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Abstract: This work indicates the insufficiency of existing symmetry measures (SMs) between
asymmetry measures of simplified neutrosophic sets (SNSs) and proposes the improved normalized
SMs of SNSs, including the improved SMs and weighted SMs in single-valued and interval
neutrosophic settings. Then, the sine entropy measures of SNSs are presented to establish a sine
entropy weight model for solving the criteria weights in decision-making. Based on the improved
weighted SMs of SNSs and the sine entropy weight model, a multi-criteria decision-making (MCDM)
method with unknown criteria weights (an improved MCDM method) is established in the SNS
setting. In the MCDM process, corresponding to the criteria weights obtained by the sine entropy
model, the ranking order of all alternatives and the best one are given by means of the improved
weighted SMs between the ideal solution and each alternative. Lastly, the improved MCDM method is
applied to an actual decision example in single-valued and interval neutrosophic settings to indicate
the feasibility of the improved MCDM method. By comparative analysis with existing MCDM
methods, the improved SMs and the sine entropy weight model not only provide a simpler and more
effective method for MCDM problems with unknown criteria weights in the SNS setting, but can also
overcome the insufficiency of the existing SMs and MCDM method.

Keywords: simplified neutrosophic symmetry measure; sine entropy; interval neutrosophic set;
single-valued neutrosophic set; decision making

1. Introduction

Since a neutrosophic set (NS) [1] provides an effective way to express inconsistent, incomplete,
and indeterminate information in the real world, which cannot be expressed by the fuzzy set and
(interval-valued) intuitionistic fuzzy set [2–5], it has been widely applied in various fields, such as
image processing [6–9], object tracking [10–12], and decision-making [13]. As a subclass of NS,
a simplified neutrosophic set (SNS) [14], implying single-valued neutrosophic set (SVNS) and interval
neutrosophic set (INS) concepts, is composed of the truth, indeterminacy, and falsity components,
where their membership degrees are constrained in the real standard interval [0, 1]. A large number of
studies of SNSs/SVNSs/INSs have been applied to decision-making problems with known/given
criteria weights [15–24] and unknown criteria weights [25]. However, various measures between
SNSs/SVNSs/INSs are important mathematical tools in multi-criteria decision-making (MCDM)
problems. For instance, three vector similarity measures (the cosine, Dice, jaccard measures) of
SNSs [16], similarity measures of INSs [26], hybrid vector similarity measures of SNSs [27], and
the generalized Dice measures of SNSs (containing the Dice measures and asymmetry measures as
their special cases) [28] were presented for MCDM problems. Then, the cross-entropy measures of
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SVNSs and INSs [15,29] were used for MCDM problems. After that, the projection and bidirectional
projection measures of SVNSs [30] and the harmonic averaging projection measures of SNSs [31] were
developed for MCDM problems.

Especially in more recent research, Tu et al. [32] firstly proposed the normalized SMs based on
asymmetry measures of SNSs and their MCDM method with known criteria weights and indicated
its main advantage of the strengthened resolution/discrimination in the decision-making process.
However, the SMs of SNSs presented in [32] may produce undefined/unmeaningful situations in
some cases, which will indicate their insufficiency in the following section. Furthermore, the SM-based
MCDM method introduced in [32] cannot deal with decision-making problems with unknown criteria
weights. To solve these issues, this work proposes the improved normalized SMs and weighted SMs
based on the asymmetry measures of SNSs, the sine entropy of SNS, and their MCDM method with
unknown criteria weights in SVNS and INS (SNS) settings.

This study is constructed by the following framework: Section 2 describes the existing SMs
based on asymmetry measures of SNSs and indicates their insufficiency in some cases. In Section 3,
the improved normalized SMs and improved weighted SMs of SNSs based on the asymmetry measures
of SNSs are proposed in SVNS and INS settings. Section 4 presents the sine entropy of SNS based on
sine function and its proof. In Section 5, a MCDM method with unknown criteria weights (an improved
MCDM method) is developed based on the improved weighted SMs and the sine entropy weight
model. Section 6 presents an actual decision example in SVNS and INS setting to show the application
of the improved MCDM method and compares the improved MCDM method with an existing
MCDM method by considering the given criteria weights and sine entropy weights to demonstrate the
feasibility and effectiveness of the improved MCDM method. Finally, conclusions and future research
are contained in Section 7.

2. Existing SMs between Simplified Neutrosophic Asymmetry Measures and Insufficiency

This section introduces the normalized SMs between simplified neutrosophic asymmetry
measures presented in [32] and indicates their insufficiency.

The SNS introduced by Ye [14] can be expressed as Y = {〈z, αY(z), βY(z), γY(z)〉|z ∈ Z} in the
universe of discourse Z, such that αY(z): Z→ [0, 1], βY(z): Z→ [0, 1], and γY(z): Z→ [0, 1], which are
depicted by the truth, indeterminacy, and falsity membership degrees, with either 0 ≤ sup αY(z) +
sup βY(z) + sup γY(z) ≤ 3 for INS or 0 ≤ αY(z) + βY(z) + γY(z) ≤ 3 for SVNS and z ∈ Z. Then an
element 〈z, αY(z), βY(z), γY(z)〉 in the SNS Y is denoted by the simplified neutrosophic number (SNN)
y =

〈
αy, βy, γy

〉
for short.

