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ABSTRACT
The TODIM (an acronym in Portuguese for interactive multicriteria decision-making) method can consider the decision-
makers’ (DMs’) psychological behavior. However, the classical TODIM method has been unable to address fuzzy information
such as the linguistic neutrosophic number (LNN), which is an effective tool to represent uncertainty. In this paper, an extended
TODIM method is proposed to solve multicriteria group decision-making (MCGDM) problems in a linguistic neutrosophic
environment. First, the definitions and characteristics of the classical TODIM and the LNNs are introduced. Then, an improved
score function (SF) of LNNs is proposed. Furthermore, we obtain the combined weights of the criteria and aggregate individual
decision matrices into a group decision matrix. The classical TODIM method is extended to address MCGDM problems with
LNNs, and specific decision steps are provided. Finally, several examples are given to verify the effectiveness and superiority of
the proposed approach by comparison with some existing methods.

© 2019 The Authors. Published by Atlantis Press SARL.
This is an open access article distributed under the CC BY-NC 4.0 license (http://creativecommons.org/licenses/by-nc/4.0/).

1. INTRODUCTION

As practical decision situations have become more complex, we
should consider how to better express evaluation information and
make optimal judgment by appropriate decisionmethods formulti-
criteria decision-making (MCDM) ormulticriteria group decision-
making (MCGDM) problems. There are numerous methods to
describe the evaluated object [1–6], such as fuzzy set (FS), intu-
itionistic fuzzy set (IFS), neutrosophic set (NS), and so on. Due to
the uncertainty in decision environments and the cognitive limi-
tations of human beings, Zadeh first proposed [6] FSs to present
fuzzy evaluation information by using truth membership (TM).
Based on the FS, Atanassov presented [1] IFSs that consist of TM
and the falsity membership (FM). However, IFSs can only address
incomplete information but not uncertain and inconsistent infor-
mation. Then, Smarandache introduced [2] NSs to describe inde-
terminate and inconsistent information where each element of the
universe is represented by TM, FM, and indeterminacy member-
ship (IM). In view of their advantages, NSs have been applied
in an increasing number of fields to help decision-makers (DMs)
make rational and feasible judgements. For instance, Ye defined [7]
two cotangent similarity measures based on NSs and a cotangent
function and applied them to the fault diagnosis of a steam tur-
bine. Zavadskas et al. introduced [8] a MAMVA model for NSs in
the construction industry. Bolturk and Kahraman developed [9]
a new method for MCDM problems by combining the interval-
valued NSs and analytic hierarchy process (AHP). Abdelbasset et
al. advanced [10] the idea that associated an NS with a mining

algorithm that can effectively extract information from big data.
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Rashno et al. utilized [11] NSs and graph algorithms to present
a fully automated algorithm in the healthcare industry. Fan et al.
proposed [12] a neutrosophic Hough transform (NHT) method to
improve the track initiation monitoring capacity in an uncertain
environment.

In practice, people are used to giving their opinions in qualitative
terms, such as “excellent,” “fair,” and “worse.” At this point, Zadeh
defined [13] linguistic variables (LVs) to describe words or sen-
tences in natural language. Since then, many studies on linguistic
decision-making problems have been conducted. Wu et al. put for-
ward [14] the maximum support degree model to guarantee the
accuracy of group opinion based on linguistic distributions. Zhang
et al. established [15] a newdecision supportmodelwith 2-tuple lin-
guistic terms that provided a basis for emergency decision-making.
Furthermore, there aremany extensions of LVs to accurately express
evaluation information. Based on the FS model, Rodríguez et al.
proposed [16] the concept of a hesitant fuzzy linguistic term set
(HFLTS) in which a DM may hesitate among several LVs to define
the TM. Analogously, Chen and Liu defined [17] the linguistic intu-
itionistic fuzzy numbers (LIFNs) that represent the TM and FM by
LVs. However, the above linguistic forms reflect only the TM (and
FM), and thus they are insufficient to accommodate uncertain and
inconsistent information. Therefore, Fang and Ye introduced [18]
the concept of linguistic neutrosophic numbers (LNNs) based on
NS, which is characterized by describing the TM, IM, and FM of
each element in a universe using three LVs.

For MCGDM problems, there are two common methods to help
DMs select the optimal proposal from a variety of alternatives. One
method uses aggregation operators that integrate the evaluationPdf_Folio:1
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information of the alternatives to form a comprehensive value.
Because information loss occurs in the integration process of the
aggregation operators, there is another method—the use of the tra-
ditional decisionmethods, such as AHP [19], TOPSIS [20], VIKOR
[21], ELECTRE [22], and other approaches [23, 24]. All of the
abovemethods assume that DMs are perfectly rational, which is not
in accord with all practical situations. For such cases, Gomes and
Lima proposed [25] the TODIM approach based on the prospect
theory [26], which considers a DM’s psychological preference. Up
to now, it has been widely used in the decision-making domain.
Wei et al. extended [27] the TODIM method to HFLTSs based
on a novel score function (SF) of HFLTSs. Ren et al. applied [28]
the TODIM approach to a Pythagorean fuzzy environment for a
MCDMproblem. Lourenzutti et al. developed [29] aTODIMmodel
based on the Choquet integral to address heterogeneous infor-
mation with interactions. Hu et al. proposed [30] a new decision
model by combining the TODIMmethod and a three-way decision
model. Llamazares put forward [31] a generalization of the TODIM
method that avoided the previous paradoxes.

