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Abstract. The generalization of the concept of single valued neutrosophic hypergraph
(SVNHG), strong SVNHG by considering SVN-Vertex instead of crisp vertex set and
interrelations between SVN-Vertices and family of SVN-Edges are introduced here. A
few properties and operations of such graphs are established here.

Keywords: Generalized SVNHG, generalized strong SVNHG, generalized SVN sub hy-
pergraph, spanning generalized SVN sub-hyper graph.

1. Introduction

Neutrosopic sets were introduced by Smarandache [2] which are the generalization of
fuzzy sets and intuitionistic fuzzy sets. The Neutrosophic sets have many applications
in medical, management sciences, life sciences and engineering, graph theory, robotics,
automata theory and computer science. The single valued neutrosophic graphs were in-
troduced by Broumi, Talea, Bakali and Smarandache [5]. Recently in [9, 10, 6] proposed
some algorithms dealt with shortest path problem in a network (graph) where edge weights
are characterized by a neutrosophic numbers including single valued neutrosophic num-
bers, bipolar neutrosophic numbers and interval valued neutrosophic numbers.
Hypergraphs and various properties that we can prove about them are the basis of many
techniques that are used in modern mathematics. While graph edges are pairs of nodes,
hyperedges are arbitrary sets of nodes, and can therefore contain an arbitrary number
of nodes. However, it is often desirable to study hypergraphs where all hyperedges have
the same cardinality. Hyperedges are absurdly general. Likewise, the notion of data. To
make this useful, one needs to constrain the form the hyper edges take. There are many
research papers on fuzzy hypergraph in [7, 8] based on vertex set as a crisp set. In fact, in
the definition of fuzzy graph, both the concepts of vertices and edges are fuzzy and there
is an interrelation between the fuzzy vertices and fuzzy edges. The generalized strong in-
tuitionistic fuzzy hypergraphs were discussed by Samanta and Mohinta [1]. In this paper,
we generalize the concept of SVNHG by considering SVN-Vertex instead of crisp vertex
set and interrelation between SVN-Vertices and family of SVN-Edges. The GSVNHG,
generalized strong SVNHG and a few operations on them are defined here. Also some of
their properties are studied.
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of Mathematics 2015; all rights reserved.

1



2 TWMS J. APP. ENG. MATH. V.5, N.2, 2015

2. Preliminaries

Definition 2.1. [2] Let X be a crisp set, the single valued neutrosophic set (SVNS) Z

is characterized by three membership functions TZ(x), IZ(x) and FZ(x), which are truth,
indeterminacy and falsity membership functions, i.e ∀x ∈ X, TZ(x), IZ(x), FZ(x) ∈ [0, 1].

Definition 2.2. [2] Let A be a SVNS on X then support of A is denoted and defined by
Supp(A) = {x : x ∈ X,TA(x) > 0, IA(x) > 0, FA(x) > 0}.

Definition 2.3. [7, 8] A hypergraph is an ordered pair H = (Z,Θ), where
(1) Z = {η1, η2, . . . , ηn} be a finite set of vertices.
(2) Θ = {Θ1,Θ2, . . . ,Θm} be a family of subsets of Z.

(3) Θj 6= φ, ∀j = 1, 2, 3, . . . ,m and
⋃

j Θj = Z.

A hypergraph is also called a set system or a family of sets drawn from the universal set
X.

3. Generalized strong SVNHGs

We introduce the concept of GSVNHG and generalized strong SVNHG and its proper-
ties and a few operations on GSVNHGs and GSSVNHGs.

Definition 3.1. The single valued neutrosophic hypergraph (SVNHG) be a H = (Z,Θ),
where
(1) Z = {η1, η2, . . . , ηn} be a finite set of vertices.
(2) Θ = {Θ1,Θ2, . . . ,Θm} be a family of SVNSs of Z.

(3) Θj 6= O = (0, 0, 0) ∀j = 1, 2, 3, . . . ,m and
⋃

j Supp(Θj) = Z.

Definition 3.2. A generalized single valued neutrosophic hypergraph (GSVNHG) H =
(Z,Θ), where
(1) Z = {η1, η2, . . . , ηn} be a finite set of vertices.
(2) A,B,C : Z → [0, 1] be the SVNS of vertices.
(3) Θ = {Θ1,Θ2, . . . ,Θm} be set of SVNSs of Z, where

Θj = {(ηi, TΘj
(ηi), IΘj

(ηi), FΘj
(ηi)) : TΘj

(ηi), IΘj
(ηi), FΘj

(ηi) : Z → [0, 1]}

with
m
∨

j=1

TΘj
(ηi) ≤ A(ηi),

m
∧

j=1

IΘj
(ηi) ≥ B(ηi),

m
∧

j=1

FΘj
(ηi) ≥ C(ηi)

∀i = 1, 2, 3, . . . , n and ∀j = 1, 2, 3, . . . ,m.