Assume that X = {x1, x2, . . . , xn} and Y = {y1, y2, . . . , yn} are two SNSs, where xj =
〈
αxj, βxj, γxj

〉
and yj =

〈
αyj, βyj, γyj

〉
is the j-th single-valued neutrosophic numbers (SVNNs) (j = 1, 2, . . . , n)

and xj = 〈[α−xj, α+xj], [β
−
xj, β+

xj], [γ
−
xj, γ+

xj]〉 and yj = 〈[α−yj, α+yj], [β
−
yj, β+

yj], [γ
−
yj, γ+

yj]〉 is the j-th interval
neutrosophic numbers (INNs) (j = 1, 2, . . . , n). Then asymmetry measures between X and Y are
defined as follows [32]:

PY(X) =
X ·Y
‖Y‖2 =

n
∑

j=1
(αxjαyj + βxjβyj + γxjγyj)

n
∑

j=1
(α2

yj + β2
yj + γ2

yj)
for SVNSs, (1)

PX(Y) =
X ·Y
‖X‖2 =

n
∑

j=1
(αxjαyj + βxjβyj + γxjγyj)

n
∑

j=1
(α2

xj + β2
xj + γ2

xj)
for SVNSs, (2)
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PY(X) =
X ·Y
‖Y‖2 =

n
∑

j=1
(α−xjα

−
yj + α+xjα

+
yj + β−xjβ

−
yj + β+

xjβ
+
yj + γ−xjγ

−
yj + γ+

xjγ
+
yj)

n
∑

j=1
[(α−yj)

2
+ (α+yj)

2
+ (β−yj)

2
+ (β+

yj)
2
+ (γ−yj)

2
+ (γ+

yj)
2
]

for INSs, (3)

PX(Y) =
X ·Y
‖X‖2 =

n
∑

j=1
(α−xjα

−
yj + α+xjα

+
yj + β−xjβ

−
yj + β+

xjβ
+
yj + γ−xjγ

−
yj + γ+

xjγ
+
yj)

n
∑

j=1
[(α−xj)

2
+ (α+xj)

2
+ (β−xj)

2
+ (β+

xj)
2
+ (γ−xj)

2
+ (γ+

xj)
2
]

for INSs. (4)

Thus, the normalized SM between SNSs (SVNSs and INSs) X and Y introduced in [32] is presented
as follows:

M(X, Y) =
1

1 +
∣∣∣∣ X·Y
‖X‖2 − X·Y

‖Y‖2

∣∣∣∣ =
‖X‖2‖Y‖2

‖X‖2‖Y‖2 +
∣∣∣‖X‖2 − ‖Y‖2

∣∣∣X ·Y , (5)

which contains the following normalized SMs of single-valued and interval neutrosophic
asymmetry measures:

M1(X, Y) = ‖X‖2‖Y‖2

‖X‖2‖Y‖2+
∣∣∣‖X‖2−‖Y‖2

∣∣∣X·Y
=

n
∑

j=1
[(αxj)

2+(βxj)
2+(γxj)

2]×
n
∑

j=1
[(αyj)

2+(βyj)
2+(γyj)

2]

n
∑

j=1
[(αxj)

2 + (βxj)
2 + (γxj)

2]×
n
∑

j=1
[(αyj)

2 + (βyj)
2 + (γyj)

2]

+

∣∣∣∣∣ n
∑

j=1
[(αxj)

2 + (βxj)
2 + (γxj)

2]−
n
∑

j=1
[(αyj)

2 + (βyj)
2 + (γyj)

2]

∣∣∣∣∣
×

n
∑

j=1
[αxjαyj + βxjβyj + γxjγyj]



for SVNSs,

(6)

M2(X, Y) = ‖X‖2‖Y‖2

‖X‖2‖Y‖2+
∣∣∣‖X‖2−‖Y‖2 ∣∣∣X·Y

=

n
∑

j=1
[(α−xj )

2
+(α+xj )

2
+(β−xj )

2
+(β+xj )

2
+(γ−xj )

2
+(γ+xj )

2
]×

n
∑

j=1
[(α−yj )

2
+(α+yj )

2
+(β−yj )

2
+(β+yj )

2
+(γ−yj )

2
+(γ+yj )

2
]

n
∑

j=1
[(α−xj)

2
+ (α+

xj)
2
+ (β−xj)

2
+ (β+

xj)
2
+ (γ−xj)

2
+ (γ+

xj)
2
]×

n
∑

j=1
[(α−yj)

2
+ (α+

yj)
2
+ (β−yj)

2
+ (β+

yj)
2
+ (γ−yj)

