≤ TB(ai) + UB(ai) + FB(ai) ≤ 3, whereas B is an IvNS if TB(ai) = [T−B (ai), T+

B (ai)], UB(ai) =
[U−B (ai), U+

B (ai)], FB(ai) = [F−B (ai), F+
B (ai)] with the conditions of [T−B (ai), T+

B (ai)], [U−B (ai), U+
B (ai)],

[F−B (ai), F+
B (ai)] Í [0, 1] and 0 ≤ T+

B (ai) + U+
B (ai) + F+

B (ai) ≤ 3.
Provided that there are two simplified NSs B = {<ai, TB(ai), UB(ai), FB(ai)> | ai ∈ A} and C = {<ai,

TC(ai), UC(ai), FC(ai)> | ai ∈ A}, then some operations between B and C can be given as follows [25,26]:

(1) The sufficient and necessary condition of B ⊆ C for SvNSs is TB(ai) ≤ TC(ai), UB(ai) ≥ UC(ai),
and FB(ai) ≥ FC(ai), while that for IvNSs is T−B (ai) ≤ T−C (ai), T+

B (ai) ≤ T+
C (ai), U−B (ai) ≥ U−C (ai),

U+
B (ai) ≥ U+

C (ai), F−B (ai) ≥ F−C (ai), and F+
B (ai) ≥ F+

C (ai);
(2) The sufficient and necessary condition of B = C is B ⊆ C and C ⊆ B;
(3) The complement of a SvNS B is Bc = {< ai, FB(ai), 1−UB(ai), TB(ai) > |ai ∈ A}, and then that of

an IvNS B is Bc =
{
< ai, [F−B (ai), F+

B (ai)], [1−U+
B (ai), 1−U−B (ai)], [T−B (ai), T+

B (ai)] >
∣∣ai ∈ A

}
;

(4) If B and C are SvNSs, then:

B ∪ C = {< ai, TB(ai) ∨ TC(ai), UB(ai) ∧UC(ai), FB(ai) ∧ FC(ai) > |ai ∈ A},

B ∩ C = {< ai, TB(ai) ∧ TC(ai), UB(ai) ∨UC(ai), FB(ai) ∨ FC(ai) > |ai ∈ A},

B⊕ C = {< ai, TB(ai) + TC(ai)− TB(ai)TC(ai), UB(ai)UC(ai), FB(ai)FC(ai) > |ai ∈ A},

B⊗ C = {〈ai, TB(ai)TC(ai), UB(ai) + UC(ai)−UB(ai)UC(ai), FB(ai) + FC(ai)− FB(ai)FC(ai)〉|ai ∈ A},

γB =
{
< ai, 1− (1− TB(ai))

γ, Uγ
B(ai), Fγ

B (ai) >
∣∣ai ∈ A

}
for γ > 0,

Bγ =
{〈

ai, Tγ
B (ai), 1− (1−UB(ai))

γ, 1− (1− FB(ai))
γ〉∣∣ai ∈ A

}
for γ > 0.
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However, if B and C are IvNSs, then:

B ∪ C =


〈 ai, [T−B (ai) ∨ T−C (ai), T+

B (ai) ∨ T+
C (ai)],

[U−B (ai) ∧U−C (ai), U+
B (ai) ∧U+

C (ai)],
[F−B (ai) ∧ F−C (ai), F+

B (ai) ∧ F+
C (ai)]

〉
|ai ∈ A

,

B ∩ C =


〈 ai, [T−B (ai) ∧ T−C (ai), T+

B (ai) ∧ T+
C (ai)],

[U−B (ai) ∨U−C (ai), U+
B (ai) ∨U+

C (ai)],
[F−B (ai) ∨ F−C (ai), F+

B (ai) ∨ F+
C (ai)]

〉
|ai ∈ A

,

B⊕ C =

{〈
ai, [T−B (ai) + T−C (ai)− T−B (ai)T−C (ai), T+

B (ai) + T+
C (ai)− T+

B (ai)T+
C (ai)],

[U−B (ai)U−C (ai), U+
B (ai)U+

C (ai)], [F−B (ai)F−C (ai), F+
B (ai)F+

C (ai)]

〉
|ai ∈ A

}
,

B⊗ C =


〈 ai, [T−B (ai)T−C (ai), T+

B (ai)T+
C (ai)],

[U−B (ai) + U−C (ai)−U−B (ai)U−C (ai), U+
B (ai) + U+

C (ai)−U+
B (ai)U+

C (ai)],
[F−B (ai) + F−C (ai)− F−B (ai)F−C (ai), F+

B (ai) + F+
C (ai)− F+

B (ai)F+
C (ai)]

〉
|ai ∈ A

,

γB =

{〈
ai, [1− (1− T−B (ai))

γ, 1− (1− T+
B (ai))

γ
],

[(U−B (ai))
γ, (U+

B (ai))
γ
], [(F−B (ai))

γ, (F+
B (ai))

γ
]

〉
|ai ∈ A

}
for γ > 0,

Bγ =

{〈
ai, [(T−B (ai))

γ, (T+
B (ai))

γ
], [1− (1−U−B (ai))

γ, 1− (1−U+
B (ai))

γ
],

[1− (1− F−B (ai))
γ, 1− (1− F+

B (ai))
γ
]

〉
|ai ∈ A

}
for γ > 0.

