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Abstract. In this disquisition we have scrutinize about the traits of generalized topological spaces using neutro-

sophic sets. Depending on the nature of neutrosophic sets over the generalized topological spaces, some of the

features has been contemplated.
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1. INTRODUCTION

Some theories played a vital role towards the development of the neutrosophical topologi-

cal space they are fuzzy set theory [1], Intuitionistic fuzzy set theory [2] and the Neutrosophic

set theory [3]. Fuzzy set theory is a mathematical aid which deals with uncertainties in which

element has a degree of membership, developed by L. Zadeh [10] in 1965. The concept of

intutionistic fuzzy sets were developed by K.T. Atanassov [1]. Later on, Dogan Coker [2]

laid down the foundations to intuitionistic fuzzy topological space. Followed by this, the new
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postulations of neutrosophic sets from the intutionistic fuzzy sets were put forth by Smaran-

dache [3]. A.A. Salama and S.A. Albowi raised [6] [7] their thoughts towards neutrosophic sets

and developed neutrosophic topological spaces. Levine [4] gave a clearcut idea on generated

closed set which leads to the developement of the generalized topological spaces by P. Sivagami

and D. Sivaraj [9] had a great impact in the field of topology. Belatedly P. Sivagami, G. He-

len Rajapushpam, G. Hari Siva Annam [8] introduced Intuitionistic generalized closed sets in

generalised intuitionistic topological space which provokes my thoughts into µN Topological

spaces. In this write up we launch new initiatives to the generalized topological spaces using

neutrosophic sets.

2. PRELIMINARIES

Here, we bring back the ideas which are already exists in the field of neutrosophy.

Definition 2.1. [6] Let X be a non-empty fixed set. A Neutrosophic set [NS for short] A is an

object having the form A = {< x,µA(x),σA(x),γA(x) >: x ∈ X} where µA(x),σA(x) and γA(x)

which represents the degree of membership function , the degree of indeterminacy and the degree

of non-membership function respectively of each element x ∈ X to the set A.

Remark 2.1. [6] Every intuitionistic fuzzy set A is a non empty set in X is obviously on Neu-

trosophic sets having the form A = {< µA(x),1− µA(x)+σA(x),γA(x) >: x ∈ X}.In order to

construct the tools for developing Neutrosophic Set and Neutrosophic topology, here we intro-

duce the neutrosophic sets 0N and 1N in X as follows:

0N may be defined as follows

(01)0N = {< x,0,0,1 >: x ∈ X}

(02)0N = {< x,0,1,1 >: x ∈ X}

(03)0N = {< x,0,1,0 >: x ∈ X}

(01)0N = {< x,0,0,0 >: x ∈ X}

1N may be defined as follows

(11)1N = {< x,1,0,0 >: x ∈ X}

(12)1N = {< x,1,0,1 >: x ∈ X}
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(13)1N = {< x,1,1,0 >: x ∈ X}

(14)1N = {< x,1,1,1 >: x ∈ X}

Definition 2.2. [6] Let A = {< µA,σA,γA >} be a NS on X , then the complement of the set A

[ C(A) for short] may be defined in three ways as follows:

(C1)C(A) = A = {< x,1−µA(x),1−σA(x),1− γA(x)>: x ∈ X}

(C2)C(A) = A = {< x,γA(x),σA(x),µA(x)>: x ∈ X}

(C3)C(A) = A = {< x,γA(x),1−σA(x),µA(x)>: x ∈ X}

Definition 2.3. [6] LetX be a non-empty set and neutrosophic sets A and B in the form A =

{< x,µA(x),σA(x),γA(x)>: x ∈ X} and B = {< x,µB(x),σB(x),γB(x)>: x ∈ X} . Then we may

consider two possibilities for definitions for subsets(A⊆ B). A⊆ B may be defined as :

(A⊆ B) ⇐⇒ µA(x)≤ µB(x),σA(x)≤ σB(x),γA(x)≥ γB(x),∀x ∈ X

(A⊆ B) ⇐⇒ µA(x)≤ µB(x),σA(x)≥ σB(x),γA(x)≥ γB(x),∀x ∈ X

Proposition 2.1. [6] For any neutrosophic set A, the following conditions holds: 0N ⊆ A,0N ⊆

0N , A⊆ 1N ,1N ⊆ 1N

Definition 2.4. [6] Let X be a non empty set and A = {< x,µA(x),σA(x),γA(x) >: x ∈ X},

B = {< x,µB(x),σB(x),γB(x)>: x ∈ X} are NSs.