2
+ (γ+

yj)
2
]

+

∣∣∣∣∣ n
∑

j=1
[(α−xj)

2
+ (α+

xj)
2
+ (β−xj)

2
+ (β+

xj)
2
+ (γ−xj)

2
+ (γ+

xj)
2
]−

n
∑

j=1
[(α−yj)

2
+ (α+

yj)
2
+ (β−yj)

2
+ (β+

yj)
2
+ (γ−yj)

2
+ (γ+

yj)
2
]

∣∣∣∣∣
×

n
∑

j=1
(α−xjα

−
yj + α+

xjα
+
yj + β−xj β

−
yj + β+

xj β
+
yj + γ−xjγ

−
yj + γ+

xjγ
+
yj)



for INSs.

(7)

However, when xj =
〈
αxj, βxj, γxj

〉
=< 0, 0, 0 > or yj =

〈
αyj, βyj, γyj

〉
=< 0, 0, 0 > and xj =<

[α−xj, α+xj], [β
−
xj, β+

xj], [γ
−
xj, γ+

xj] >=< [0, 0], [0, 0], [0, 0] > or yj =< [α−yj, α+yj], [β
−
yj, β+

yj], [γ
−
yj, γ+

yj] >=<

[0, 0], [0, 0], [0, 0] > (j = 1, 2, . . . , n) in X or Y, Equations (6) and (7) are undefined/unmeaningful.
In these cases, existing SMs of SNSs (SVNSs and INSs) cannot be suitable for the decision-making and
pattern recognition problems with the neutrosophic information. Hence, it is necessary to improve the
algorithm of the existing normalized SMs.

3. Improved Normalized SMs of SNSs

To overcome the aforementioned insufficiency of the existing SMs [32], an improved normalized
SM based on simplified neutrosophic asymmetry measures between SNSs X and Y is proposed
as follows:

H(X, Y) = 1− |PX(Y)− PY(X)|
PX(Y) + PY(X)

= 1−

∣∣∣‖Y‖2 − ‖X‖2
∣∣∣

‖Y‖2 + ‖X‖2 , (8)
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which contains the following normalized SMs of SVNSs and INSs:

H1(X, Y) = 1−

∣∣∣‖Y‖2 − ‖X‖2
∣∣∣

‖Y‖2 + ‖X‖2 = 1−

∣∣∣∣∣ n
∑

j=1
(α2

yj + β2
yj + γ2

yj)−
n
∑

j=1
(α2

xj + β2
xj + γ2

xj)

∣∣∣∣∣
n
∑

j=1
(α2

yj + β2
yj + γ2

yj) +
n
∑

j=1
(α2

xj + β2
xj + γ2

xj)
for SVNSs, (9)

H2(X, Y) = 1−

∣∣∣‖Y‖2 − ‖X‖2
∣∣∣

‖Y‖2 + ‖X‖2 = 1−

∣∣∣∣∣∣∣∣
n
∑

j=1
[(α−yj)

2
+ (α+yj)

2
+ (β−yj)

2
+ (β+

yj)
2
+ (γ−yj)

2
+ (γ+

yj)
2
]

−
n
∑

j=1
[(α−xj)

2
+ (α+xj)

2
+ (β−xj)

2
+ (β+

xj)
2
+ (γ−xj)

2
+ (γ+

xj)
2
]

∣∣∣∣∣∣∣∣
n
∑

j=1
[(α−yj)

2
+ (α+yj)

2
+ (β−yj)

2
+ (β+

yj)
2
+ (γ−yj)

2
+ (γ+

yj)
2
]

+
n
∑

j=1
[(α−xj)

2
+ (α+xj)

2
+ (β−xj)

2
+ (β+

xj)
2
+ (γ−xj)

2
+ (γ+

xj)
2
]


for INSs, (10)

where X = {x1, x2, . . . , xn} and Y = {y1, y2, . . . , yn} are the two SNSs, including the
SVNNs xj = 〈αxj, βxj, γxj〉 and yj = 〈αyj, βyj, γyj〉 (j = 1, 2, . . . , n) and the INNs
xj = 〈[α−xj, α+xj], [β

−
xj, β+

xj], [γ
−
xj, γ+

xj]〉 and yj = 〈[α−yj, α+yj], [β
−
yj, β+

yj], [γ
−
yj, γ+

yj]〉 (j = 1, 2, . . . , n) in X
and Y.

Since Equations (9) and (10) are the normalized SMs of SVNSs and INSs, they satisfy the conditions:
Hk(X, Y) = Hk(Y, X) and 0 ≤ Hk(X, Y) ≤ 1 for k = 1, 2. Then the improved SMs of SVNSs and INSs can
overcome the insufficiency of the existing SMs of SVNSs and INSs because the improved SMs do not
imply the aforementioned undefined/unmeaningful situation, and also show simpler algorithms in
comparison to Equations (6) and (7).