In an actual decision-making process, due to the bounded rational-
ity of the DMs, they may have different preferences when facing
with a gain or a loss. Therefore, the TODIM approach is a good tool
that can select appropriate and satisfying optimums forDMs.More-
over, LNNs can represent incomplete, inconsistent, and indetermi-
nate information. Based on these analyses, it is a good idea to apply
TODIM in a linguistic neutrosophic environment. It is understood
that the significant characteristic of the TODIM approach is that it
can reflect a DM’s risk preference in the face of a loss. Hence, the
premise is that we need to judge a gain and a loss by a comparison of
the LNNs. SF flaws exist in Reference [18] under some cases, such
as the LNNs m1 = (s6, s2, s3) and m2 = (s5, s1, s3) ∈ Γ[0,6]; there-
fore, we cannot distinguish them from the existing SF of the LNNs.
To address this, we will propose a revised SF to overcome this short-
coming. The revised SF can more effectively compare LNNs with-
out the assistance of an accuracy function.

However, the criteria weights have an impact on the TODIM
approach. There are three methods to obtain criteria weights:
(i) subjective weight provided by the DMs; (ii) objective weight
from the evaluation information; and (iii) combined weights that
combine the DMs’ preference and the evaluation information. The
subjective weights from the DMs reflect the judgment and knowl-
edge of the DMs in a complex decision environment. The objective
weights are based on the evaluation information and utilize math-
ematical models to obtain a solution. To obtain the reasonable cri-
teria weights, we should consider both the DMs’ preferences and
the evaluation information. Therefore, we will develop a combined
weight model based on the subjective weights from the DMs and
the objective weights obtained by projection measurement.

Based on the above analysis, this paper considers the bounded ratio-
nality of the DMs and the complicacy of the decision environment.
An improved TODIM approach based on the revised SF of the
LNNs and the combinedweights of the criteria is proposed. In sum-
mary, the main innovations and contributions of this paper can be
summarized as follows:

i. Define a revised SF of the LNNs and prove its relevant
properties;

ii. Develop a combined weight model based on the minimum
deviation in which the subjective weights are given by theDMs
and the objective weighs are obtained by projection measure-
ment;

iii. Provide a new approach for the MCGDM under a linguistic
neutrosophic environment. Then, demonstrate the procedure
of the proposed method in detail; and

iv. Prove the validity and superiority of the proposed method by
comparison with other existing methods.

To accomplish these goals, we constructed the framework of this
paper as follows: Section 2 presents the basic theories and con-
cepts including the linguistic term set (LTS), the single-valued NS
(SVNS), the LNNs, and the TODIM method. Section 3 develops
a revised SF and proves the associated properties. Section 4 estab-
lishes the combined weightmodel. Section 5 demonstrates the steps
of the proposed method. Section 6 illustrates some examples and
compares the proposedmethod with those existing approaches that
have been presented in References [18, 32, 33]. Section 7 concludes
this paper.

2. PRELIMINARIES

2.1. LTS and Linguistic Scale Function

An LTS St = {si|i = 0, 1, 2,⋯ , 2t} is an ordered discrete term set
that accommodates a list of LVs, where t ∈ N, N is a collection of
natural numbers. Meanwhile, there are restrictions on St [13]:

i. The LTS St is ordered: si ≻ sj if and only if i > j;

ii. A negation operator is defined as: neg (si)=s2t–i.

During the integration process, we usually convert LTs into numer-
ical values by a linguistic scale function (LSF) that can reduce the
loss of information.

Definition 1. [34] Let St = {si|i = 1, 2,⋯ , 2t} be a discrete LTS, si,
be an LT. There exists a numerical value 𝜃i ∈ [0, 1], then the LSF
is a mapping from si to 𝜃i (i = 0, 1,⋯ , 2t), and it can be defined as
follows:

f ∶ si → 𝜃i (i = 0, 1,⋯ , 2t) , (1)

where f is a monotonically increasing function.

Now, we introduce two types of LSFs [34]:

i.

f1 (si) = 𝜃i =
i
2t (i = 0, 1,⋯ , 2t) . (2)

This function simply uses the subscript function to evenly dis-
tribute the semantic values of the linguistic information.

ii.

f2 (si) = 𝜃i =
⎧⎪
⎨⎪
⎩

rt – rt–i
2rt – 2 (i = 0, 1,⋯ , t)

rt + ri–t – 2
2rt – 2 (i = t, t + 1,⋯ , 2t)

, (3)
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where r is a parameter that depends on theDMs’ psychological pref-
erences. This function fits the monotony property that the absolute
deviation between adjacent LTs increases from the middle of the
given LT to both sides, which can reflect the psychological process
of the DMs by bidirectional geometric growth.