Then A∩B may be defined as :

(I1)A∩B =< x,µA(x)∧µB(x),σA(x)∧σB(x),γA(x)∨ γB(x)>

(I2)A∩B =< x,µA(x)∧µB(x),σA(x)∧σB(x),γA(x)∨ γB(x)>

A∪B may be defined as :

(I1)A∪B =< x,µA(x)∧µB(x),σA(x)∧σB(x),γA(x)∨ γB(x)>

(I2)A∪B =< x,µA(x)∧µB(x),σA(x)∧σB(x),γA(x)∨ γB(x)>

Proposition 2.2. [6] For all A and B are two neutrosophic sets then the following conditions

are true: C(A∪B) =C(A)∩C(B) ;C(A∩B) =C(A)∪C(B).

Definition 2.5. [6] A neutrosophic topology [NT for Short ] is a non-empty set X is a family τN

of neutrosophic subsets in X satisfying the following axioms: (NT1)0N ,1N ∈ τN ,(NT2)G1∩G2 ∈

τN for any G1,G2 ∈ τN
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(NT3)∪Gi∈τN for every {Gi : i ∈ J} ⊆ τN

The pair (X ,τN) is called neutrosophic topological space [NTS for short]. The elements of τN

are called neutrosophic open sets [NOS for short].

A neutrosophic set F is called neutrosophic closed if and only if C(F) is neutrosophic open.

Definition 2.6. [6] The complement of A [C(A)] of NOS is called a neutrosophic closed set

[NCS for short] in X.

Definition 2.7. [6] Let (X ,τN) be NTS and A = {< µA,σA,γA >} be a Neutrosophic set in X.

Then the neutrosophic Closure and Neutrosophic Interior of A are defined by

NCl(A) is the intersection of Neutrosophic closed super sets of A.

NInt(A) is the union of Neutrosophic open subsets of A.

Definition 2.8. [5] The intersection of all NFPs of A is called a neutrosophic frontier of A and

is denoted by NFr(A). That is, NFr(A) = NCl(A)∩NCl(C(A)).

3. µN TOPOLOGICAL SPACES

In this part of the article we introduce the new concept named as µN Topological space.

Definition 3.1. A µN topology is a non - empty set X is a family of neutrosophic subsets in X

satisfying the following axioms:

(µN1)0N ∈ µN

(µN2)G1∪G2 ∈ µN for any G1,G2 ∈ µN .

Throughout this article, the pair of(X ,µN) is known as µN Topological Space[µN TS for short].

Remark 3.1. The elements of µN are µN open sets and their complement is called µN closed

sets.

Definition 3.2. Let (X ,µN) be a µN TS and A =< x,µA(x),σA(x),γA(x) > be a neutrosophic

set in X. Then the µN-Closure is the intersection of all µN closed sets containing A.

Definition 3.3. Let (X ,µN) be a µN TS and A =< x,µA(x),σA(x),γA(x) > be a neutrosophic

set in X. Then the µN-Interior is the union of all µN open sets contained in A.
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Example 3.1. Let X = {a,b}with µN = {0N ,A,B,C}where A= {< 0.2,0.4,0.6>< 0.1,0.2,0.3>

},B = {< 0.6,0.8,0.5 >< 0.3,0.2,0.5 >} and C = {< 0.6,0.4,0.5 >< 0.3,0.2,0.3 >} be a µN

TS. Here µNcl(0N) = {< 0.5,0.6,0.6 >< 0.3,0.8,0.3 >} and µNInt(1N) = {< 0.6,0.4,0.5 ><

0.3,0.2,0.5 >}

Remark 3.2. Intersection of µN closed sets is again µN closed.

Proof. Let A and B be two µN closed sets then C(A) and C(B) are µN open sets. We have

C(A∩B) =C(A)∪C(B) which is a µN open. Hence, A∩B is µN closed. Thus, Intersection of

any two µN closed sets is again µN closed.We can extend the above proof for any number of µN

closed sets.

�

Theorem 3.1. Let A be a subset of X then A is µN open iff A = µNIntA.

Proof. Suppose A is µN open set then µNInt(A) is the union of all µN open sets contained in

A.Hence A = µNIntA .Conversely, Assume A = µNIntA⇒ µNInt(A) = ∪{G/G ⊆ A,G is µN

open} we know that arbitrary union of µN open sets is µN open. Hence A is µN open. �

Theorem 3.2. Let A be a subset of X then A is µN closed iff A = µNCl(A).

Proof. Suppose A is µN closed set then µNCl(A) is the intersection of all closed sets containing

A. Hence A = µNCl(A).Conversely, Assume A = µNCl(A) which implies us that µNCl(A) =

∩{F/A⊆ F,F is µN closed} we know that arbitrary intersection of µN closed sets is µN closed.