If the importance of each element xj or yj (j = 1, 2, . . . , n) is considered in X and Y by wj,
with wj ∈ [0, 1] and ∑n

j=1 wj = 1, the improved weighted SM between asymmetry measures of SNSs
can be presented by:

W(X, Y) = 1− |PXw(Y)− PYw(X)|
PXw(Y) + PYw(X)

= 1−

∣∣∣‖Y‖2
w − ‖X‖

2
w

∣∣∣
‖Y‖2

w + ‖X‖2
w

, (11)

which contains the following improved weighted SMs of SVNSs and INSs:

W1(X, Y) = 1−

∣∣∣∣∣ n
∑

j=1
w2

j (α
2
yj + β2

yj + γ2
yj)−

n
∑

j=1
w2

j (α
2
xj + β2

xj + γ2
xj)

∣∣∣∣∣
n
∑

j=1
w2

j (α
2
yj + β2

yj + γ2
yj) +

n
∑

j=1
w2

j (α
2
xj + β2

xj + γ2
xj)

for SVNSs, (12)

W2(X, Y) = 1−

∣∣∣∣∣∣∣∣
n
∑

j=1
w2

j [(α
−
yj)

2
+ (α+yj)

2
+ (β−yj)

2
+ (β+

yj)
2
+ (γ−yj)

2
+ (γ+

yj)
2
]

−
n
∑

j=1
w2

j [(α
−
xj)

2
+ (α+xj)

2
+ (β−xj)

2
+ (β+

xj)
2
+ (γ−xj)

2
+ (γ+

xj)
2
]

∣∣∣∣∣∣∣∣
n
∑

j=1
w2

j [(α
−
yj)

2
+ (α+yj)

2
+ (β−yj)

2
+ (β+

yj)
2
+ (γ−yj)

2
+ (γ+

yj)
2
]

+
n
∑

j=1
w2

j [(α
−
xj)

2
+ (α+xj)

2
+ (β−xj)

2
+ (β+

xj)
2
+ (γ−xj)

2
+ (γ+

xj)
2
]


for INSs. (13)

Since Equations (12) and (13) are the weighted normalized SMs of SVNSs and INSs, they also
satisfy these conditions: Wk(X, Y) = Wk(Y, X) and 0 ≤Wk(X, Y) ≤ 1 for k = 1, 2.
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4. Simplified Neutrosophic Sine Entropy

In this section, we propose the sine entropy of SNS based on sine function to determine unknown
criteria weights in the following MCDM problems.

Definition 1. Let Y = {y1, y2, . . . , yn} be an SNS, where yj =
〈
αyj, βyj, γyj

〉
is the j-th SVNN and

yj = 〈[α−yj, α+yj], [β
−
yj, β+

yj], [γ
−
yj, γ+

yj]〉 is the j-th INN (j = 1, 2, . . . , n). Then the sine entropy measures
of Y are defined as follows:

SE1(Y) =
1

3n

n

∑
j=1

[sin(αjπ) + sin(β jπ) + sin(γjπ)] for the SVNS Y, (14)

SE2(Y) =
1

6n

n

∑
j=1

[sin(α−j π) + sin(β−j π) + sin(γ−j π) + sin(α+j π) + sin(β+j π) + sin(γ+
j π)] for the INS Y. (15)

Following an axiomatic definition of the entropy measures of SNSs [33,34], the sine entropy
measures of SVNS and INS have the following theorem.

Theorem 1. Let the fuzziest SVNN be aj = <0.5, 0.5, 0.5> or the fuzziest INN be aj = <[0.5, 0.5], [0.5, 0.5],
[0.5, 0.5]> (j = 1, 2, . . . , n) in the fuzziest SNS A = {a1, a2, . . . , an}. Then, the sine entropy measure SEk(Y)
(k = 1, 2) satisfies the following properties:

(E1) SEk(Y) = 0 if Y = {y1, y2, . . . , yn} is a crisp set, i.e., yj = <1, 0, 0> or yj = <0, 0, 1> for SVNN and
yj = <[1, 1], [0, 0], [0, 0]> or yj = <[0, 0], [0, 0], [1, 1]> (j = 1, 2, . . . , n) for INS;

(E2) SEk(Y) = 1 if and only if yj = aj (j = 1, 2, . . . , n);

(E3) If the closer an SNS Y is to the fuzziest SNS A than an SNS X, the fuzzier Y is than X, then SEk(X)
≤ SEk(Y);

(E4) SEk(Y) = SEk(Yc) if Yc is the complement of Y.