(4) Θj 6= O = (0, 0, 0), j = 1, 2, 3, . . . ,m and
⋃

j Supp(Θj) = Z.

Remark 3.1. The generalized single valued neutrosophic hypergraph is the generalization
of generalized intuitionistic fuzzy hypergraph.

Example 3.1. Consider the H = (X,E), where X = {α, β, γ, δ} and E = {E1, E2, E3, E4}.
aLSO A,B,C : X → [0, 1] defined by A(α) = .5, A(β) = .9, A(γ) = .8, A(δ) = .6,
B(α) = .0, B(β) = .1, B(γ) = .1, B(δ) = .0, C(α) = .1, C(β) = .1, C(γ) = .2, C(δ) = .3,

E1 = {(α, .2, .3, .4), (β, .5, .3, .6), (γ, .5, .3, .2), (δ, .0, .1, .3)},

E2 = {(α, .5, .0, .2), (β, .6, .7, .4), (γ, .1, .6, .9), (δ, .2, .3, .6)},

E3 = {(α, .1, .3, .5), (β, .8, .1, .3), (γ, .3, .8, .9), (δ, .5, .0, .9)},

E4 = {(α, .1, .6, .2), (β, .2, .1, .6), (γ, .6, .1, .3), (δ, .3, .2, .6)}.

Then by routine calculations H is GSVNHG.
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Definition 3.3. The GSVNHG H = (X,E) is said to be generalized strong single valued
neutrosophic hypergraph (GSSVNHG), if

m
∨

j=1

TEj
(xi) = A(xi),

m
∧

j=1

IEj
(xi) = B(xi),

m
∧

j=1

FEj
(xi) = C(xi)

∀i = 1, 2, 3, . . . , n and j = 1, 2, 3, . . . ,m.

Example 3.2. Consider the GSVNHG H = (X,E), where X = {α, β, γ} and E =
{E1, E2, E3, E4}. Also A,B,C : X → [0, 1] defined by A(α) = .5, A(β) = .6, A(γ) = .8,
B(α) = .2, B(β) = .2, B(γ) = .0, C(α) = .3, C(β) = .2, C(γ) = .1,

E1 = {(α, .5, .2, .3), (β, .5, .2, .9), (γ, .3, .9, .1)},

E2 = {(α, .1, .6, .5), (β, .3, .2, .6), (γ, .0, .3, .2)},

E3 = {(α, .3, .6, .9), (β, .1, .3, .2), (γ, .1, .0, .9)},

E4 = {(α, .2, .3, .6), (β, .6, .5, .2), (γ, .8, .6, .4)}.

Then by routine calculations H is GSSVNHG.

Definition 3.4. Let H = (X,E) be a GSVNHG, where A,B,C : X → [0, 1],

E = {(TEj
, IEj

, FEj
) : X → [0, 1]3 : j = 1, 2, 3, . . . ,m}

and let H
′

= (X,E
′

), where A
′

, B
′

, C
′

: X → [0, 1],

E
′

= {(T
′

Ej
, I

′

Ej
, F

′

Ej
) : X → [0, 1]3 : j = 1, 2, 3, . . . ,m}

H
′

is said to be a generalized single valued neutrosophic sub hypergraph (GSVNSHG) of
H, whenever

m
∨

j=1

T
′

Ej
(xi) ≤

m
∨

j=1

TEj
(xi),

m
∧

j=1

I
′

Ej
(xi) ≥

m
∧

j=1

IEj
(xi),

m
∧

j=1

F
′

Ej
(xi) ≥

m
∧

j=1

FEj
(xi)

A
′

(xi) ≤ A(xi), B
′

(xi) ≥ B(xi), C
′

(xi) ≥ C(xi)

∀i = 1, 2, 3, . . . , n. The GSVNHG H
′

= (X,E
′

) is said to be a spanning generalized single
valued neutrosophic sub hypergraph (SGSVNSHG) of H = (X,E), if

A
′

(xi) = A(xi), B
′

(xi) = B(xi), C
′

(xi) = C(xi)

∀i = 1, 2, 3, . . . , n.