3. Simplified Neutrosophic Generalized Distance-based Entropy and Dimension Root Entropy

In this section, two novel simplified neutrosophic entropy measures, containing a simplified
neutrosophic generalized distance-based entropy measure and a simplified neutrosophic dimension
root entropy measure, are defined below.

3.1. Simplified Neutrosophic Generalized Distance-Based Entropy

Definition 1. Assume a simplified NS H in a universal set A = {a1, a2, ..., an} is H = {<ai, TH(ai), UH(ai),
FH(ai)> | ai ∈ A}. Then, a new generalized distance-based entropy measure of H can be defined as:

EAρ
1(H) =

1
3n

n

∑
i=1

[
1− 2ρ|TH(ai)− 0.5|ρ + 1− 2ρ|UH(ai)− 0.5|ρ

+1− 2ρ|FH(ai)− 0.5|ρ

]
for the SvNS H and ρ > 0, (1)

EAρ
2(H) =

1
6n

n

∑
i=1

 1− 2ρ
∣∣T−H (ai)− 0.5

∣∣ρ + 1− 2ρ
∣∣T+

H (ai)− 0.5
∣∣ρ

+1− 2ρ
∣∣U−H (ai)− 0.5

∣∣ρ + 1− 2ρ
∣∣U+

H (ai)− 0.5
∣∣ρ

+1− 2ρ
∣∣F+

H (ai)− 0.5
∣∣ρ + 1− 2ρ

∣∣F−H (ai)− 0.5
∣∣ρ
 for the IvNS H and ρ > 0, (2)

where ρ is an integer value.

According to the axiomatic definition of the IvNS entropy measure [21], the proposed generalized
distance-based entropy measure of a simplified NS has the theorem below.

Theorem 1. Set A as a universal set A = {a1, a2, ..., an}. Assume there is a fuzziest simplified NS B = {b1, b2, ...,
bn} = {<ai, TB(ai), UB(ai), FB(ai)> | ai ∈ A} in the universal set A along with each element bi = <ai, 0.5, 0.5,
0.5> (i = 1, 2, ..., n) for SvNS or bi = <ai, [0.5, 0.5], [0.5, 0.5], [0.5, 0.5]> (i = 1, 2, ..., n) for IvNS. Then the
entropy measure EAρ

k(H) (k = 1, 2; ρ > 0) of the simplified NS H = {h1, h2, ..., hn} = {<ai, TH(ai), UH(ai),
FH(ai)> | ai ∈ A} satisfies the following properties:

(EAP1) EAρ
k(H) = 0 (k = 1, 2; ρ > 0) if H is a crisp set whose element is <ai, 1, 0, 0> or <ai, 0, 0, 1>

(i = 1, 2, ..., n) for SvNS and <ai, [1, 1], [0, 0], [0, 0]> or <ai, [0, 0], [0, 0], [1, 1]> for IvNS;
(EAP2) EAρ

k(H) = 1 (k = 1, 2; ρ > 0) if and only if hi = bi for i = 1, 2, ..., n;
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(EAP3) If one simplified NS H is closer to the fuzziest simplified NS B than the other simplified NS L,
then H is fuzzier than L with EAρ

k(L) < EAρ
k(H) (k = 1, 2; ρ > 0);

(EAP4) If the complement of H is HC, then EAρ
k(H) = EAρ

k(Hc) (k = 1, 2; ρ > 0).

Proof.
(EAP1) If a crisp set H = {h1, h2, ..., hn} is a SvNS with hi = <ai, 1, 0, 0> or hi = <ai, 0, 0, 1> (i = 1, 2,

..., n), by Equation (1) we can obtain:

EAρ
1(H) =

1
3n

n
∑

i=1
[1− 2ρ|TH(ai)− 0.5|ρ + 1− 2ρ|UH(ai)− 0.5|ρ + 1− 2ρ|FH(ai)− 0.5|ρ]

=
n

3n
[1− 2ρ

∣∣∣1− 0.5
∣∣∣ρ + 1− 2ρ

∣∣∣0− 0.5
∣∣∣ρ + 1− 2ρ

∣∣∣0− 0.5
∣∣∣ρ] = 0

or
EAρ

1(H) =
1

3n

n
∑

i=1
[1− 2ρ|TH(ai)− 0.5|ρ + 1− 2ρ|UH(ai)− 0.5|ρ + 1− 2ρ|FH(ai)− 0.5|ρ]

=
n

3n
[1− 2ρ

∣∣∣0− 0.5
∣∣∣ρ + 1− 2ρ

∣∣∣0− 0.5
∣∣∣ρ + 1− 2ρ

∣∣∣1− 0.5
∣∣∣ρ] = 0

, for ρ > 0

while if H = {h1, h2, ..., hn} is an IvNS with hi = <ai, [1, 1], [0, 0], [0, 0]> or hi = <ai, [0, 0], [0, 0], [1, 1]>
(i = 1, 2, ..., n), by Equation (2) we have:

EAρ
2(H) =

1
6n

n
∑

i=1

 1− 2ρ
∣∣T−H (ai)− 0.5

∣∣ρ + 1− 2ρ
∣∣T+

H (ai)− 0.5
∣∣ρ

+1− 2ρ
∣∣U−H (ai)− 0.5

∣∣ρ + 1− 2ρ
∣∣U+

H (ai)− 0.5
∣∣ρ

+1− 2ρ
∣∣F−H (ai)− 0.5

∣∣ρ + 1− 2ρ
∣∣F+

H (ai)− 0.5
∣∣ρ


=

1
6n

n
∑

i=1

 1− 2ρ|1− 0.5|ρ + 1− 2ρ|1− 0.5|ρ

+1− 2ρ|0− 0.5|ρ + 1− 2ρ|0− 0.5|ρ

+1− 2ρ|0− 0.5|ρ + 1− 2ρ|0− 0.5|ρ

 = 0

,

or:

EAρ
2(H) =

1
6n

n
∑

i=1

 1− 2ρ
∣∣T−H (ai)− 0.5

∣∣ρ + 1− 2ρ
∣∣T+

H (ai)− 0.5
∣∣ρ

+1− 2ρ
∣∣U−H (ai)− 0.5

∣∣ρ + 1− 2ρ
∣∣U+

H (ai)− 0.5
∣∣ρ

+1− 2ρ
∣∣F−H (ai)− 0.5

∣∣ρ + 1− 2ρ
∣∣F+

H (ai)− 0.5
∣∣ρ


=

1
6n

n
∑

i=1

 1− 2ρ|0− 0.5|ρ + 1− 2ρ|0− 0.5|ρ

+1− 2ρ|0− 0.5|ρ + 1− 2ρ|0− 0.5|ρ

+1− 2ρ|1− 0.5|ρ + 1− 2ρ|1− 0.5|ρ

 = 0

for ρ > 0.

(EAP2) Let f (xi) = 1− 2ρ|xi − 0.5|ρ (ρ > 0) be a function for xi ∈ [0, 1] (i = 1, 2, ..., n). Find the
extreme values of f (xi) on the closed interval [0, 1] using calculus technique.

At first, by removing the absolute symbol, the function f (xi) can be expressed as:

f (xi) =


1− 2ρ(0.5− xi)

ρ, f or 0 ≤ xi < 0.5
1, f or xi = 0.5

1− 2ρ(xi − 0.5)ρ, f or 0.5 < xi ≤ 1
for ρ > 0.

For ρ = 1, the first derivative of f (xi) with respect to xi apart from xi = 0.5 is:

f ′(xi) =
d f (xi)

dxi
=

{
2, f or 0 ≤ xi < 0.5
−2, f or 0.5 < xi ≤ 1

for ρ = 1. (3)

It is clear that f (xi) is monotonically increasing when xi ∈ [0, 0.5) and decreasing when xi ∈ (0.5, 1].
Thus, for the interval [0, 1], f (xi) = 1 get the maximum value at the critical point of xi = 0.5 for ρ = 1.
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Then, when ρ is not equal to 1, the first derivative of f (xi) with respect to xi can be calculated by:

f ′(xi) =
d f (xi)

dxi
=


2ρ ρ(0.5− xi)

ρ−1, f or 0 ≤ xi < 0.5
0, f or xi = 0.5
−2ρ ρ(xi − 0.5)ρ−1, f or 0.5 < xi ≤ 1

. (4)

Obviously, the first derivative of f (xi) is equal to zero only at the point of xi = 0.5. Because f’(xi) is
positive for 0 ≤ xi < 0.5 and negative for 0.5 < xi ≤ 1, the maximum of f (xi) = 1 on the closed interval
[0, 1] can be obtained at the critical point xi = 0.5.

Regarding the definition of f (xi), the entropy measure of simplified NS H = {h1, h2, ..., hn} = {<ai,
TH(ai), UH(ai), FH(ai)> | ai ∈ A} can be defined as:

EAρ
1(H) =

1
3n

n

∑
i=1

[ f (TH(ai)) + f (UH(ai)) + f (FH(ai))] for the SvNS H,

EAρ
2(H) =

1
6n

n

∑
i=1

 f (T−H (ai)) + f (T+
H (ai))

+ f (U−H (ai)
)
+ f (U+

H (ai)
)

+ f (F−H (ai)) + f (F+
H (ai))

 for the IvNS H.

It is clear that if and only if hi = <ai, 0.5, 0.5, 0.5>, the maximum value of the entropy measure
is EAρ

1(H) = 1 and if and only if hi = <ai, [0.5, 0.5], [0.5, 0.5], [0.5, 0.5]>, the maximum value of the
entropy measure is EAρ

2(H) = 1.
(EAP3) According to Equations (3) and (4), f (xi) is monotonically increasing when xi ∈ [0, 0.5],

and monotonically decreasing when xi ∈ [0.5, 1]. Therefore, the closer the simplified NS H is to the
fuzziest set B than L, the fuzzier H is than L with EAρ

k(L) < EAρ
k(H) (k = 1, 2; ρ > 0).

(EAP4) When the complement of the SvNS H = {<ai, TH(ai), UH(ai), FH(ai)> | ai ∈ A} is HC = {<ai,
FH(ai), 1 – UH(ai), TH(ai)> | ai ∈ A}, by Equation (1) we can obtain:

EAρ
1(HC) =

1
3n

n
∑

i=1
[1− 2ρ|FH(ai)− 0.5|ρ + 1− 2ρ|1−UH(ai)− 0.5|ρ + 1− 2ρ|TH(ai)− 0.5|ρ]

=
1

3n

n
∑

i=1
[1− 2ρ|TH(ai)− 0.5|ρ + 1− 2ρ|UH(ai)− 0.5|ρ + 1− 2ρ|FH(ai)− 0.5|ρ] = EAρ

1(H)
, for ρ > 0.