Proof:

(E1) For a crisp set Y = {y1, y2, . . . , yn}, i.e., yj = <1, 0, 0> or yj = <0, 0, 1> for SVNN and yj = <[1, 1],
[0, 0], [0, 0]> or yj = <[0, 0], [0, 0], [1, 1]> (j = 1, 2, . . . , n) for INN, by use of Equation (14) we
obtain the following result:

SE1(Y) =
1

3n

n

∑
j=1

[sin(αjπ) + sin(β jπ) + sin(γjπ)] =
n

3n
[sin(1× π) + sin(0× π) + sin(0× π)] = 0,

or

SE1(Y) =
1

3n

n

∑
j=1

[sin(αjπ) + sin(β jπ) + sin(γjπ)] =
n

3n
[sin(0× π) + sin(0× π) + sin(1× π)] = 0,

and by use of Equation (15) we also obtain the following result:

SE2(Y) = 1
6n

n
∑

j=1
[sin(α−j π) + sin(β−j π) + sin(γ−j π) + sin(α+j π) + sin(β+

j π) + sin(γ+
j π)]

= n
6n [sin(1× π) + sin(0× π) + sin(0× π) + sin(1× π) + sin(0× π) + sin(0× π)] = 0,

or:

SE2(Y) = 1
6n

n
∑

j=1
[sin(α−j π) + sin(β−j π) + sin(γ−j π) + sin(α+j π) + sin(β+

j π) + sin(γ+
j π)]

= n
6n [sin(0× π) + sin(0× π) + sin(1× π) + sin(0× π) + sin(0× π) + sin(1× π)] = 0.
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(E2) Let the sine function be f (zj) = sin(zjπ) for zj ∈ [0, 1] (j = 1, 2, . . . , n). By differentiating f (zj) with
respect to zj and equating to zero, there exist the following results:

∂ f (zj)

∂zj
= π cos(zjπ), (16)

∂ f (zj)

∂zj
= π cos(zjπ) = 0.

Thus, the critical point of zj is zj = 0.5.
By differentiating Equation (16) with respect to zj, we obtain:

∂2 f (zj)

∂(zj)
2 = −π2 sin(zjπ). (17)

Hence, Equation (17) can indicate the following inequality:

∂2 f (zj)

∂(zj)
2 < 0 for zj = 0.5.

Obviously, f (zj) for zj ∈ [0, 1] implies a concave function with the global maximum f (zj) = 1 at
zj = 0.5. Then, the sine entropy measures of an SNS Y can be expressed as the following two forms:

SE1(Y) =
1

3n

n

∑
j=1

[
f
(
αyj
)
+ f

(
βyj
)
+ f

(
γyj
)]

for the SVNS Y,

SE2(Y) =
1

6n

n

∑
j=1

 f
(

α−yj

)
+ f

(
β−yj

)
+ f

(
γ−yj

)
+ f
(

α+yj

)
+ f

(
β+

yj

)
+ f

(
γ+

yj

)  for the INS Y.

Clearly, SEk(Y) = 1 (k = 1, 2)⇔ yj = aj = < 0.5, 0.5, 0.5> or yj = aj = < [0.5, 0.5], [0.5, 0.5], [0.5, 0.5]>
(j = 1, 2, . . . , n).

(E3) According to Equation (16), f (zj) for zj ∈ [0, 1] (j = 1, 2, . . . , n) is an increasing function if zj < 0.5
and then it is a decreasing function if zj > 0.5.

Therefore, the closer an SNS Y is to the fuzziest SNS A than an SNS X, and then SEk(X) ≤ SEk(Y)
(k = 1, 2).

(E4) Since the complement of the SVNN yj =
〈
αyj, βyj, γyj

〉
in Y is yc

j = 〈γyj, 1 − βyj, αyj〉,
i.e., (αyj)c = γyj and (βyj)c = 1 − βyj (j = 1, 2, . . . , n) and the complement of the INN
yj = 〈[α−yj, α+yj], [β

−
yj, β+

yj], [γ
−
yj, γ+

yj]〉 in Y is yc
j = 〈[γ−yj, γ+

yj], [1 − β+
yj, 1 − β−yj], [α

−
yj, α+yj]〉,

i.e., [α−yj, α+yj]
c
= [γ−yj, γ+

yj] and [β−yj, β+
yj]

c
= [1 − β+

yj, 1 − β−yj] (j = 1, 2, . . . , n). Then, there is
SEk(Yc) = SEk(Y) (k = 1, 2) by using Equations (14) and (15).

This completes the proof of the theorem. 2

It is worth noting that the SVNS Y is a special case of the INS Y if α−yj = α+yj = αyj, β−yj = β+
yj = βyj,

and γ−yj = γ+
yj = γyj in the INN yj = 〈[α−yj, α+yj], [β

−
yj, β+

yj], [γ
−
yj, γ+

yj]〉 (j = 1, 2, . . . , n). In this case,
Equation (15) is reduced to Equation (14).

5. Decision-Making Method Using the Improved Weighted SMs of SNSs

In this section, the improved weighted SMs of SNSs (SVNSs and INSs) and the simplified
neutrosophic sine entropy are utilized for MCDM problems with unknown criteria weights.



Symmetry 2018, 10, 225 7 of 12

In a MCDM problem with unknown criteria weights, suppose that a set of alternatives is
Y = {Y1, Y2, . . . , Ym} and a set of criteria is R = {R1, R2, . . . , Rn}. Thus, we propose the MCDM
method based on the improved weighted SMs of SNSs and the sine entropy weights of SNSs in SVNS
and INS setting, which is called the improved MCDM method in the following.