Hence A is µN closed. �

4. PROPERTIES OF µN CLOSURE & µN INTERIOR

In this section we will be discussing about some of the properties of µN closure and µN

Interior.

Result 4.1. µNCl(0N) 6= 0N; µNCl(1N) = 1N

Theorem 4.1. Enhancing Property of µN closure:

Statement: A⊆ µNCl(A)
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Proof. Since µNCl is the intersection of µN closed sets containing A.Hence A⊆ µNCl(A). �

Theorem 4.2. µN closure is monotone A⊆ B⇒ µNClA⊆ µNClB

Proof. Suppose A⊆ B. Let x /∈ µNClB⇒ x /∈ ∩F ;F is µN closed super sets of B and B⊆ F.⇒

x /∈ F ; for some µN closed super sets of B,B⊆ F . Since , A⊆ B,x /∈ ∩F ;F is µN closed super

set of A. Then, x /∈ µNCl(A). Hence the proof. �

Theorem 4.3. µN Closure is idempotent.i.e ,µNCl(µNClA) = µNClA.

Proof. By theorem 4.1 we get :A⊆ µNCl(A) which implies us that µNCl(A)⊆ µNCl(µNCl(A)).

Let B = µNCl(A). Let x /∈ B⇒ x /∈ ∩F ;F is µN closed sets and B⊆ F ⇒ x /∈ F ; for some µN

closed set F,B ⊆ F . Hence x /∈ µNcl(F) ; for some µN closed sets of µNcl(F),µNcl(B) ⊆

µNcl(F)( by theorem 3.2).Hence x /∈ µNcl(B). Hence, µNCl(µNClA) = µNClA .

�

Theorem 4.4. µNCl(A∩B)⊆ µNCl(A)∩µNClB.

Proof. We have A∩B⊆ A and A∩B⊆ B which together implies us that µNCl(A∩B)⊆ µNCl A

and µNCl(A∩B) ⊆ µNCl B. From the above two inclusion we get :µNCl(A∩B) ⊆ µNCl(A)∩

µNCl(B). In this inequality the inclusions may be strict. It is given in the upcoming example

�

Example 4.1. Let X = {a},µN = {0N ,A,C,}where A= {< 0.7,0.8,0.9>},B= {< 0.3,0.4,0.6>

},C = {< 0.9,0.7,0.6 >} ; A∩ B = {< 0.3,0.8,0.9 >};µNCl(A∩ B) = {< 0.6,0.3,0.9 >};

µNCl(A)∩µNClB = {< 0.9,0.2,0.7 >}⇒ µNCl(A∩B)⊂ µNCl(A)∩µNClB.

Example 4.2. Let X = a,µN = {0N ,A,B,C,}where A= {< 1,0.8,0.6>},B= {< 0.4,0.6,0.8>

},C = {< 1,0.6,0.6 >}. Here µNCl(A∩B) = {< 0.8,0.4,0.4 >}; µNCl(A) = {< 1,0,0 >};

µNCl(B) = {< 0.8,0.4,0.4 >}. Hence µNCl(A)∩µNClB = {< 0.8,0.4,0.4 >}= µNCl(A∩B)

Theorem 4.5. µNCl(A∪B)⊇ µNCl(A)∪µNCl(B).

Proof. We have A∪B⊇ A⇒ µNCl(A∪B)⊇ µNClA and A∪B⊇ B⇒ µNCl(A∪B)⊇ µNClB.

Thus we get µNCl(A∪B)⊇ µNCl(A)∪µNCl(B). �
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Result 4.2. µNInt(0N) = 0N; µNInt(1N) 6= 1N .

Theorem 4.6. Contraction Property of µN Interior

Statement : µNInt(A)⊆ A

Proof. Since µNInt(A) is the union of µN open sets contained in A .Hence, µNInt(A)⊆ A. Also

µNInt(A) is the largest µN open sets contained in A.

�

Theorem 4.7. Monotonicity of µN Interior.

Statement: A⊆ B⇒ µNIntA⊆ µNIntB

Proof. Suppose A ⊆ B.By previous the theorem 4.6,µNInt(A) ⊆ A. Hence µNInt(A) ⊆ B. But

µNInt(B) is the largest µN open sets contained in B. Hence,µNIntA⊆ µNIntB.

�

Theorem 4.8. Idempotency of µN Interior. i.e. ,µNInt(µNIntA) = µNIntA

Proof. By theorem 4.6 we get : µNInt(A) ⊆ A⇒ µNInt(µNIntA) ⊆ µNIntA. Let B = µNIntA.