When the complement of the IvNS H = {< ai, [T−H (ai), T+
H (ai)], [U−H (ai), U+

H (ai)], [F−H (ai), F+
H (ai)]>

|ai ∈ A} is HC =
{
< ai, [F−H (ai), F+

H (ai)], [1−U−H (ai), 1−U+
H (ai)], [T−H (ai), T+

H (ai)] >
∣∣ai ∈ A

}
,

we can also have EAρ
2(HC) = EAρ

2(H).
Thus, the proof of the Theorem 1 is completed. �

3.2. Simplified Neutrosophic Dimension Root Entropy

For two SvNSs B = {<ai, TB(ai), UB(ai), FB(ai)> | ai ∈ A} and C = {<ai, TC(ai), UC(ai), FC(ai)> | ai ∈ A}
in the universal set A, Ye [24] defined a dimension root distance of SvNSs as follows:

D(B, C) =
1
n

n

∑
i=1

[
(TB(ai)− TC(ai))

2 + (UB(ai)−UC(ai))
2 + (FB(ai)− FC(ai))

2

3

]1
3

.

Based on the dimension root distance, we can present simplified neutrosophic dimension root
entropy for a simplified NS.
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Definition 2. Assume H = {<ai, TB(ai), UB(ai), FB(ai)> | ai ∈ A} is a simplified NS in a universal set A = {a1,
a2, ..., an}. Then, we can define the following dimension root entropy measure for the simplified NS H:

EB1(H) = 1− 1
n

n

∑
i=1

[
4(TH(ai)− 0.5)2 + 4(UH(ai)− 0.5)2 + 4(FH(ai)− 0.5)2

3

]1
3

for the SvNS H, (5)

EB2(H) = 1− 1
n

n

∑
i=1



4(T−H (ai)− 0.5)2
+ 4(T+

H (ai)− 0.5)2

+4(U−H (ai)− 0.5)2
+ 4(U+

H (ai)− 0.5)2

+4(F−H (ai)− 0.5)2
+ 4(F+

H (ai)− 0.5)2

6



1
3

for the IvNS H. (6)

Similar to the proposed simplified neutrosophic distance-based entropy, the dimension root
entropy of simplified NSs also has the following theorem.

Theorem 2. Assume there is a fuzziest simplified NS B = {b1, b2, ..., bn} = {<ai, TB(ai), UB(ai), FB(ai)> | ai ∈ A}
in the universal set A = {a1, a2, ..., an} with each element bi = <ai, 0.5, 0.5, 0.5> (i = 1, 2, ..., n) for SvNS
or bi = <ai, [0.5, 0.5], [0.5, 0.5], [0.5, 0.5]> (i = 1, 2, ..., n) for IvNS. Then the entropy measure EBk(H)
(k = 1, 2) of the simplified NS H = {h1, h2, ..., hn} = {<ai, TH(ai), UH(ai), FH(ai)> | ai ∈ A} satisfies the
following properties:

(EBP1) EBk(H) = 0 if H = {h1, h2, ..., hn} is a crisp set with each element hi = <ai, 1, 0, 0> or hi = <ai, 0, 0,
1> (i = 1, 2, ..., n) for SvNS, and hi = <ai, [1, 1], [0, 0], [0, 0]> or hi = <ai, [0, 0], [0, 0], [1, 1]> (i = 1, 2, ..., n)
for IvNS;

(EBP2) EBk(H) = 1 if and only if hi = bi (i = 1, 2, ..., n);
(EBP3) If one simplified NS H is closer to the fuzziest simplified NS B than the other simplified NS L,

then H is fuzzier than L with EBk(L) < EBk(H) for k = 1, 2;
(EBP4) EBk(H) = EBk(HC) if HC is the complement of H.

Proof.
(EBP1) For a crisp SvNS H = {h1, h2, ..., hn} with hi = <ai, 1, 0, 0> or hi = <ai, 0, 0, 1> (i = 1, 2, ..., n),

by Equation (5) we can obtain:

EB1(H) = 1− 1
n

n
∑

i=1

[
4(TH(ai)− 0.5)2 + 4(UH(ai)− 0.5)2 + 4(FH(ai)− 0.5)2

3

]1
3

= 1− 1
n

n
∑

i=1

[
4(1− 0.5)2 + 4(0− 0.5)2 + 4(0− 0.5)2

3

]1
3
= 0

or
EB1(H) = 1− 1

n

n
∑

i=1

[
4(TH(ai)− 0.5)2 + 4(UH(ai)− 0.5)2 + 4(FH(ai)− 0.5)2

3

]1
3

= 1− 1
n

n
∑

i=1

[
4(0− 0.5)2 + 4(0− 0.5)2 + 4(1− 0.5)2

3

]1
3
= 0
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Similarly, for an IvNS H with hi = <ai, [1, 1], [0, 0], [0, 0]> or hi = <ai, [0, 0], [0, 0], [1, 1]>
(i = 1, 2, ..., n), by Equation (6) we have:

EB2(H) = 1− 1
n

n

∑
i=1



4(T−H (ai)− 0.5)2
+ 4(T+

H (ai)− 0.5)2

+4(U−H (ai)− 0.5)2
+ 4(U+

H (ai)− 0.5)2

+4(F−H (ai)− 0.5)2
+ 4(F+

H (ai)− 0.5)2

6



1
3

= 1− 1
n

n

∑
i=1



4(1− 0.5)2 + 4(1− 0.5)2

+4(0− 0.5)2 + 4(0− 0.5)2

+4(0− 0.5)2 + 4(0− 0.5)2

6



1
3

= 0

or EB2(H) = 1− 1
n

n

∑
i=1



4(T−H (ai)− 0.5)2
+ 4(T+

H (ai)− 0.5)2

+4(U−H (ai)− 0.5)2
+ 4(U+

H (ai)− 0.5)2

+4(F−H (ai)− 0.5)2
+ 4(F+

H (ai)− 0.5)2

6



1
3

= 1− 1
n

n

∑
i=1



4(0− 0.5)2 + 4(0− 0.5)2

+4(0− 0.5)2 + 4(0− 0.5)2

+4(1− 0.5)2 + 4(1− 0.5)2

6



1
3

= 0

(EBP2) Let f (xi) = 4(xi − 0.5)2 be a function for xi ∈ [0, 1] (i = 1, 2, ..., n). It is clear that the
minimum value of f(xi) = 0 can be gotten at the critical point xi = 0.5. Based on the function f (xi),
by Equations (5) and (6) the dimension root entropy of H can be rewritten as the following form:

EB1(H) = 1− 1
n

n

∑
i=1

[
f (TH(ai)) + f (UH(ai)) + f (FH(ai))

3

]1
3 for the SvNS H,

EB2(H) = 1− 1
n

n

∑
i=1



f (T−H (ai)) + f (T+
H (ai))

+ f (U−H (ai)) + f (U+
H (ai))

+ f (F−H (ai)) + f (F+
H (ai))

6



1
3

for the IvNS H.

Obviously, if and only if TH(ai) = UH(ai) = FH(ai) = 0.5, the maximum value of the entropy measure
is EB1(H) = 1; while if and only if T−H (ai) = T+

H (ai) = U−H (ai) = U+
H (ai) = F−H (ai) = F+

H (ai) = 0.5,
the maximum value of the entropy measure is EB2(H) = 1.

Thus, the property EBP2 can hold for the dimension root entropy.
(EBP3) It is obvious that f (xi) = 4(xi − 0.5)2 is monotonically decreasing when xi ∈ [0, 0.5], and

monotonically increasing when xi ∈ [0.5, 1]. Therefore, the closer the simplified NS H is to the fuzziest
simplified NS B than a simplified NS L, the fuzzier H is than L with EBk(L) < EBk(H) for k = 1, 2.

(EBP4) Since the complement of the SvNS H = {<ai, TH(ai), UH(ai), FH(ai)> | ai ∈ A} is HC= {<ai,
FH(ai), 1 – UH(ai), TH(ai)> | ai ∈ A}, by Equation (5) we have:

EB1(HC) = 1− 1
n

n
∑

i=1

[
4(Fi − 0.5)2 + 4(1−Ui − 0.5)2 + 4(Ti − 0.5)2

3

]1
3

= 1− 1
n

n
∑

i=1

[
4(Ti − 0.5)2 + 4(Ui − 0.5)2 + 4(Fi − 0.5)2

3

]1
3
= EB1(H)
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When the complement of the IvNS H = {< ai, [T−H (ai), T+
H (ai)], [U−H (ai), U+

H (ai)], [F−H (ai), F+
H (ai)]

> |ai ∈ A} is HC =
{
< ai, [F−H (ai), F+

H (ai)], [1−U−H (ai), 1−U+
H (ai)], [T−H (ai), T+

H (ai)] >
∣∣ai ∈ A

}
,

we can also obtain EB2(HC) = EB2(H).
Thus, the proof of the theorem is completed. �

4. Comparative Analysis of Entropy Measures for IvNSs

The comparative analysis between the presented simplified neutrosophic entropy measures and
the existing entropy measures of simplified NSs are shown in this section. Since SvNS is a special case
of IvNS when the two bounded values of its each interval are the same, the example adopted from [21]
was illustrated only in IvNS setting. Then the existing entropy measures [19–23] of the IvNS H used
for the comparison are introduced as follows:

R1(H) = 1− 1
3n

n

∑
i=1


∣∣T−H (ai)− 0.5

∣∣+∣∣T+
H (ai)− 0.5

∣∣
+
∣∣U−H (ai)− 0.5

∣∣+∣∣U+
H (ai)− 0.5

∣∣
+
∣∣F−H (ai)− 0.5

∣∣+∣∣F+
H (ai)− 0.5

∣∣
, (7)

R2(H) = 1− 2

 1
6n

n

∑
i=1

 (TH−(ai)− 0.5)2 + (TH+(ai)− 0.5)2

+(UH−(ai)− 0.5)2 + (UH+(ai)− 0.5)2

+(FH−(ai)− 0.5)2 + (FH+(ai)− 0.5)2




1/2

, (8)

R3(H) = 1− 2
3n

n

∑
i=1


max

[∣∣T−H (ai)− 0.5
∣∣, ∣∣T+

H (ai)− 0.5
∣∣]+

max
[∣∣U−H (ai)− 0.5

∣∣, ∣∣U+
H (ai)− 0.5

∣∣]
+max

[∣∣F−H (ai)− 0.5
∣∣, ∣∣F+

H (ai)− 0.5
∣∣]
, (9)

R4(H) = 1− 2
n

n

∑
i=1


max


1
2
(|T−H (ai)− 0.5|+ |T+

H (ai)− 0.5|),
1
2
(|U−H (ai)− 0.5|+ |U+

H (ai)− 0.5|),
1
2
(|F−H (ai)− 0.5|+ |F+

H (ai)− 0.5
∣∣∣∣)