2.2. Single-Valued NSs

Definition 2. [2] LetX be a fixed set with the elements inXmarked
as x, an NS, B, in X is characterized by TM, TB (x), IM, IB (x), and
FM, FB (x). It can be defined as:

B = {⟨x,TB (x) , IB (x) , FB (x)⟩|x ∈ X} .

Meanwhile, there are TB (x) , IB (x) , FB (x) ∈ [0, 1] and 0 ≤ TB (x)+
IB (x) + FB (x) ≤ 3 for each x in X.

To simplify the NS and exploit its wide application in various fields,
Wang et al. advanced [4] the idea of the SVNS,which is an extension
of the NS.

Definition 3. [4] Let X be a fixed set with the elements
in X marked as x, a SVNS, B, in X is defined as B =
{⟨x,TB (x) , IB (x) , FB (x)⟩|x ∈ X}, where TB (x), IB (x), and FB (x)
denote the TM, IM, and FM of the element x ∈ X to the set B,
respectively, and they are bounded by [0, 1], and 0 ≤ TB (x) +
IB (x) + FB (x) ≤ 3.
For simplicity, we use x = (T, I, F) to represent an element, x, in
the SVNS, which is called a single-valued neutrosophic number
(SVNN).

2.3. Linguistic Neutrosophic Numbers

Definition 4. [18] Let X be a fixed set and S = (s0, s1,⋯ , s2t) be
an LTS. The LNSM in X is composed of a TM, 𝜎M, an IM, 𝜃M, and
an FM, 𝜏M, where 𝜎M, 𝜃M, 𝜏M: X → [0, 2t], and ∀x ∈ X,

m =
(
s𝜍M(x), s𝜃M(x), s𝜏M(x)

)
∈ M is called an LNN ofM.

To keep things simple, we use Γ[0,2t] to represent the set of all of the
LNNs.

Definition 5. [18] Letm = (s𝜍, s𝜃, s𝜏),m1 =
(
s𝜍1 , s𝜃1 , s𝜏1

)
,m2 =(

s𝜍2 , s𝜃2 , s𝜏2
)
∈ Γ[0,2t], 𝜆 > 0, then the operations of the LNNs are

shown as follows:

m1 ⊕m2 =
(
s
𝜍1+𝜍2–

𝜍1𝜍2
2t

, s𝜃1𝜃2
2t

, s 𝜏1𝜏2
2t

)
; (4)

m1 ⊗m2 =
(
s𝜍1𝜍2

2t
, s
𝜃1+𝜃2–

𝜃1𝜃2
2t

, s
𝜏1+𝜏2–

𝜏1𝜏2
2t

)
; (5)

𝜆m =
⎛⎜⎜⎜⎝s2t–2t(1– 𝜎2t)𝜆 , s

2t
( 𝜃
2t

)𝜆 , s
2t
( 𝜏
2t

)𝜆

⎞⎟⎟⎟⎠ ; (6)
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m𝜆 =
⎛⎜⎜⎜⎝s2t( 𝜎2t)𝜆 , s

2t–2t
(
1–
𝜃
2t

)𝜆 , s
2t–2t

(
1–
𝜏
2t

)𝜆

⎞⎟⎟⎟⎠ . (7)

Definition 6. [32] Let X be the universe of discourse,
where X = {x1, x2,⋯ , xn}, and let M and N be two LNSs
in X, where M= {⟨xi, s𝜍M(xi), s𝜃M(xi), s𝜏M(xi)⟩|xi ∈ X} and

N= {⟨xi, s𝜍N(xi), s𝜃N(xi), s𝜏N(xi)⟩|xi ∈ X}. Then, the Hamming dis-
tance betweenM and N is denoted as follows:

dH (M,N) = 1
3n

n

∑
i=1

(
|||
𝜎M (xi)
2t –

𝜎N (xi)
2t

||| +

|||
𝜃M (xi)
2t –

𝜃N (xi)
2t

||| +
|||
𝜏M (xi)
2t –

𝜏N (xi)
2t

|||

)
.

(8)

Definition 7. [18] Let mi =
(
s𝜍i , s𝜃i , s𝜏i

)
(i = 1, 2,⋯ , n) be a col-

lection of the LNNs, and so the linguistic neutrosophic weighted
arithmetic averaging (LNWAA) operator is:

LNWAA (m1,m2, ....,mn) =
n

∑
i=1

𝜔imi

=

⎛⎜⎜⎜⎜⎝
s
2t–2t

n

∏
i=1

(
1 – 𝜎i

2t
)𝜔i

, s
2t

n

∏
i=1

( 𝜃i
2t

)𝜔i , s
2t

n

∏
i=1

( 𝜏i
2t
)𝜔i

⎞⎟⎟⎟⎟⎠
,

(9)

where𝜔 = (𝜔1, 𝜔2, ..., 𝜔n)
T is the weight vector of (m1,m2,⋯ ,mn),

𝜔i ∈ [0, 1] and
k

∑
i=1

𝜔i = 1.