Definition 3.5. Let H = (X,E) be a GSSVNHG, where A,B,C : X → [0, 1],

E = {(TEj
, IEj

, FEj
) : X → [0, 1]3 : j = 1, 2, 3, . . . ,m}

and let H
′

= (X,E
′

), where A
′

, B
′

, C
′

: X → [0, 1], and

E
′

= {(T
′

Ej
, I

′

Ej
, F

′

Ej
) : X → [0, 1]3 : j = 1, 2, 3, . . . ,m}

H
′

is is said to be a generalized strong single valued neutrosophic sub hypergraph (GSSVN-
SHG) of H, whenever

m
∨

j=1

T
′

Ej
(xi) =

m
∨

j=1

TEj
(xi),

m
∧

j=1

I
′

Ej
(xi) =

m
∧

j=1

IEj
(xi),

m
∧

j=1

F
′

Ej
(xi) =

m
∧

j=1

FEj
(xi)

A
′

(xi) = A(xi), B
′

(xi) = B(xi), C
′

(xi) = C(xi)
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∀i = 1, 2, 3, . . . , n. The GSVNHG H
′

= (X,E
′

) is said to be a spanning generalized strong
single valued neutrosophic sub hypergraph (SGSSVNSHG) of H = (X,E), if

A
′

(xi) = A(xi), B
′

(xi) = B(xi), C
′

(xi) = C(xi)

∀i = 1, 2, 3, . . . , n.

Example 3.3. Consider the GSVNHGs G = (X,E), H = (X,E
′

) and S = (X,E
′′

),

where X = {α, β, γ}, E = {E1, E2}, E
′

= {E
′

1, E
′

2} and E
′′

= {E
′′

1 , E
′′

2 }. Also A,B,C :
X → [0, 1] defined by A(α) = .4, A(β) = .5, B(α) = .2, B(β) = .2, C(α) = .3, C(β) = .0,

A
′

(α) = .4, A
′

(β) = .4, B
′

(α) = .1, B
′

(β) = .1, C
′

(α) = .3, C
′

(β) = .0, A
′′

(α) = .4,

A
′′

(β) = .5, B
′′

(α) = .2, B
′′

(β) = .2, C
′′

(α) = .3, C
′′

(β) = .0,

E1 = {(α, .2, .3, .6), (β, .5, .6, .2)}, E2 = {(α, .4, .2, .3), (β, .3, .2, .5)},

E
′

1 = {(α, .2, .3, .5), (β, .4, .3, .5)}, E
′

2 = {(α, .3, .2, .3), (β, .3, .4, .3)},

E
′′

1 = {(α, .2, .3, .5), (β, .5, .3, .5)}, E
′′

2 = {(α, .4, .2, .3), (β, .3, .4, .3)}.

Then by routine calculations H is GSVNSHG of G but S is SGSVNSHG of G.

Definition 3.6. Let H1 = (X1, E1) and H2 = (X2, E2) be two GSVNHGs, where X1 =
{x1, x2, . . . , xn}, X2 = {y1, y2, . . . , yn}, A1, B1, C1 : X1 → [0, 1], A2, B2, C2 : X2 → [0, 1]
and

E1 = {(TE11
, IE11

, FE11
), (TE12

, IE12
, FE12

), . . . , (TE1k
, IE1k

, FE1k
)}

E2 = {(TE21
, IE21

, FE21
), (TE22

, IE22
, FE22

), . . . , (TE2p
, IE2p

, FE2p
)}

where

TE1i
, IE1i

, FE1i
: X1 → [0, 1],

TE2j
, IE2j

, FE2j
: X2 → [0, 1],

∀i = 1, 2, 3, . . . , k and j = 1, 2, 3, . . . , p. The union H1 ∪ H2 = (X1 ∪ X2, E1 ∪ E2) of H1