, (10)

R5(H) = 1− 1
2n

n

∑
i=1

 [T−H (ai) + F−H (ai)]
∣∣∣U−H (ai)− (U−H (ai))

c
∣∣∣

+[T+
H (ai) + F+

H (ai)]
∣∣∣U+

H (ai)− (U+
H (ai))

c
∣∣∣
, (11)

R6(H) =
1
n

n

∑
i=1

2−
∣∣T−H (ai)− F−H (ai)

∣∣−∣∣T+
H (ai)− F+

H (ai)
∣∣−∣∣U−H (ai)−U+

H (ai)
∣∣

2+
∣∣T−H (ai)− F−H (ai)

∣∣+∣∣T+
H (ai)− F+

H (ai)
∣∣+∣∣U−H (ai)−U+

H (ai)
∣∣ , (12)

R7(H) =
1

6n(
√

e− 1)

n

∑
i=1



T−H (ai)e(1−T−H (ai)) + (1− T−H (ai))eT−H (ai) − 1
+U−H (ai)e(1−U−H (ai)) + (1−U−H (ai))eU−H (ai) − 1
+F−H (ai)e(1−F−H (ai)) + (1− F−H (ai))eF−H (ai) − 1
+T+

H (ai)e(1−T+
H (ai)) + (1− T+

H (ai))eT+
H (ai) − 1

+U+
H (ai)e(1−U+

H (ai)) + (1−U+
H (ai))eU+

H (ai) − 1
+F+

H (ai)e(1−F+
H (ai)) + (1− F+

H (ai))eF+
H (ai) − 1


(13)

R8(H) =
1

6n

n

∑
i=1

 sin(T−H (ai)π) + sin(T+
H (ai)π)

+ sin(U−H (ai)π) + sin(U+
H (ai)π)

+ sin(F−H (ai)π) + sin(F−H (ai)π)

. (14)

Assume an IvNS is H =
{
< ai, [T−H (ai), T+

H (ai)], [U−H (ai), U+
H (ai)], [F−H (ai), F+

H (ai)] >
∣∣ai ∈ A

}
in

the universal set A = {a1, a2, ..., an}. Then, Hn for n > 0 can be expressed as:

Hn =
{
< ai , [(T−H (ai))

n , (T+
H (ai))

n
], [1− (1−U−H (ai))

n , 1− (1−U+
H (ai))

n
], [1− (1− F−H (ai))

n , 1− (1− F+
H (ai))

n
] > |ai ∈ A

}
. (15)
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Provided that an IvNS H in A = {a1, a2, a3, a4, a5} = {1, 2, 3, 4, 5} is evaluated by H = {<1, [0.2, 0.3],
[0.6, 0.6], [0.7, 0.8]>, <2, [0.3, 0.3], [0.5, 0.6], [0.5, 0.6]>, <3, [0.4, 0.5], [0.5, 0.5], [0, 0.1]>, <4, [1, 1], [0.4, 0.4],
[0, 0.1]>, <5, [0.7, 0.8], [0.5, 0.5], [0, 0]>}, then regarding the characteristics of variables corresponding
to these operations [21]: (1) H can be regarded as “large” in A; (2) H2 can be regarded as “very large”;
(3) H3 can be regarded as “quite very large”; (4) H4 can be regarded as “very very large”. Then the
operational results are shown in Table 1.

Table 1. Operation results of Hn for n = 1, 2, 3, 4.

Hn a1 = 1 a2 = 2 a3 = 3 a4 = 4 a5 = 5

H
<1, [0.2, 0.3],

[0.6, 0.6],
[0.7, 0.8]>

<2, [0.3, 0.3],
[0.5, 0.6],
[0.5, 0.6]>

<3, [0.4, 0.5],
[0.5, 0.5],
[0, 0.1]>

<4, [1, 1],
[0.4, 0.4],
[0, 0.1]>

<5, [0.7, 0.8],
[0.5, 0.5],

[0, 0]>

H2
<1, [0.04, 0.09],

[0.84, 0.84],
[0.91, 0.96]>

<2, [0.09, 0.09],
[0.75, 0.84],
[0.75, 0.84]>

<3, [0.16, 0.25],
[0.75, 0.75],
[0, 0.19]>

<4, [1, 1],
[0.64, 0.64],
[0, 0.19]>

<5, [0.49, 0.64],
[0.75, 0.75],

[0, 0]>

H3
<1, [0.008, 0.027],

[0.936, 0.936],
[0.973, 0.992]

<2, [0.027, 0.027],
[0.875, 0.936],
[0.875, 0.936]>

<3, [0.064, 0.125],
[0.875, 0.875],

[0, 0.271]>

<4, [1, 1],
[0.784, 0.784],

[0, 0.271]>

<5, [0.343, 0.512],
[0.875, 0.875],

[0, 0]>

H4
<1, [0.0016, 0.0081],

[0.9744, 0.9744],
[0.9919, 0.9984]>

<2, [0.0081, 0.0081],
[0.9375, 0.9744],
[0.9375, 0.9744]>

<3, [0.0256, 0.0625],
[0.9375, 0.9375],

[0, 0.3439]>

<4, [1, 1],
[0.8704, 0.8704],

[0, 0.3439]>

<5, [0.2401, 0.4096],
[0.9375, 0.9375],

[0, 0]>

Then, calculated by Equations (2) and (6)–(14), the measure values of the relative entropy are
shown in Table 2. Then, the entropy measure curves of EAρ

2(Hn) for n = 1, 2, 3, 4 and ρ ∈ [1, 100] are
also shown in Figure 1.