Definition 8. [18] Let mi =
(
s𝜍i , s𝜃i , s𝜏i

)
(i = 1, 2,⋯ , n) be a col-

lection of LNNs, and so the linguistic neutrosophic weight geomet-
ric averaging (LNWGA) operator is:

LNWGA (m1,m2, ....,mn) =
n

∑
i=1

m𝜔i
i

=

⎛⎜⎜⎜⎜⎝
s
2t

n

∏
i=1

(𝜎i
2t
)𝜔i

, s
2t–2t

n

∏
i=1

(
1 – 𝜃i

2t

)𝜔i , s
2t–2t

n

∏
i=1

(
1 – 𝜏i

2t
)𝜔i

⎞⎟⎟⎟⎟⎠
,

(10)

where𝜔 = (𝜔1, 𝜔2, ..., 𝜔n)
T is the weight vector of (m1,m2,⋯ ,mn),

𝜔i ∈ [0, 1] and
k

∑
i=1

𝜔i = 1.

2.4. The Traditional TODIM Method

The TODIM approach is proposed based on the prospect theory,
which assumes that the rationality of the DMs is limited in the
decision process. There is a different deviation between the opti-
mal choice and DMs’ actual choice due to the DMs’ cognitive level,
risk preference, and so on. Similar to prospect theory, the TODIM
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model defines a value function to reflect a gain or a loss for each
criterion.

In the following, we will describe the specific steps of the TODIM
method [25]:

Let Y= [yij]l×h be the decision matrix, where yij is the j-th criterion
value with the i-th alternative

(
i = 1, 2,⋯ , l; j = 1, 2,⋯ , h

)
.

First, normalize the decision matrix Y= [yij]l×h into Z= [zij]l×h.

Second, define the relative weight of the criterion, Cj, to be the ref-
erence criterion, Cr as:

wjr =
wj

wr
, (11)

where wj is the weight of the criterion Cj and wr =
max {wj|j = 1, 2,⋯ , h}.
Next, calculate the dominance degree of alternative Ai over the
alternative At by the following formula:

𝜗 (Ai,At) =
h

∑
j=1

𝜙j (Ai,At) , ∀ (i, t) (12)

where

𝜙j (Ai,At) =

⎧
⎪⎪⎪
⎨
⎪⎪⎪
⎩

√√√
√

wjr
(
zij – ztj

)
/

h

∑
j=1

wjr, if zij – ztj ≻ 0

0, if zij – ztj = 0

– 1𝜃

√√√
√

(
h

∑
j=1

wjr

)(
zij – ztj

)
/

wjr, if zij – ztj ≺ 0

.

(13)

The 𝜃 can reflect theDM’s attitude about losses (𝜃 > 0). In Equation
(13), there will be three cases: (i) when zij – ztj ≻ 0, the 𝜙j (Ai,At)
means a gain; (ii) when zij – ztj = 0, the 𝜙j (Ai,At)means a balance
point; and (iii) when zij – ztj ≺ 0, the 𝜙j (Ai,At)means a loss.

Then, we can obtain the overall dominance degree of the alternative
Ai by

𝛿 (Ai) =
l

∑
t=1

𝜗 (Ai,At) – min
i
{

l

∑
t=1

𝜗 (Ai,At)}

maxi {
l

∑
t=1

𝜗 (Ai,At)} – mini {
l

∑
t=1

𝜗 (Ai,At)}

(14)

Finally, rank the alternatives by their overall dominance degrees
𝛿 (Ai) (i = 1, 2,⋯ , l). The greater 𝛿 (Ai) is, the better alternative Ai
will be.

3. A NEW SF FOR LNNs

Although LNNs can depict the uncertain and imperfect evaluation
information by LVs, we cannot directly compare two LNNs. There-
fore, it’s necessary to develop a method to transform LNNs into

crisp numbers. An SF is a good means to implement this require-
ment. Chen and Tan first proposed [35] a SF to address a fuzzy
MCDM problem that evaluates the difference between the TM and
FM. Obviously, it can effectively transform a fuzzy number into a
crisp number and reflect the degree of suitability for each alterna-
tive. Similarly, Fang and Ye [18] provided the SF of a LNN and the
definition is as follows:

Definition 9. [18] Let m = (s𝜍, s𝜃, s𝜏) ∈ Γ[0,2t], then the SF of a
LNNm can be defined:

𝜓 (m) = 4t + 𝜎 – 𝜃 – 𝜏
6t for𝜓 (m) ∈ [0, 1] , (15)

𝜓 (m) can reflect the absolute TM, which is in accordance with the
intuition of a human being, The larger the TM is, the better the LNN
m is. However, it is not possible to compare the two LNNs if 𝜎 =
𝜃 + 𝜏.
Example 1. Letm1 = (s6, s2, s3) ,m2 = (s5, s1, s3) ∈ Γ[0, 6] be two
LNNs, then 𝜓 (m1)= 12 + 6 – 2 – 3

18 = 13
18 , 𝜓 (m2)= 12 + 5 – 1 – 3

18 = 13
18 ,

where 𝜓 (m1) = 𝜓 (m2).

Thus, Fang and Ye [18] defined the accuracy function, 𝛼 (m), where
𝛼 (m) = 𝜍–𝜏

2t
and 𝛼 (m) ∈ [–1, 1]. According to the accuracy func-

tion𝛼 (m) of the LNNs, we can obtain𝛼 (m1)= 6–3
6 = 1

2 ≻ 𝛼 (m2)=
5–3
6 = 1

3 , so there ism1 ≻ m2.