In SNS (SVNS and INS) setting, the suitable evaluations of each alternative Yj (j = 1, 2, . . . , n) over
criteria Ri (i = 1, 2, . . . , m) are represented by an SNS Yi = {yi1, yi2, . . . , yin}, where yij = <αij, βij, γij> is
an SVNN for αij, βij, γij ∈ [0, 1] and 0≤ αij + βij + γij ≤ 3 or yij = 〈[α−ij , α+ij ], [β

−
ij , β+

ij ], [γ
−
ij , γ+

ij ]〉 is an INN

for αij, βij, γij ⊆ [0, 1] and 0 ≤ α+ij + β+
ij + γ+

ij ≤ 3. Thus, the decision matrix of SNSs M = (yij)m×n

can be established in SVNS or INS setting. Thus, the improved MCDM method is indicated by the
following steps:

Step 1. Based on the concept of an ideal solution (alternative), we can determine
the ideal solution Y∗ =

{
y∗1 , y∗2 , . . . , y∗n

}
where y∗j =< α∗j , β∗j , γ∗j >=<

max
i

(αij), min
i
(βij), min

i
(γij) > is an ideal SVNN or y∗j =< α∗j , β∗j , γ∗j >=<

[max
i

(α−ij ), max
i

(α+ij )], [min
i
(β−ij ), min

i
(β+

ij )], [min
i
(γ−ij ), min

i
(γ+

ij ) > is an ideal INN (j = 1,

2, . . . , n; i = 1, 2, . . . , m).
Step 2. Since the fuzziness/uncertainty of a criterion evaluation increases, the criterion weight should

decrease. So, based on the sine entropy measure formula Equation (14) or (15) we can calculate
unknown weights of each criterion by the following sine entropy weight model:

wj =
1− SEk(yij)

n−∑n
j=1 SEk(yij)

, (18)

where SE1(yij) = 1
3m

m
∑

i=1
[sin(αijπ) + sin(βijπ) + sin(γijπ)] for

k = 1 is the sine entropy of SVNNs or SE2(yij) =

1
6m

m
∑

i=1
[sin(α−ij π) + sin(β−ij π) + sin(γ−ij π) + sin(α+ij π) + sin(β+

ij π) + sin(γ+
ij π)] for k = 2

is the sine entropy of INNs, and ∑n
j=1 wj = 1.

Step 3. By use of Equation (12) for SVNSs or Equation (13) for INSs, the improved weighted SM
between Yi (i = 1, 2, . . . , m) and Y* is given by:

W1(Yi, Y∗) = 1−

∣∣∣∣∣ n
∑

j=1
w2

j (α
2
ij + β2

ij + γ2
ij)−

n
∑

j=1
w2

j [(α
∗
j )

2 + (β∗j )
2 + (γ∗j )

2]

∣∣∣∣∣
n
∑

j=1
w2

j (α
2
ij + β2

ij + γ2
ij) +

n
∑

j=1
w2

j [(α
∗
j )

2 + (β∗j )
2 + (γ∗j )

2]
, (19)

or

W2(Yi, Y∗) = 1−

∣∣∣∣∣∣∣∣
n
∑

j=1
w2

j [(α
−
ij )

2
+ (α+ij )

2
+ (β−ij )

2
+ (β+ij )

2
+ (γ−ij )

2
+ (γ+

ij )
2
]

−
n
∑

j=1
w2

j [(α
∗−
j )

2
+ (α∗+j )

2
+ (β∗−j )

2
+ (β∗+j )

2
+ (γ∗−j )

2
+ (γ∗+j )

2
]

∣∣∣∣∣∣∣∣
n
∑

j=1
w2

j [(α
−
ij )

2
+ (α+ij )

2
+ (β−ij )

2
+ (β+ij )

2
+ (γ−ij )

2
+ (γ+

ij )
2
]

+
n
∑

j=1
w2

j [(α
∗−
j )

2
+ (α∗+j )

2
+ (β∗−j )

2
+ (β∗+j )

2
+ (γ∗−j )

2
+ (γ∗+j )

2
]


. (20)

Step 4. According to the improved weighted SM values of W1(Yi, Y*) or W2(Yi, Y*), we can rank
alternatives and choose the best one.

Step 5. End.
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6. Actual Decision Examples and Comparative Analysis

For convenient comparison, we adapt an actual decision example of manufacturing schemes
(alternatives) from the literature [32] in the SNS (SVNS and INS) setting to indicate the applicability
of the improved MCDM method, and then present the comparative analysis with existing MCDM
method [32] in SVNS and INN setting to indicate the effectiveness and merits of the improved
MCDM method.