Let x /∈ µNIntB⇒ x /∈ ∪G;G is µN open sets contained in B. By theorem 4.6 x /∈ G; for all µN

open sets contained in A. ⇒ µNIntA⊆ µNInt(µNIntA). Hence the proof. �

Theorem 4.9. µNInt(A∩B)⊆ µNInt(A)∩µNIntB

Proof. We have A∩B⊆ A⇒ µNInt(A∩B)⊆ µNIntA and A∩B⊆ B⇒ µNInt(A∩B)⊆ µNIntB.

Thus we get µNInt(A∩B)⊆ µNInt(A)∩µNIntB. �

Example 4.3. Let X = {a},µN = {0N ,A,C,E}where A= {< 0.3,0.4,0.5>}, B= {< 0.3,0,0.1>

}, C = {< 0.4,0.6,0.8 >}, D = {< 0.4,0,0.1 >}, E = {< 0.4,0.4,0.5 >}. Here B∩C = {<

0.3,0.6,0.8 >}, µNInt(B∩C) = {< 0,1,1 >} and µNInt(B) = {< 0.3,0.4,0.5 >}; µNInt(C) =

{< 0.4,0.6,0.8 >}, µNInt(B∩C) = {< 0,1,1 >}.

Hence µNInt(B)∩µNInt(C) = {< 0.3,0.6,0.8 >}⇒ µNInt(B∩C)⊂ µNInt(B)∩µNInt(C)

Example 4.4. Let X = {a},µN = {0N ,A,B,C,}where A= {< 0.3,0.3,0.5>}, B= {< 0.1,0.2,0.3>

}, C = {< 0.3,0.2,0.3 >}, D = {< 0.3,0.6,0.2 >}, E = {< 0.3,0.8,0.5 >}. Here µNInt(D) =
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{< 0,1,1 >} and µNInt(E) = {< 0,1,1 >}, µNInt(D∩E) = {< 0,1,1 >}. Hence µNInt(A)∩

µNIntB = µNInt(A∩B).

Theorem 4.10. µNInt(A∪B)⊇ µNInt(A)∪µNIntB

Proof. Since, We know A∪B⊇A and A∪B⊇B which implies us that µNInt(A∪B)⊇ µNInt(A)

and µNInt(A∩B)⊇ µNInt(B). Thus we obtain µNInt(A∪B)⊇ µNInt(A)∪µNIntB. �

5. PROPERTIES OF µN CLOSURE AND µN INTERIOR USING COMPLEMENTS

Theorem 5.1. Let(X ,µN) be a µN topological space then the following statements hold:

a) µNCl(C(A)) =C(µNInt(A)).

b) µNInt(C(A)) =C(µNCl(A)).

c) C(µNCl(C(A)) = µNInt(A).

d) C(µNInt(C(A))) = µNCl(A).

Proof. a) Let x ∈ µNCl(C(A)) then x ∈ ∩F,F is µN closed sets and C(A)⊆ F which yields that

x ∈ F , for each µN closed sets F such that C(A) ⊆ F . Hence, we get x /∈ X −F for all

µN open sets X −F such that X −F ⊆ A. Then x /∈ µNInt(A). Hence X ∈C(µNInt(A))⇒

µNCl(C(A)) ⊆C(µNInt(A)). Suppose x /∈ µNCl(C(A))⇒ x /∈ ∩F,F is µN closed sets and

C(A) ⊆ F which implies that x /∈ F , for some µN closed sets contains C(A). Therefore,x ∈

X −F for some µN open set X −F such that X −F ⊆ A and hence x ∈ µNInt(A) which

implies that x /∈ C(µNInt(A)). Henceforth, C(µNInt(A)) ⊆ µNCl(C(A)). Hence, we get

µNCl(C(A)) =C(µNInt(A)).

b) The proof is similar to a).

c) The proof follows by taking complement in a).

d) The proof can be implemented by replacing A by (A) in a).

�

6. µN -EXTERIOR & µN - FRONTIER

Definition 6.1. If µN−Ext(A) = µN− Int((C(A)) then it will be called as µN−Exterior of A.
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Remark 6.1. (i)µN−Ext(1N) = 0N (ii)µN−Ext(0N) /∈ 1N

Proof. i)

µN−Ext(1N) = µNInt(C(1N))

= µNInt(0N)

= 0N

ii)

µN−Ext(0N) = µNInt(C(0N))

= µNInt(1N)

6= µN

�

Example 6.1. In this example let us show that (i)µN−Ext(1N) = 0N (ii)µN−Ext(0N) /∈ 1N .