and H2 is defined by

(A1 ∪ A2)(x) =







A1(x) x ∈ X1 − X2

A2(x) x ∈ X2 − X1

max(A1(x), A2(x)) x ∈ X1 ∩ X2

(B1 ∪ B2)(x) =







B1(x) x ∈ X1 − X2

B2(x) x ∈ X2 − X1

min(B1(x), B2(x)) x ∈ X1 ∩ X2

(C1 ∪ C2)(x) =







C1(x) x ∈ X1 − X2

C2(x) x ∈ X2 − X1

min(C1(x), C2(x)) x ∈ X1 ∩ X2

(TE1i
∪ TE2j

)(x) =







TE1i
(x) x ∈ X1 − X2

TE2j
(x) x ∈ X2 − X1

max(TE1i
(x), TE2j

(x)) x ∈ X1 ∩ X2

(IE1i
∪ IE2j

)(x) =







IE1i
(x) x ∈ X1 − X2

IE2j
(x) x ∈ X2 − X1

min(IE1i
(x), IE2j

(x)) x ∈ X1 ∩ X2

(FE1i
∪ FE2j

)(x) =







FE1i
(x) x ∈ X1 − X2

FE2j
(x) x ∈ X2 − X1

min(FE1i
(x), FE2j

(x)) x ∈ X1 ∩ X2
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Remark 3.2. If H1 = (X1, E1) and H2 = (X2, E2) be two GSVNHGs, then H1 ∪ H2 is
also GSVNHG.

Remark 3.3. If H1 = (X1, E1) and H2 = (X2, E2) be two GSSVNHGs, then H1 ∪ H2 is
also GSSVNHG.

Definition 3.7. Let H1 = (X1, E1) and H2 = (X2, E2) be two GSVNHGs, where X1 =
{x1, x2, . . . , xn}, X2 = {y1, y2, . . . , yn}, A1, B1, C1 : X1 → [0, 1], A2, B2, C2 : X2 → [0, 1],

E1 = {(TE11
, IE11

, FE11
), (TE12

, IE12
, FE12

), . . . , (TE1k
, IE1k

, FE1k
)},

E2 = {(TE21
, IE21

, FE21
), (TE22

, IE22
, FE22

), . . . , (TE2p
, IE2p

, FE2p
)},

where

TE1i
, IE1i

, FE1i
: X1 → [0, 1],

TE2j
, IE2j

, FE2j
: X2 → [0, 1],

∀i = 1, 2, 3, . . . , k and j = 1, 2, 3, . . . , p. The cartesian product H1 × H2 of H1 and H2 is
defined by an ordered pair H1 × H2 = (X1 × X2, E1 × E2), where

(A1 × A2)(x, y) = min(A1(x), A2(x))

(B1 × B2)(x, y) = max(B1(x), B2(x))

(C1 × C2)(x, y) = max(C1(x), C2(x))

(TE1i
× TE2j

)(x, y) = min(TE1i
(x), TE2j

(y))

(IE1i
× IE2j

)(x, y) = max(IE1i
(x), IE2j

(y))

(FE1i
× FE2j

)(x, y) = max(FE1i
(x), FE2j

(y))

∀x ∈ X1, y ∈ X2, i = 1, 2, 3, . . . , k and j = 1, 2, 3, . . . , p.

Remark 3.4. If both H1 and H2 are not GSSVNHGs, then H1 × H2 may or may not be
GSSVNHG.

Example 3.4. Consider a GSVNHGs H1 = (X1, E1) and H2 = (X2, E2) where X1 =

{a, b}, X2 = {p, q}, E1 = {P,Q} E2 = {P
′

, Q
′

}. Also A1, B1, C1 : X1 → [0, 1] defined by
A1(a) = .3, A1(b) = .5, B1(a) = .2, B1(b) = .4, C1(a) = .5, C1(b) = .5 and A2, B2, C2 :
X2 → [0, 1] defined by A2(p) = .5, A2(q) = .9, B2(p) = .1, B2(q) = .5, C2(p) = .5,
C2(q) = .5,

P = {(a, .1, .2, .5), (b, .5, .4, .5)}, Q = {(a, .3, .4, .5), (b, .4, .6, .5)},

P
′

= {(p, .5, .3, .5), (q, .8, .5, .5)}, Q
′

= {(p, .4, .6, .5), (q, .1, .5, .5)}.

Then by routine calculations H1 is GSSVNHG and H2 is GSVNHG. Let H = (X1 ×
X2, E1 × E2), A = A1 × A2, B = B1 × B2, C = C1 × C2. Then by routine calculations,
A((a, p)) = .3, A((a, q)) = .3, A((b, p)) = .5, A((b, q)) = .5, B((a, p)) = .2, B((a, q)) = .5,
B((b, p)) = .4, B((b, q)) = .5, C((a, p)) = .5 C((a, q)) = .5, C((b, p)) = .5, C((b, q)) = .5,

P × P
′

= {((a, p), .1, .3, .5), ((a, q), .1, .5, .5), ((b, p), .5, .4, .5), ((b, q), .5, .5, .5)},

P × Q
′

= {((a, p), .1, .6, .5), ((a, q), .1, .5, .5), ((b, p), .4, .6, .5), ((b, q), .1, .5, .5)},

Q × P
′

= {((a, p), .3, .4, .5), ((a, q), .3, .5, .5), ((b, p), .4, .6, .5), ((b, q), .4, .6, .5)},

Q × Q
′

= {((a, p), .3, .6, .5), ((a, q), .1, .5, .5), ((b, p), .4, .6, .5), ((b, q), .1, .6, .5)}.