Pdf_Folio:4

In addition, there exists an obstacle for the LNN: how to evaluate
and address the IM s𝜃. In this paper, we divide the IM into two parts
in the SF, b𝜃, and (1 – b) 𝜃, because there might be a FM and other
parts may tend to be a TM or there might be other unknown and
uncertain cases. For an LNN,we know that a higher value of the TM
and a lower of the FM is better. Hence, the FM contained in the IM
part of a SF should be subtracted rather than using the entire IM.
In general, the percentage of the FM in an IM should be in accord
with the percentage of the FM in the total evaluation value of the
LNN in the same decision-making environment. Accordingly, b can
be denoted as b = 𝜏/𝜎 + 𝜏. For example, an LNNm = (s4, s3, s1)∈
Γ[0,6], then b = 0.2. Therefore, based on the SF in Definition , a
new SF is defined as

𝜓′ (m) = 4t + 𝜎 – 𝜏 – b𝜃
6t ∈ [0, 1] . (16)

Notice that the new SF 𝜓′ (m) will not work in some extreme cases,
such as m1 =

(
s𝜍1 , s𝜃1 , s𝜏1

)
and m2 =

(
s𝜍2 , s𝜃2 , s𝜏2

)
∈ Γ[0,2t],

where 𝜎1 = 𝜎2, 𝜏1 = 𝜏2 = 0. Next, we take the SF 𝜓 (m) to calculate
and comparem1 andm2 in this circumstance.

Theorem 1. For an LNN m = (s𝜍, s𝜃, s𝜏) ∈ Γ[0,2t], the new
SF 𝜓′ (m) monotonically increases along with 𝜎 and monotonically
decreases along with 𝜃, 𝜏.

9

Proof. It is obvious that as 𝜎 increases, 𝜓′ (m) will monotonically
increase. Similarly, 𝜓′ (m) will decrease with respect to 𝜃.

For 𝜏, 𝜓′ (m) =
4t + 𝜍 – 𝜏– 𝜏

𝜍+𝜏𝜃

6t
, we can obtain the monotonicity of

𝜓′ (m) with 𝜏 through the first partial derivative, 𝜕𝜓
′(m)
𝜕𝜏 = – 1

6t
–

𝜃𝜍
6t(𝜍+𝜏)2

< 0. Thus, the new SF, 𝜓′ (m), monotonically decreases
along with 𝜏.
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To prove the effectiveness of the new SF, we apply it in Example

1. There are 𝜓′ (m1) = 12 + 6 – 3 – 3
6+3 ×2

18 = 0.796, 𝜓′ (m2) =
12 + 5 – 3 – 3

5+3 ×1
18 = 0.757, so we can obtainm1 ≻ m2 according to

𝜓′ (m1) > 𝜓′ (m2) that is the same as the result on the basis of the
accuracy function. This shows that the new SF can effectively com-
pare LNNs without the related accuracy function, which reduces
the calculations and further improves the efficiency.

4. THE COMBINED WEIGHT MODEL
BASED ON LNNs

The criteria weight is one of the important parameters considered
inMCDMproblems and plays a key role in the ranking alternatives.
There are two common methods: subjective weighting approaches
that focus primarily on the preferences of the DMs and objective
weighting approaches that can be computed by the entropy [36],
the distance [37], and the correlation coefficient [38]. Compared to
the subjectiveweightmodels, the objectiveweightmodels can effec-
tively reduce the subjectivity and improve the reliability, while they
neglect the preferences of the DMs. To obtain scientific and proper
weight information, they should not only consider the DMs’ pref-
erences but also make full use of the objective evaluation informa-
tion of the alternatives to achieve the unification of subjectivity and
objectivity. Therefore, the combined weight model has a vital prac-
tical significance by reasonably combining the subjective weights
and the objective weights. In this paper, we build a novel model to
determine the criteria weights by combining the subjective factors
with the objective factors that can be computed by projection mea-
sures. The characteristics of our weight model can reflect both the
subjective judgment from a DM and the objective evaluation infor-
mation. Next, we introduce how to obtain the objective weights.
Then, by combining them with the given subjective weights, we
will provide a combined weight model based on the minimum total
deviation between the evaluation values with the combined weights
and the original weights.

4.1. The Objective Weighted Model Based
on Projection Measure

In a MCDM problem, suppose the alternative set is A =
(A1,A2,⋯ ,Al), and the criteria set is C = (C1,C2,⋯ ,Ch) where
the objective weight of criterion, wCj

, is unknown, then the eval-
uation values of all the alternatives under criteria set C can be
expressed by LNNs zij =

(
s𝜍ij , s𝜃ij , s𝜏ij

)
with 𝜎ij, 𝜃ij, 𝜏ij ∈ [0, 2t](

i = 1, 2, ...., l; j = 1, 2, ...., h
)
.

The projection measure is proposed from the point of a vector,
which considers the evaluation value as a vector.