Let X = {a,b},µN = {0N ,A,B,C,}where A = {< 0.2,0.4,0.6 >< 0.1,0.2,0.3 >}, B = {<

0.6,0.8,0.5 >< 0.3,0.2,0.5 >}, C = {< 0.6,0.4,0.5 >< 0.3,0.2,0.3 >}. Here Ext(1N) = {<

0,1,1 >< 0,1,1 >}= 0N & µN−Ext(0N) = {< 0.6,0.4,0.5 >< 0.3,0.2,0.3 >} 6= 1N

Theorem 6.1. µN−Ext(A) =C(µNCl(A))

Proof.

µN−Ext(A) = µNInt(C(A))

= µNInt(X−A)

= X−µNCl(A)

= C(µNCl(A)).

�

Theorem 6.2. µN−Ext(A∪B)⊆ µN−Ext(A)∩µN−Ext(B)
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Proof.

µN−Ext(A∪B) = µNInt(C(A∪B))

= µNInt(C(A)∩C(B))

⊆ µNIntC(A)∩µNIntC(B))

= µN−Ext(A)∩µN−Ext(B).

�

Theorem 6.3. µN−Ext(A∩B)⊇ µN−Ext(A)∪µN−Ext(B).

Proof.

µN−Ext(A∩B) = µNInt(C(A∩B))

= µNInt(C(A)∪C(B))

⊇ µNInt(C(A))∪µNInt(C(B))

= µN−Ext(A)∪µN−Ext(B)

�

Theorem 6.4. µN−Ext(µN−Ext(A)) = µNInt(µNCl(A))⊇ µNInt(A).

Proof.

µN−Ext(µN−Ext(A)) = µN−Ext(µNInt(C(A)))

= µNIntC(µNInt(C(A))

= µNInt(µNCl(A))

⊇ µNInt(A)

�

Theorem 6.5. If A⊆ B, then µN−Ext(B)⊆ µN−Ext(A)
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Proof. Suppose A⊆ B , then

µN−Ext(B) = µNInt(C(B))

⊆ µNInt(C(A))

= µN−Ext(A)

�

Definition 6.2. If A is a neutrosophic subset of µN Topological space X then µN Frontier of A

is defined as µNFr(A) = µNCl(A)∩µNCl(C(A)).

Remark 6.2. If A is a neutrosophic subset of µN Topological space X then µN Frontier of A is

always closed.

Theorem 6.6. If A is a neutrosophic open subset of µN Topological space X then A\µNFr(A)⊆

A.

Proof. Since A is µN open ,C(A) is µN closed. We have

µNFr(A) = µNCl(A)∩µNCl(C(A))

= µNCl(A)∩C(A)

Now

C(µNFr(A)) = C(µNCl(A)∩ (C(A)))

= C(µNCl(A))∪C(C(A))

= C(µNCl(A))∪A
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Now

A\µNFr(A) = A∩C(µNFr(A))

= A∩ (C(µNCl(A))∪A)

= (A∩C(µNCl(A)))∪ (A∪A)

⊆ (A∩C(A))∪A

= ϕ ∪A

= A

�

Example 6.2. Let X = {a},µN = {0N ,A,B,C,}where A= {< 0.3,0.3,0.5>},B= {< 0.1,0.2,0.3>

},C = {< 0.3,0.2,0.3>},D= {< 0.3,0.6,0.2>},E = {< 0.3,0.8,0.5>}. Here, 0N ,A,B,C are

µN open. µNFrϕ = {< 0.3,0.8,0.3>}; µNFrA= {< 0.5,0.7,0.3>}; µNFrB= {< 0.3,0.8,0.1>

}; µNFrC = {< 0.3,0.8,0.3 >}. Now, ϕ \ µNFrϕ = {< 0,1,1 >} = ϕ;A \ µNFrA = {<

0.3,0.3,0.5 >} = A; B \ µNFrB = {< 0.1,0.2,0.3 >} = B; C \ µNFrC = {< 0.3,0.2,0.3 >

}=C.

Theorem 6.7. If A is a not a neutrosophic open subset of µN Topological space X then A \

µNFr(A)⊆ A.

Proof. A\µNFr(A) = A∩(C(µNFr(A))) which implies that A∩U ⊆ A where U =C(µNFr(A))

which is µN open since by remark 6.2 . Hence , A\µNFr(A)⊆ A. �

The inclusion may be strict both the cases are discussed in the below example.