By calculations H is not GSSVNHG.
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Example 3.5. Consider the GSVNHGs H1 = (X1, E1) and H2 = (X2, E2) where X1 =

{a, b}, X2 = {p, q}, E1 = {P,Q}, E2 = {P
′

, Q
′

}. Also A1, B1, C1 : X1 → [0, 1] defined by
A1(a) = .3, A1(b) = .5, B1(a) = .3, B1(b) = .4, C1(a) = .5, C1(b) = .5 and A2, B2, C2 :
X2 → [0, 1] defined by A2(p) = .5, A2(q) = .9, B2(p) = .1, B2(q) = .5, C2(p) = .5,
C2(q) = .5,

P = {(a, .1, .3, .5), (b, .5, .4, .5)}, Q = {(a, .3, .4, .5), (b, .4, .6, .5)},

P
′

= {(p, .5, .3, .5), (q, .8, .5, .5)}, Q
′

= {(p, .4, .6, .5), (q, .1, .5, .5)}.

Then by routine calculations H1 is GSSVNHG and H2 is GSVNHG. Let H = (X1 ×
X2, E1 × E2), A = A1 × A2, B = B1 × B2, C = C1 × C2, then by routine calculations,
A((a, p)) = .3, A((a, q)) = .3, A((b, p)) = .5, A((b, q)) = .5, B((a, p)) = .3, B((a, q)) = .5,
B((b, p)) = .4, B((b, q)) = .5, C((a, p)) = .5, C((a, q)) = .5, C((b, p)) = .5, C((b, q)) = .5,

P × P
′

= {((a, p), .1, .3, .5), ((a, q), .1, .5, .5), ((b, p), .5, .4, .5), ((b, q), .5, .5, .5)},

P × Q
′

= {((a, p), .1, .6, .5), ((a, q), .1, .5, .5), ((b, p), .4, .6, .5), ((b, q), .1, .5, .5)},

Q × P
′

= {((a, p), .3, .4, .5), ((a, q), .3, .5, .5), ((b, p), .4, .6, .5), ((b, q), .4, .6, .5)},

Q × Q
′

= {((a, p), .3, .6, .5), ((a, q), .1, .5, .5), ((b, p), .4, .6, .5), ((b, q), .1, .6, .5)}.

By calculations H is GSSVNHG.

Proposition 3.1. If both H1 and H2 are GSVNHGs, then H1 × H2 is also GSVNHG.

Proof. Let H1 = (X1, E1) and H2 = (X2, E2) be two GSVNHGs, where X1 = {x1, x2, . . . , xn},
X2 = {y1, y2, . . . , yn}, A1, B1, C1 : X1 → [0, 1], A2, B2, C2 : X2 → [0, 1],

E1 = {(TE11
, IE11

, FE11
), (TE12

, IE12
, FE12

), . . . , (TE1k
, IE1k

, FE1k
)}

E2 = {(TE21
, IE21

, FE21
), (TE22

, IE22
, FE22

), . . . , (TE2p
, IE2p

, FE2p
)}

where

TE1i
, IE1i

, FE1i
: X1 → [0, 1],

TE2j
, IE2j

, FE2j
: X2 → [0, 1],

∀i = 1, 2, 3, . . . , k and j = 1, 2, 3, . . . , p. Then the cartesian product H1 × H2 = (X1 ×
X2, E1 × E2), where

E1 × E2 = {((TE11
× TE21

), (IE11
× IE21

), (FE11
× FE21

)), . . . , ((TE11
× TE2p

), (IE11
×

IE2p
), (FE11

× FE2p
)), . . . , ((TE1k

× TE2p
), (IE1k

× IE2p
), (FE1k

× FE2p
))}

with

k
∨

r=1

TE1r
(xi) ≤ A1(xi),

p
∨

s=1

TE2s
(yj) ≤ A2(yj)

k
∧

r=1

IE1r
(xi) ≥ B1(xi),

p
∧

s=1

IE2s
(yj) ≥ B2(yj)

k
∧

r=1

FE1r
(xi) ≥ C1(xi),

p
∧

s=1

FE2s
(yj) ≥ C2(yj)
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∀i = 1, 2, 3, . . . , n and j = 1, 2, 3, . . . ,m. Now consider

p
∨

s=1

k
∨

r=1

(TE1r
× TE2s

)(xi, yj) =

p
∨

s=1

k
∨

r=1

(TE1r
(xi), TE2s

(yj))