First, define the ideal solution from all of the alternatives,
Ai(i = 1, 2, ...., l), for each criterion, Cj, according to the SF by
Equation (16), that is, z+j = maxi

(
zij
) (

j = 1, 2,⋯ , h
)
.

Then, obtain the projection values of the evaluation values for
all of the alternatives of the ideal solution under the criterion
Cj

(
j = 1, 2, ...., h

)
.

There is an angle between the evaluated values and the ideal solu-
tion, so we give the cosine formula between zij and z+j as follows:

cos⟨zij, z+j ⟩ =
zij ⋅ z+j

‖zij‖ ⋅ ‖z+j ‖
, (17)

where z+j ⋅ zij =
𝜍+j
2t
⋅ 𝜍ij

2t
+ 𝜃+j

2t
⋅ 𝜃ij

2t
+ 𝜏+j

2t
⋅ 𝜏ij
2t
,

‖zij‖ = √
(𝜍ij

2t

)2
+
(𝜃ij

2t

)2
+
( 𝜏ij
2t

)2
, and

‖z+j ‖ = √

(
𝜍+j
2t

)2
+
(

𝜃+j
2t

)2
+
(

𝜏+j
2t

)2
are the modules of zij and

z+j , respectively.

In the following, we define the projection of the criterion value, zij,
on the ideal solution, z+j :

Projz+j
(
zij
)
= ‖zij‖ cos⟨zij, z+j ⟩ =

zij ⋅ z+j
‖z+j ‖

. (18)

Obviously, the greater Projz+j
(
zij
)
is, the closer the vectors zij and z+j

are. For the criterion Cj, Pj
(
wCj

)
=

l

∑
i=1

Projz+j
(
zij
)
wCj

is denoted

as the total projection values of all of the alternatives on the ideal

solution, z+j , then P (w) =
h

∑
j=1

Pj
(
wCj

)
=

h

∑
j=1

l

∑
i=1

Projz+j
(
zij
)
repre-

sents the total projection values of all of the alternatives on the ideal
solution z+j for all of the criteria. We maximize P (w) by assessing
the criterion weights. In addition, there is a square root in the pro-

jection values. To calculate conveniently, we adopt
h

∑
j=1

w2
Cj
= 1 in

the constraint conditions. Therefore, we construct the optimization
model as follows:

max P (w) =
h

∑
j=1

l

∑
i=1

Projz+j
(
zij
)
wCj

s.t.
⎧
⎨
⎩

h

∑
j=1

w2
Cj
= 1

0 ≤ wCj
≤ 1, j = 1, 2,⋯ , h

(19)

To obtain the solution, we can construct the following Lagrange
function:

L
(
wj, 𝜌

)
=

h

∑
j=1

l

∑
i=1

Projz+j
(
zij
)
wCj

+ 𝜌
(

h

∑
j=1

w2
Cj
– 1

)
(20)

⎧⎪⎪
⎨
⎪⎪
⎩

𝜕L
(
wCj

, 𝜌
)

𝜕wCj

=
l

∑
i=1

Projz+j
(
zij
)
+ 2𝜌wCj

= 0

𝜕L
(
wCj

, 𝜌
)

𝜕𝜌 =
h

∑
j=1

w2
Cj
– 1 = 0

⇒
Pdf_Folio:5

548 P.Liu and X.You / International Journal of Computational Intelligence Systems 12(2) 544–556



⎧
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎩

2𝜌 =
√√√√
√

h

∑
j=1

(
l

∑
i=1

Projz+j
(
zij
))2

wCj
=

l

∑
i=1

Projz+j
(
zij
)

√√√√
√

h

∑
j=1

(
l

∑
i=1

Projz+j
(
zij
))2

(21)

4.2. The Combined Weight Model

To achieve the unification of the subjectivity and the objectivity,
considering the subjective preferences and the empirical judgment
of the DMs and the objective evaluation information, several com-
bined weight methods have been proposed [39–41]. In this paper,
our proposed combined weight model is based on the minimum
total deviation between the evaluation values with the combined
weights and the original weights.

We suppose the subjective weight, 𝜆Cj
, is directly given by the DMs,

where 0 ≤ 𝜆Cj
≤ 1,

h

∑
j=1

𝜆Cj
= 1. The combined weight vector is

denoted as𝜛 =
(
𝜛C1 ,𝜛C2 ,⋯ ,𝜛Ch

)
. The evaluation information

form is an LNN, which is difficult to calculate in the weight model.
Thus, we apply the module of the evaluation values ‖zij‖ to replace
zij. Then, the basic model is as follows:

min
l

∑
i=1

h

∑
j=1

{[
(
𝜛Cj

– wCj

)
‖zij‖]

2
+ [

(
𝜛Cj

– 𝜆Cj

)
‖zij‖]

2
}

s.t.
h

∑
j=1

𝜛Cj
= 1, 0 ≤ 𝜛Cj

≤ 1 (22)

To obtain the solution, we construct the following Lagrange func-
tion:

L
(
𝜛Cj

, q
)
=

l

∑
i=1

h

∑
j=1

{[
(
𝜛Cj

– wCj

)
‖zij‖]