Example 6.3. Let X = {a},µN = {0N ,A,B,C,}where A= {< 0.3,0.3,0.5>},B= {< 0.1,0.2,0.3>

},C = {< 0.3,0.2,0.3 >},D = {< 0.3,0.6,0.2 >},E = {< 0.3,0.8,0.5 >}. Here D,E,1N are

not µN open. µNFrD= {< 1,0,0>}; µNFrE = {< 0.3,0.8,0.3>}; µNFr1N = {< 0.3,0.8,0.3>

}. Now D\µNFrD = {< 0,1,1 >} ⊂D; E \µNFrE = {< 0.3,0.8,0.5 >}= E;1N \µNFr1N =

{< 0.3,0.8,0.3 >} ⊂ 1N .
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Theorem 6.8. If A is a neutrosophic subset of µN Topological space X then

µNFr(A) = µNFr(C(A)).

Proof.

µNFr(A) = µNCl(A)∩µNCl(C(A))

= µNCl(X \A)∩µNCl(X \C(A)).

= µNFr(C(A)).

�

Theorem 6.9. Let A be a neutrosophic subsets of µN Topological space X then µNFr(A) =

µNCl(A)−µNInt(A).

Proof. By Theorem 5.1 we have C(µNCl(C(A)))= µNIntA and by the definition of µNFr(A),µNFr(A)=

µNCl(A)∩ µNCl(C(A)) which is equivalent to µNCl(A)−C(µNCl(C(A))) since we have A−

B = A∩C(B). Thus,µNFr(A) = µNCl(A)−µNInt(A). �

Theorem 6.10. For each A ∈ µN TS(X), A∪µNFr(A)⊆ µNCl(A).

Proof. Let A be a neutrosophic subsets of µN Topological space X .

A∪µNFr(A) = A∪ (µNCl(A)∩µNCl(C(A)))

= (A∪ (µNCl(A)))∩ (A∪ (µNCl(C(A))))

= µNCl(A)∩ (A∪ (µNCl(C(A))))

⊆ µNCl(A).

�

The inclusion may be strict both the cases are discussed in the below example.

Example 6.4. Let X = {a},µN = {0N ,A,B,C,}where A= {< 0.3,0.3,0.5>},B= {< 0.1,0.2,0.3>

},C = {< 0.3,0.2,0.3 >},D = {< 0.3,0.6,0.2 >},E = {< 0.3,0.8,0.5 >}. Here ,µNFrϕ =

{< 0.3,0.8,0.3 >}, µNFrA = {< 0.5,0.7,0.3 >}; µNFrB = {< 0.3,0.8,0.1 >}; µNFrC =

{< 0.3,0.8,0.3 >}, µNFrD = {< 1,0,0 >}; µNFrE = {< 0.3,0.8,0.3 >}; µNFr1N = {<
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0.3,0.8,0.3 >}. Also µNClϕ = {< 0.3,0.8,0.3 >}, µNClA = {< 1,0,0 >}; µNClB = {<

1,0,0 >}; µNClC = {< 1,0,0 >}, µNClD = {< 1,0,0 >}; µNClE = {< 0.3,0.8,0.3 >};

µNCl1N = {< 1,0,0 >}. Now ,ϕ ∪µNFr(ϕ) = {< 0.3,0.8,0.3 >} = µNClϕ; A∪µNFr(A) =

{< 0.5,0.3,0.3>}⊂ {< 1,0,0>}= µNCl(A); B∪µNFr(B) = {< 0.3,0.2,0.1>}⊂ µNCl(B);

C∪ µNFr(C) = {< 0.3,0.2,0.3 >} ⊂ {< 1,0,0 >} = µNCl(C); D∪ µNFr(D) = {< 1,0,0 >

} = µNCl(D); E ∪µNFr(E) = {< 0.3,0.8,0.3 >} = µNCl(E); 1N ∪µNFr(1N) = {< 1,0,0 >

}= µNCl(1N).

Theorem 6.11. For a neutrosophic subsets A in the µN Topological space X, µNFr(µNInt(A))⊆

µNFr(A).

Proof. Let A be the neutrosophic subsets in the µN Topological space X .

µNFr(µNInt(A)) = µNCl(µNInt(A))∩µNCl(C(µNInt(A)))

= µNCl(µNInt(A))∩µNCl(µNCl(C(A))

= µNCl(µNInt(A))∩µNCl(µNCl(C(A))

⊆ µNCl(A)∩µNCl(C(A))

= µNFr(A)

Hence, µNFr(µNInt(A))⊆ µNFr(A). �

Remark 6.3. The converse of the above theorem is not true as shown by the following exam-

ple Let X = {a},µN = {0N ,A,B,C,} where A= {< 0.3,0.3,0.5>},B= {< 0.1,0.2,0.3>},C =

{< 0.3,0.2,0.3 >},D = {< 0.3,0.6,0.2 >},E = {< 0.3,0.8,0.5 >}. µNFr(D) = {< 1,0,0 >},

µNFr(µNIntD) = µNFr{< 0,1,1 >}= {< 0.3,0.8,0.3 >}. Here µNFr(D) 6⊆ µNFr(µNIntD).