6.1. Actual Decision Example

A MCDM problem of manufacturing schemes (alternatives) in the flexible manufacturing system
is adapted from the literature [32]. A set of four potential alternatives for the flexible manufacturing
system is provided by Y = {Y1, Y2, Y3, Y4}. Then, decision-makers should select the best one,
which must satisfy the requirements of the three criteria: the improvement of quality (R1), the market
response (R2), and the manufacturing cost (R3). However, the criteria weights are unknown in this
decision-making situation.

In the environment of SVNSs, the decision-makers are required to make the suitable evaluation of
each alternative Yi (i = 1, 2, 3, 4) over the criteria Rj (j = 1, 2, 3) by the evaluation information of SVNSs,
which can be established as the following decision matrix of SVNSs:

M1 =


< 0.75, 0.2, 0.2 > < 0.7, 0.24, 0.26 > < 0.6, 0.2, 0.25 >

< 0.8, 0.1, 0.1 > < 0.75, 0.2, 0.3 > < 0.7, 0.3, 0.1 >

< 0.7, 0.2, 0.15 > < 0.8, 0.2, 0.1 > < 0.75, 0.25, 0.2 >

< 0.8, 0.1, 0.2 > < 0.7, 0.15, 0.2 > < 0.7, 0.2, 0.3 >

.

Thus, the improved MCDM method for the MCDM problem is described by the following
decision steps:

Step 1. By y∗j =< α∗j , β∗j , γ∗j >=< max
i

(αij), min
i
(βij), min

i
(γij) > (j = 1, 2, 3; i = 1, 2, 3, 4), the ideal

solution (ideal alternative) of SVNSs is given as:

Y∗ = {y∗1 , y∗2 , y∗3} = {< 0.8, 0.1, 0.1 >,< 0.8, 0.15, 0.1 >,< 0.75, 0.2, 0.1 >}.

Step 2. By Equation (18), the criteria weight vector is obtained as follows:

W = (w1, w2, w3) = (0.5682, 0.2952, 0.1366).

Step 3. By Equation (19), the improved weighted SM values between Yi (i = 1, 2, 3, 4) and Y* can be
yielded as follows:

W1(Y1, Y*) = 0.9757, W1(Y2, Y*) = 0.9977, W1(Y3, Y*) = 0. 9397, and W1(Y4, Y*) = 0.9989.

Step 4. The four alternatives are ranked by Y4 > Y2 > Y1 > Y3 since the SM values are W1(Y4, Y*) >
W1(S2, S*) > W1(S1, S*) > W1(Y3, Y*). It is obvious that Y4 is the best scheme.

In the environment of INSs, on the other hand, the suitable evaluations of the four alternatives
over the three criteria are given by INS information, which can be established as the following decision
matrix of INSs:

M2 =


< [0.7, 0.8], [0.1, 0.2], [0.15, 0.3] > < [0.7, 0.8], [0.2, 0.3], [0.1, 0.3] > < [0.6, 0.7], [0, 0.2], [0.1, 0.4] >

< [0.75, 0.9], [0.1, 0.2], [0.1, 0.2] > < [0.7, 0.8], [0.1, 0.2], [0.1, 0.3] > < [0.6, 0.7], [0.2, 0.3], [0.1, 0.3] >

< [0.6, 0.8], [0.1, 0.3], [0.1, 0.2] > < [0.7, 0.8], [0.1, 0.3], [0.1, 0.2] > < [0.7, 0.8], [0.2, 0.4], [0.1, 0.3] >

< [0.8, 0.9], [0.1, 0.2], [0.1, 0.2] > < [0.7, 0.8], [0.1, 0.2], [0.1, 0.3] > < [0.6, 0.8], [0.2, 0.3], [0.2, 0.4] >


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Step 1. By y∗j =< α∗j , β∗j , γ∗j >=< [max
i

(α−ij ), max
i

(α+ij )], [min
i
(β−ij ), min

i
(β+

ij )], [min
i
(γ−ij ), min

i
(γ+

ij ) >

for j = 1, 2, 3 and i = 1, 2, 3, 4, we can give the ideal solution of INSs (ideal alternative):

Y∗ = {y∗1 , y∗2 , . . . , y∗n} = {< [0.8, 0.9], [0.1, 0.2], [0.1, 0.2] >,< [0.7, 0.8], [0.1, 0.2], [0.1, 0.2] >,< [0.7, 0.8], [0, 0.2], [0.1, 0.3] >}

Step 2. By Equation (18), the criteria weight vector is obtained as follows:

W = (w1, w2, w3) = (0.4976, 0.3557, 0.1467).

Step 3. By Equation (20), the improved weighted SM values between Yi (i = 1, 2, 3, 4) and Y* can be
yielded as the following results:

W2(Y1, Y*) = 0.9521, W2(Y2, Y*) = 0.9848, W2(Y3, Y*) = 0. 9145, and W2(Y4, Y*) = 0.9933.

Step 4. Since the SM values are W2(Y4, Y*) > W2(Y2, Y*) > W2(Y1, Y*) > W2(Y3, Y*), the four alternatives
are ranked by Y4 > Y2 > Y1 > Y3. Hence, the alternative Y4 is the best one.