2
+ [

(
𝜛Cj

– 𝜆Cj

)
‖zij‖]

2
}

+2q
(

h

∑
j=1

𝜛Cj
– 1

)
(23)

⎧⎪⎪
⎨
⎪⎪
⎩

𝜕L
(
𝜛Cj

, q
)

𝜕𝜛Cj

=
l

∑
i=1

2 [2𝜛Cj
–
(
𝜆Cj

+ wCj

)
] ‖zij‖2 + 2q = 0

𝜕L
(
𝜛Cj

, q
)

𝜕q = 2
(

h

∑
j=1

𝜛Cj
– 1

)
= 0

⇒

⎧
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

q =

h

∑
j=1

(
𝜆Cj

+ wCj

)
– 2

h

∑
j=1

1
l

∑
i=1

‖zij‖2

𝜛Cj
=

𝜆Cj
+ wCj

–

h

∑
j=1

(
𝜆Cj

+ wCj

)
– 2

l

∑
i=1

‖zij‖2
h

∑
j=1

1
l

∑
i=1

‖zij‖2

2

(24)

5. AN IMPROVED TODIM METHOD FOR
MCGDM PROBLEMS WITH LNNs

In this section, we propose a novel method to solve MCDM prob-
lems with LNNs based on the improved TODIMmethod.

Let A = {A1,A2, ....,Al} be a set of alternatives, C =
{C1,C2, ....,Ch} be the set of criteria, and D = {D1,D2, ....,Dp}
be the set of the DMs. The DM Dk gives the evaluation infor-
mation of the alternative Ai under each criterion Cj by LNN,
which is denoted ykij =

(
sk𝜍ij

, sk𝜃ij
, sk𝜏ij

)
. Yk= [ykij]l×h is the decision

matrix. 𝜒 =
(
𝜒1, 𝜒2, ...., 𝜒p

)T is the weight vector of the DMs
Dk

(
k = 1, 2, ...., p

)
and the weight vector of the criteria given by

the DMs is 𝜆=
(
𝜆C1 , 𝜆C2 ,⋯ , 𝜆Ch

)T
. Below, the seven steps in this

section show how to select the optimal alternative for MCGDM
problems by the improved TODIMmethod with LNNs.

Step 1: Normalize the decision-making information.

If both the benefit criteria and the cost criteria are present in the
decision matrix, we need to convert the different types of the crite-
ria into the same type. The normalized decision matrix is denoted
Zk= [zkij]l×h

(
k = 1, 2, ...., p

)
, where

zkij =
(
sk𝜍ij

, sk𝜃ij
, sk𝜏ij

)
=

{

(
sk𝜍ij

, sk𝜃ij
, sk𝜏ij

)
for the benefit criterion Cj(

sk𝜏ij , s
k
t–𝜃ij

, sk𝜍ij

)
for the cost criterion Cj

,

(25)

where k = 1, 2, ...., p; i = 1, 2, ...., l; j = 1, 2, ...., h.
Step 2:Obtain the comprehensive decision-making matrix.

We use the LNWAAoperator or the LNWGAoperator that was pre-
sented in Definition 7 or Definition 8, respectively, to obtain the
comprehensive decision-making matrix

Z= [zij]l×h =
(
s𝜍ij , s𝜃ij , s𝜏ij

)
l×h

.

Step 3: Calculate the combined weights of the criteria.Pdf_Folio:6
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6.1. The Procedure of the Proposed Method

In this subsection, we will use an investment group decision-
making example to demonstrate the application of the proposed
method for MCGDM problems.

Example 5.1. An investment company selects four mines, A1,
A2, A3, and A4, as alternatives and considers five factors as
the evaluation criteria: (i) C1 is the geology factor; (ii) C2 is
the mineral reserve risk; (iii) C3 is the development level of
the market; (iv) C4 is the construction project risk; and (v) C5
is the policy impact. The DMs, Dh(h = 1, 2, 3), gives the eval-
uation values of alternatives Ai (i = 1, 2, 3, 4) on the criteria
Cj

(
j = 1, 2, 3, 4, 5

)
in the form of LNNs based on the LTSs:

S = {s0 = extremely low, s1 = pretty low, s2 = low, s3 = slightly low,
s4 = medium, s5 = slightlyhigh, s6 = high, s7 = prettyhigh,
s8 = perfect}. Assume that the weight vector of three DMs is

𝜒 =
(
1
3 ,

1
3 ,

1
3

)T
, and the weight vector of the criteria of the DMs

is 𝜆 = (0.2, 0.15, 0.25, 0.1, 0.3)T. The LNN decision matrices
Yh = [yhij]m×n are constructed and listed in Tables 1–3.

First, define the ideal solution from all of the alterna-
tives for each criterion, Cj, by Equation (16), that is,
z+j = maxi

(
zij
) (

j = 1, 2,⋯ , h
)
, then we can calculate the objec-

tive weights of the criteria based on the projection measure by
Equations (18–21) found in Subsection 4.1.

Next, combine the given subjective weights provided by the DMs
with the objective weights, and obtain the combined weights of the
criteria based on Equations (22–24) found in Subsection 4.2.