Theorem 6.12. For a neutrosophic subsets A in µN topological space X,

µNFr(µNCl(A))⊆ µNFr(A).
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Proof. Let A be a NS in the µN Topological space.Then by definition

µNFr(µNCl(A)) = µNCl(µNCl(A))∩µNCl(C(µNCl(A)))

= µNCl(A)∩µNCl(µNInt(C(A)))

⊆ µNCl(A)∩µNCl(C(A))

= µNFr(A).

�

Remark 6.4. The converse of the above theorem is not true which is explained in the follow-

ing example . Let X = {a},µN = {0N ,A,B,C} where A = {< 0.3,0.3,0.5 >},B = {<

0.1,0.2,0.3 >},C = {< 0.3,0.2,0.3 >},D = {< 0.3,0.6,0.2 >},E = {< 0.3,0.8,0.5 >}. Here,

µNFr(E) = {< 0.3,0.8,0.3 >}, µNFr(µNCl(E)) = µNFr{< 0.3,0.8,0.3 >}= {< 0,1,1 >}.

Here, µNFr(E) 6⊆ µNFr(µNCl(E))

Remark 6.5. In General Topology, the following conditions are hold.

(i) NFr(A)∩NInt(A) = 0N

(ii) NInt(A)∪NFr(A) = Ncl(A)

(iii) NInt(A)∪NInt(C(A))∪NFr(A) = 1N

But here in µN Topological space we provide counter-examples (11-13) to show that the above

conditions may not be hold in general.

Example 6.5. Let X = {a,b} and µN = {0N ,A,B,C} Then (X ,µN) be a µN Topological space

and A = {< 0.2,0.4,0.6 >< 0.1,0.2,0.3 >},B = {< 0.6,0.8,0.5 >< 0.3,0.2,0.5 >},C = {<

0.6,0.4,0.5>< 0.3,0.2,0.3>}. Here, µNFr(A)∩µNInt(A)= {< 0.6,0.6,0.2>< 0.3,0.8,0.1>

} ∩ {< 0.2,0.4,0.6 >< 0.1,0.2,0.3 >} = {< 0.2,0.6,0.6 >< 0.1,0.8,0.3 >} 6= 0N . Thus,

µNFr(A)∩µNInt(A) 6= 0N .

Example 6.6. Let X = {a,b} and µN = {0N ,A,B,C} Then (X ,µN) be a µN Topological space

and A = {< 0.2,0.4,0.6 >< 0.1,0.2,0.3 >} ,B = {< 0.6,0.8,0.5 >< 0.3,0.2,0.5 >},C = {<

0.6,0.4,0.5>< 0.3,0.2,0.3>}. Here, µNInt(B)∪µNFr(B)= {< 0.6,0.8,0.5>< 0.3,0.2,0.5>
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}∪{< 0.5,0.2,0.6 >< 0.5,0.8,0.3 >}= {< 0.6,0.2,0.5 >< 0.5,0.2,0.3 >} 6= µNCl(B) = {<

1,0,0 >< 1,0,0 >}.

Example 6.7. Let X = {a,b} and µN = {0N ,A,B,C} Then (X ,µN) be a µN Topological space

and A = {< 0.2,0.4,0.6 >< 0.1,0.2,0.3 >} ,B = {< 0.6,0.8,0.5 >< 0.3,0.2,0.5 >},C = {<

0.6,0.4,0.5 >< 0.3,0.2,0.3 >}.

Here,µNInt(C)∪µNInt(C(C))∪µNFr(C)= {< 0.6,0.4,0.5>< 0.3,0.2,0.3>}∪{< 0,1,1><

0,1,1 >}∪{< 0.5,0.6,0.6 >< 0.3,0.8,0.3 >}= {< 0.6,0.4,0.5 >< 0.3,0.2,0.3 >} 6= 1N .

Remark 6.6. In µN Topological space X,µNFr(A∩B) and µNFr(A)∩ µNFr(B) are indepen-

dent. It is established in the following example. Let X = {a,b} and µN = {0N ,A,B,C}.

Then (X ,µN) be a µN Topological space and A = {< 0.2,0.4,0.6 >< 0.1,0.2,0.3 >} ,B =

{< 0.6,0.8,0.5 >< 0.3,0.2,0.5 >},C = {< 0.6,0.4,0.5 >< 0.3,0.2,0.3 >}. µNFr(A∩B) =

{< 0.6,0.2,0.2 >< 0.5,0.8,0.1 >}, µNFr(A)∩µNFr(B) = {< 0.5,0.6,0.6 >< 0.3,0.8,0.3 >}

From this we say that µNFr(A∩B) 6⊆ µNFr(A)∩ µNFr(B) and also µNFr(A)∩ µNFr(B) 6⊆

µNFr(A∩B).