For the above decision results in SVNS and INS setting, two kinds of ranking orders of the four
alternatives and the best scheme are identical.

6.2. Comparative Analysis

This section compares the improved MCDM method with existing MCDM method in [32] to show
the effectiveness and rationality of the improved MCDM method in SVNS and INS setting.

For the convenient comparison, we also give the decision results of existing MCDM method
in [32] and the improved MCDM method by considering the same given/known criteria weight
vector W = (0.36, 0.3, 0.34) [32] and the improved MCDM method regarding the sine entropy weights,
which are indicated in Table 1.

Table 1. Decision results of existing multi-criteria decision-making (MCDM) method [32] and the
improved MCDM method.

MCDM Method SM Value between Yi and
Y* in SVNS Setting

SM Value between Yi and
Y* in INS Setting

Ranking Order in
SVNS Setting

Ranking Order in
INS Setting

Existing MCDM with the given
weights [32] 0.8945, 0.9964, 0.9717, 0.9730 0.9053, 0.9423, 0.9401, 0.9762 Y2 > Y4 > Y3 > Y1 Y4 > Y2 > Y3 > Y1

Improved MCDM method with
the given weights 0.9394, 0.9981, 0.9853, 0.9859 0.9472, 0.9691, 0.9675, 0.9877 Y2 > Y4 > Y3 > Y1 Y4 > Y2 > Y3 > Y1

Improved MCDM method with
the sine entropy weights 0.9757, 0.9977, 0.9397, 0.9989 0.9521, 0.9848, 0.9145, 0.9933 Y4 > Y2 > Y1 > Y3 Y4 > Y2 > Y1 > Y3

Firstly, by the comparison between the existing MCDM method [32] and the improved MCDM
method for considering the same given/known criteria weight vector W = (0.36, 0.3, 0.34) adopted
from [32], we can see from Table 1 that they provide the same ranking orders in either SVNS settings
or INS settings. In this case, it is obvious that the improved SMs are effective and feasible. Then, by the
comparison between existing MCDM method with the given/known criteria weights [32] and the
improved MCDM with the sine entropy weights, both demonstrate the different ranking orders
because of the difference between the given/known weights and the sine entropy weights. Clearly,
the criteria weights given by decision-makers’ preference imply their subjectivity, while the sine
entropy weight method implies its objectivity. Hence, the entropy weight method is more reasonable
and more practicable than the given criteria weight method in actual MCDM problems.

However, the main highlights of the improved SMs of SNSs and the improved MCDM method
are summarized as follows:

(1) The improved SMs of SNSs not only indicate simpler algorithms than the existing SMs of
SNSs [32], but also can overcome the insufficiency of the existing SMs of SNSs.
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(2) The improved MCDM method based on the sine entropy weight model can handle MCDM
problems with unknown criteria weights, while the existing MCDM method [32] can only handle
MCDM problems with known criteria weights. Hence, the former is superior to the latter in the
MCDM problems.

(3) The objective criteria weights obtained by the sine entropy weight model are more reasonable
and more practicable than the known criteria weights/subjective criteria weights given by
decision-makers’ preference.

(4) The improved MCDM method based on the sine entropy weight model is simple and effective in
simplified neutrosophic MCDM problems with unknown criteria weights.

7. Conclusions

This work indicated the insufficiency of existing SMs of SNSs introduced in [32] and proposed
the improved normalized SMs of SNSs, including the improved normalized SMs between asymmetry
measures of SVNSs and INSs, to overcome the insufficiency of the existing SMs, and then the novel
sine entropy of SNS was presented to establish a sine entropy weight model in MCDM problems with
unknown criteria weights. Based on the improved SMs of SNSs and the sine entropy weight model,
an improved MCDM method for MCDM problems with unknown criteria weights was developed in
SVNS and INS settings. By means of the improved weighted SM values between each alternative and
the ideal solution, all alternatives can be ranked and the best one can be easily chosen as well. Lastly,
an actual decision example demonstrated the applicability of the improved MCDM method, and then
its effectiveness and merits are indicated by a comparative analysis with the existing MCDM method
in SVNS and INS settings.

The main advantages of the improved SMs of SNSs are that it not only has simpler algorithms
than the existing SMs of SNSs, but also can overcome the insufficiency of the existing SMs of SNSs,
and then the objective criteria weights obtained by the sine entropy weight model is more suitable for
actual MCDM problems with unknown criteria weights than the known criteria weights/subjective
criteria weights given by the decision-makers’ preferences. In the future research, we shall extend the
improved SMs of SNSs to other application areas, such as pattern recognition, image processing, and
medical diagnosis.

Author Contributions: J.Y. proposed the improved SMs of SNSs and the sine entropy of SNSs; W.C. established
the MCDM method based on the improved SMs and the sine entropy weight model in SVNS and INS setting;
and we presented the actual decision example and comparative analysis and wrote this paper together.
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