Table 2. All values of various entropy measures of IvNSs.

Entropy Value H H2 H3 H4 Ranking Order

EA1
2(Hn) 0.5733 0.3293 0.2083 0.1465 EA1

2(H) > EA1
2(H2) > EA1

2(H3) > EA1
2(H4)

EA2
2(Hn) 0.6853 0.485 0.3193 0.2228 EA2

2(H) > EA2
2(H2) > EA2

2(H3) > EA2
2(H4)

EA3
2(Hn) 0.7317 0.5749 0.395 0.2743 EA3

2(H) > EA3
2(H2) > EA3

2(H3) > EA3
2(H4)

EA4
2(Hn) 0.7551 0.6313 0.4503 0.3143 EA4

2(H) > EA4
2(H2) > EA4

2(H3) > EA4
2(H4)

EA5
2(Hn) 0.7686 0.6688 0.4927 0.3473 EA5

2(H) > EA5
2(H2) > EA5

2(H3) > EA5
2(H4)

EA10
2 (Hn) 0.7922 0.7484 0.611 0.4589 EA10

2 (H) > EA10
2 (H2) > EA10

2 (H3) > EA10
2 (H4)

EA20
2 (Hn) 0.7992 0.7848 0.6963 0.5667 EA20

2 (H) > EA20
2 (H2) > EA20

2 (H3) > EA20
2 (H4)

EA30
2 (Hn) 0.7999 0.7942 0.7309 0.6191 EA30

2 (H) > EA30
2 (H2) > EA30

2 (H3) > EA30
2 (H4)

EA40
2 (Hn) 0.8 0.7976 0.7499 0.6505 EA40

2 (H) > EA40
2 (H2) > EA40

2 (H3) > EA40
2 (H4)

EA50
2 (Hn) 0.8 0.799 0.7618 0.6719 EA50

2 (H) > EA50
2 (H2) > EA50

2 (H3) > EA50
2 (H4)

EA100
2 (Hn) 0.8 0.8 0.7862 0.7247 EA100

2 (H) = EA100
2 (H2) > EA100

2 (H3) > EA100
2 (H4)

EB2(Hn) 0.3534 0.2013 0.1231 0.0829 EB2(H) > EB2(H2) > EB2(H3) > EB2(H4)

R1(Hn) [21] 0.5733 0.3293 0.2083 0.1465 R1(H) > R1(H2) > R1(H3) > R1(H4)

R2(Hn) [21] 0.439 0.2824 0.175 0.1184 R2(H) > R2(H2) > R2(H3) > R2(H4)

R3(Hn) [21] 0.52 0.2707 0.1477 0.0811 R3(H) > R3(H2) > R3(H3) > R3(H4)

R4(Hn) [21] 0.24 0.1 0.0556 0.0228 R4(H) > R4(H2) > R4(H3) > R4(H4)

R5(Hn) [19,21] 0.9 0.6109 0.4464 0.366 R5(H) > R5(H2) > R5(H3) > R5(H4)

R6(Hn) [20] 0.2938 0.2684 0.2698 0.2719 R6(H) > R6(H4) > R6(H3) > R6(H2)

R7(Hn) [22] 0.6886 0.4919 0.3255 0.2272 R7(H) > R7(H2) > R7(H3) > R7(H4)
R8(Hn) [23] 0.6695 0.4521 0.2902 0.2027 R8(H) > R8(H2) > R8(H3) > R8(H4)
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Then, the available entropy measures of IvNSs should satisfy the ranking order EAρ
2(H) >

EAρ
2(H2) > EAρ

2(H3) > EAρ
2(H4) from the intuition. From Table 2, except for both EA100

2 (Hn) with the
ranking order EA100

2 (H) = EA100
2 (H2) > EA100

2 (H3) > EA100
2 (H4) and R6(Hn) with the ranking order

R6(H) > R6(H4) > R6(H3) > R6(H2), the entropy measure values of EAρ
2(Hn) for ρ ∈ [1, 100) and EB2(Hn)

and the existing R1(Hn)–R5(Hn), R7(Hn), R8(Hn) satisfy the above ranking demand of the available
entropy measures. Furthermore, from Figure 1, the ranking order based on the entropy measure values
of EAρ

2(Hn) indicates some robustness regarding ρ from 1 to 100. However, with the parameter ρ

increasing, especially when ρ > 30, the entropy measure values of EAρ
2(H) and EAρ

2(H2) tend to the
same value 0.8.