Remark 6.7. For any neutrosophic subsets A and B in the Neutrosophic Topological space X,

then NFr(A∩B)⊆ NFr(A)∪NFr(B).But it may not hold in µN Topological space, we provide

a counter-example to explain the scenario.

Example 6.8. Let X = {a},µN = {0N ,A,B,C}where A= {< 0.3,0.3,0.5>},B= {< 0.1,0.2,0.3>

},C = {< 0.3,0.2,0.3 >},D = {< 0.3,0.6,0.2 >},E = {< 0.3,0.8,0.5 >}. Here, µNFrϕ =

{< 0.3,0.8,0.3 >}, µNFrA = {< 0.5,0.7,0.3 >}; µNFrB = {< 0.3,0.8,0.1 >}; µNFrC =

{< 0.3,0.8,0.3 >}, µNFrD = {< 1,0,0 >}; µNFrE = {< 0.3,0.8,0.3 >}; µNFr1N = {<

0.3,0.8,0.3 >}. Here, A∩B = {< 0.1,0.3,0.5 >}; µNFr(A∩B) = {< 1,0,0 >}; µNFr(A)∪

µNFr(B) = {< 0.5,0.7,0.1 >} which says that µNFr(A∩B) ⊇ µNFr(A)∪ µNFr(B). On the

other hand while considering the sets D and E, D∩E = {< 0.3,0.8,0.5 >}; µNFr(D∩E) =

{< 0.3,0.8,0.3 >}; µNFr(D)∪ µNFr(E) = {< 1,0,0 >} in this case we get µNFr(D∩E) ⊆

µNFr(D)∪µNFr(E)

Theorem 6.13. For any neutrosophic subsets A in the µN Topological space X,
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(i) µNFr(µNFr(A))⊆ µNFr(A)

(ii) µNFr(µNFr(µNFr(A)))⊆ µNFr(µNFr(A))

Proof. Let A be the µN Topological space X

(i)

µNFr(µNFr(A)) = (µNFr(µNFr(A)))

= (µNCl(µNCl(A)))∩ (µNCl(µNCl(C(A))))

∩ (µNCl(C(µNCl(A))))∩ (µNCl((C(A)))

⊆ (µNCl(µNCl(A)))∩ (µNCl(µNCl(C(A))))

∩ (µNCl(µNInt(C(A))))∪ (µNInt(A))

= (µNCl(A)∩µNCl(C(A)))∩ (µNCl(µNInt(C(A))))

∪ (µNCl(µNInt(A)))

⊆ µNCl(A)∩µNCl(C(A))

= µNFr(A)

Hence,µNFr(µNFr(A))⊆ µNFr(A).

(ii)

µNFr(µNFr(µNFr(A))) = (µNCl(µNFr(µNFr(A))))∩

(µNCl(C(µNFr(µNFr(A)))))

⊆ (µNCl(µNFr(A)))∩ (µNCl(C(µNFr(A))))

⊆ µNFr(µNFr(A))

Hence,µNFr(µNFr(µNFr(A)))⊆ µNFr(µNFr(A))

�

Remark 6.8. From the above , The converse of (i) need not be true as shown in the exam-

ple.From example 14, µNFrD = {< 1,0,0 >}; µNFr(µNFr(D)) = µNFr{< 1,0,0 >} = {<

0.3,0.8,0.3 >} 6⊇ {< 1,0,0 >} which implies µNFr(A) 6⊆ µNFr(µNFr(A)).
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Remark 6.9. No counter example could be brought out to estabilish the irreversibility of the

inclusion in (ii).

7. CONCLUSION

In this paper , we studied the behaviour of generalized topological spaces using neutrosophic

sets and some of their properties were discussed. Also, we study about the operators in µN

Topological spaces. In future we plan to extend our research towards µN continuous, µN con-

nected, µN Compact and also some new µN open sets are to be introduced.

ACKNOWLEDGMENT

My sincere gratitude to my guide and my mentor Dr.G.Hari Siva Annam for their valuable

guidance and motivation towards the write up of this article in a successful manner. Also I

thank the referees for their time and comments. I dedicate this write up to my loving father late

Er.N.Netaji Jawaharlal Nehru.

CONFLICT OF INTERESTS

The author(s) declare that there is no conflict of interests.

REFERENCES

[1] K.T, Atanassov, R. Parvathi, Intuitionistic fuzzy sets. Fuzzy Sets Syst. 20 (1986), 87–96.
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