= (

k
∨

r=1

TE1r
(xi)) ∧ (

p
∨

s=1

TE2s
(yj))

≤ A1(xi) ∧ A2(yj) = (A1 × A2)(xi, yj)

∀i and j. Similarly

p
∧

s=1

k
∧

r=1

(IE1r
× IE2s

)(xi, yj) ≥ (B1 × B2)(xi, yj)

p
∧

s=1

k
∧

r=1

(FE1r
× FE2s

)(xi, yj) ≥ (C1 × C2)(xi, yj)

∀i and j. Thus H1 × H2 is the GSVNHG. �

Proposition 3.2. If both H1 and H2 are GSSVNHGs then H1 × H2 is also GSSVNHG.

Proof. Similar as Proposition 3.1 is proved. �

Proposition 3.3. If H1 × H2 is GSSVNHG, then at least H1 or H2 must be GSSVNHG.

Proof. Let H1 = (X1, E1) and H2 = (X2, E2) be two GSVNHGs, where X1 = {x1, x2, . . . , xn},
X2 = {y1, y2, . . . , yn}, A1, B1, C1 : X1 → [0, 1], A2, B2, C2 : X2 → [0, 1] and

E1 = {(TE11
, IE11

, FE11
), (TE12

, IE12
, FE12

), . . . , (TE1k
, IE1k

, FE1k
)},

E2 = {(TE21
, IE21

, FE21
), (TE22

, IE22
, FE22

), . . . , (TE2p
, IE2p

, FE2p
)},

where

TE1i
, IE1i

, FE1i
: X1 → [0, 1],

TE2j
, IE2j

, FE2j
: X2 → [0, 1],

∀i = 1, 2, 3, . . . , k and j = 1, 2, 3, . . . , p. Then the cartesian product H1 × H2 = (X1 ×
X2, E1 × E2), where

E1 × E2 = {((TE11
× TE21

), (IE11
× IE21

), (FE11
× FE21

)), . . . , ((TE11
× TE2p

), (IE11
×

IE2p
), (FE11

× FE2p
)), . . . , ((TE1k

× TE2p
), (IE1k

× IE2p
), (FE1k

× FE2p
))},

next suppose that H1 × H2 is GSSVNHG, but H1 and H2 are not GSSVNHGs, then by
definition

k
∨

r=1

TE1r
(xi) < A1(xi),

p
∨

s=1

TE2s
(yj) < A2(yj)

k
∧

r=1

IE1r
(xi) > B1(xi),

p
∧

s=1

IE2s
(yj) > B2(yj)

k
∧

r=1

FE1r
(xi) > C1(xi),

p
∧

s=1

FE2s
(yj) > C2(yj)
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∀i = 1, 2, 3, . . . , n and j = 1, 2, 3, . . . ,m. Therefore

p
∨

s=1

k
∨

r=1

(TE1r
× TE2s

)(xi, yj) =

p
∨

s=1

k
∨

r=1

(TE1r
(xi), TE2s

(yj))

= (

k
∨

r=1

TE1r
(xi)) ∧ (

p
∨

s=1

TE2s
(yj)))

< A1(xi) ∧ A2(yj) = (A1 × A2)(xi, yj)

∀i and j. Similarly

p
∧

s=1

k
∧

r=1

(IE1r
× IE2s

)(xi, yj) > (B1 × B2)(xi, yj)

p
∧

s=1

k
∧

r=1

(FE1r
× FE2s

)(xi, yj) > (C1 × C2)(xi, yj)

∀i and j. Therefore H1 × H2 is not GSSVNHG, hence at least one of H1 or H2 must be
GSSVNHG. �

4. Conclusion

In this paper, the concept of single valued neutrosophic hypergraph has been generalized
by considering single valued neutrosophic vertex set instead of crisp vertex set and also
considering interrelation between single valued neutrosophic vertices and family of single
valued neutrosophic edges. Further one can use this concept to analyze the structure of a
system and to represent a partition, covering and clustering.
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