5. Decision-Making Example Using Simplified Neutrosophic Entropy in IvNS Setting

In this section, the proposed entropy measures are applied in a decision-making problem, and
then compared with the existing entropy measures. For convenience, an investment decision-making
example adopted from the reference [21] was used for the application. In the decision-making problem,
the decision makers are requested to assess four investment projects (alternatives), including a clothing
company (g1), a food company (g2), a computer company (g3), and a house-building company (g4),
over three attributes, like growth (a1), risk (a2), and environmental impact (a3) respectively, and then
select the best alternative for the investment company. The evaluation information of the alternative
set G = {g1, g2, g3, g4} over the attribute set A = {a1, a2, a3} is given by the form of IvNSs as the
following matrix:

M =

g1

g2

g3

g4


< a1, [0.4, 0.6], [0.1, 0.3], [0.2, 0.3] >

< a1, [0.3, 0.6], [0.3, 0.5], [0.8, 0.9] >

< a1, [0.5, 0.6], [0.2, 0.3], [0.3, 0.4] >

< a1, [0.5, 0.6], [0.3, 0.4], [0.8, 0.9] >

< a2, [0.7, 0.9], [0.2, 0.3], [0.4, 0.5] >

< a2, [0.6, 0.7], [0.1, 0.2], [0.2, 0.3] >

< a2, [0.3, 0.6], [0.2, 0.3], [0.3, 0.4] >

< a2, [0.7, 0.8], [0, 0.1], [0.1, 0.2] >

< a3, [0.4, 0.5], [0.2, 0.3], [0.3, 0.4] >

< a3, [0.6, 0.7], [0.1, 0.2], [0.2, 0.3] >

< a3, [0.4, 0.5], [0.2, 0.5], [0.7, 0.9] >

< a3, [0.6, 0.7], [0.1, 0.2], [0.1, 0.3] >


By applying the proposed entropy measures of Equations (2) and (6) and the existing entropy

measures of Equations (7)–(14) to the above decision-making problem, the relative entropy measure
results and the ranking orders are listed in Table 3.

Obviously, the entropy measure values of EAρ
2(gi) (i =1, 2, 3, 4) for ρ ≤ 20 indicate the identical

ranking result g3 > g1 > g2 > g4, and then it is changed into g3 = g1 > g2 > g4 for ρ = 30 and gets g3 = g1
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= g2 > g4 along with the parameter values of ρ ranging from 40 to 100. Obviously, EAρ
2(gi) is a better

selection with relatively small values of ρ such as ρ ≤ 20. On the other hand, the measure values of
the proposed entropy EB2(gi) (i = 1, 2, 3, 4) and existing entropy including R1(gi)-R5(gi), R7(gi) have
the same ranking order g3 > g1 > g2 > g4; while that of R6(gi) is g3 > g1 > g4 > g2. Anyway, the best
alternative of all the ranking orders is g3.

Table 3. All the results of the proposed entropy and existing entropy measures of IvNSs.

EAρ
2 (gi) g1 g2 g3 g4 Ranking Order

EA1
2(gi) 0.6333 0.5333 0.6556 0.4444 g3 > g1 > g2 > g4

EA2
2(gi) 0.8111 0.7333 0.8378 0.6356 g3 > g1 > g2 > g4

EA3
2(gi) 0.8867 0.832 0.9116 0.7351 g3 > g1 > g2 > g4

EA4
2(gi) 0.9252 0.8869 0.9466 0.7945 g3 > g1 > g2 > g4

EA5
2(gi) 0.9477 0.9203 0.9653 0.8332 g3 > g1 > g2 > g4

EA10
2 (gi) 0.987 0.9804 0.993 0.9132 g3 > g1 > g2 > g4

EA20
2 (gi) 0.9987 0.9981 0.9994 0.9412 g3 > g1 > g2 > g4

EA30
2 (gi) 0.9999 0.9998 0.9999 0.9441 g3 = g1 > g2 > g4

EA40
2 (gi) 1 1 1 0.9444 g3 = g1 = g2 > g4

EA50
2 (gi) 1 1 1 0.9444 g3 = g1 = g2 > g4

EA100
2 (gi) 1 1 1 0.9444 g3 = g1 = g2 > g4

EB2(gi) 0.4302 0.3572 0.4571 0.2945 g3 > g1 > g2 > g4

R1(gi) [21] 0.6333 0.5333 0.6556 0.4444 g3 > g1 > g2 > g4

R2(gi) [21] 0.5654 0.4836 0.5972 0.3963 g3 > g1 > g2 > g4

R3(gi) [21] 0.5111 0.4222 0.5333 0.3333 g3 > g1 > g2 > g4

R4(gi) [21] 0.4333 0.3 0.4667 0.2333 g3 > g1 > g2 > g4

R5(gi) [19,21] 0.52 0.5133 0.57 0.3933 g3 > g1 > g2 > g4

R6(gi) [20] 0.5687 0.364 0.5728 0.3818 g3 > g1 > g4 > g2

R7(gi) [22] 0.8165 0.7406 0.8429 0.6431 g3 > g1 > g2 > g4

R8(gi) [23] 0.7852 0.6985 0.8129 0.5997 g3 > g1 > g2 > g4

6. Conclusions

This study originally presented the generalized distance-based entropy measure and the
dimension root entropy measure of simplified NSs, containing both the SvSN and IvSN generalized
distance-based entropy measures and the SvSN and IvSN neutrosophic dimension root entropy
measures. Then, their properties were discussed based on the axioms of an entropy measure of IvNSs
defined in [21]. After that, a comparison between the proposed entropy and existing relative entropy
measures by a numerical example in IvNS setting showed that the proposed entropy measures
are effective and rational. An application of the proposed two entropy measures in an actual
decision-making problem illustrated the feasibility and rationality by comparison with the existing
ones, especially with the relatively small values of the parameter ρ, such as ρ < 20. The proposed
simplified NS entropy not only is a complement of the entropy theory of simplified NSs, but also
presents a new effective way of the uncertain measure under the simplified NS setting. Our future
work will focus on research to extend the proposed entropy measures to applications in diverse
engineering fields.
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