Step 4: Obtain the relative weight, 𝜛jr of each criterion Cj by
𝜛jr =

𝜛Cj
𝜛Cr

, where wj is the weight of the criterion Cj and wr =
max {wj|j = 1, 2,⋯ , h}.
Step 5: Calculate the dominance degree, 𝜗 (Ai,At), of alternative Ai
over alternative At:

𝜗 (Ai,At) =
h

∑
j=1

𝜙j (Ai,At) , ∀ (i, t) , (26)

where

𝜙j (Ai,At) =

⎧
⎪⎪⎪
⎨
⎪⎪⎪
⎩

√√√
√

𝜛jr
(
d
(
zij, ztj

))
/

h

∑
j=1

𝜛jr, if 𝜑′
(
zij
)
– 𝜑′

(
ztj
)
> 0

if 𝜑′
(
zij
)
– 𝜑′

(
ztj
)
= 0

– 1𝜃

√√√
√

(
h

∑
j=1

𝜛jr

)
d
(
zij, ztj

)
/

𝜛jr, if 𝜑′
(
zij
)
– 𝜑′

(
ztj
)
< 0

,

(27)

where the parameter 𝜃 is the attenuation factor of the losses,
d
(
zij, ztj

)
is the distance between LNNs zij and ztj by Definition ,

and 𝜑′
(
zij
)
and 𝜑′

(
ztj
)
are the SFs of the LNNs zij and ztj, respec-

tively, by Equation 16.

Step 6:Obtain the overall dominance degree of the alternativeAi by

(28)

Step 7: Rank the alternatives.

Sort the alternatives by their overall dominance degrees, 𝛿 (Ai). The
bigger the overall dominance degree, 𝛿 (Ai), the better the alterna-
tive Ai.

6. APPLICATION EXAMPLE

In this section, we will first illustrate the procedure of the proposed
MCGDM method by a specific example [32]. Then, we present
some examples to demonstrate the effectiveness and superiority of
the proposed MCGDM method by comparison with the existing
MCGDMmethods [18, 32, 33].Pdf_Folio:7

0,

6

𝛿 (Ai) =

l

∑
t=1

𝜗 (Ai,At) – mini {
l

∑
t=1

𝜗 (Ai,At)}

maxi {
l

∑
t=1

𝜗 (Ai,At)} – mini {
l

∑
t=1

𝜗 (Ai,At)}

 C1 C2 C3 C4 C5

A1
(
s1, s2, s1

) (
s2, s3, s2

) (
s4, s4, s3

) (
s1, s5, s1

) (
s3, s3, s2

)
A2

(
s2, s6, s2

) (
s3, s8, s2

) (
s2, s4, s1

) (
s3, s1, s2

) (
s1, s2, s1

)
A3

(
s2, s3, s1

) (
s3, s2, s3

) (
s1, s4, s1

) (
s3, s5, s1

) (
s5, s2, s4

)
A4

(
s3, s1, s2

) (
s1, s7, s1

) (
s4, s6, s3

) (
s2, s5, s1

) (
s4, s6, s4

)

 C1 C2 C3 C4 C5

A1
(
s1, s6, s1

) (
s4, s3, s4

) (
s2, s6, s2

) (
s3, s5, s2

) (
s5, s2, s4

)
A2

(
s1, s4, s1

) (
s3, s2, s1

) (
s2, s3, s4

) (
s4, s0, s5

) (
s2, s6, s4

)
A3

(
s3, s5, s2

) (
s2, s4, s3

) (
s1, s6, s5

) (
s3, s5, s3

) (
s2, s6, s1

)
A4

(
s2, s7, s2

) (
s4, s6, s1

) (
s3, s7, s2

) (
s4, s4, s2

) (
s3, s8, s4

)

 C1 C2 C3 C4 C5

A1
(
s2, s4, s1

) (
s3, s5, s2

) (
s5, s1, s4

) (
s2, s6, s1

) (
s3, s3, s2

)
A2

(
s1, s2, s1

) (
s2, s4, s2

) (
s1, s5, s3

) (
s4, s2, s0

) (
s0, s5, s6

)
A3

(
s2, s3, s3

) (
s1, s5, s2

) (
s2, s4, s5

) (
s0, s4, s6

) (
s3, s2, s4

)
A4

(
s2, s3, s2

) (
s4, s6, s1

) (
s1, s4, s3

) (
s3, s4, s5

) (
s0, s4, s5

)

Case 1: the decision-making steps of the proposedmethod with the
combined weights of the criteria is as follows:

Step 1: Normalize the decision-making information.

Since all five criteria are cost types, we normalize the evaluation val-
ues according to Equation (25) as listed in Tables 4–6.

Step 2:Obtain the comprehensive decision-making matrix.

 

Table 1 LNN decision matrix Y1  given by D1 .

Table 2 LNN decision matrix Y2 given by D2  .

Table 3 LNN decision matrix Y3 given by D3.  
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Utilize the LNWAA operator provided by Definition 7 to aggregate
all of the individual decisionmatrix values, Zk (k = 1, 2, ...., p

)
, into

a collective matrix, Z = [zij]l×h =
(
s𝛼ij , s𝛽ij , s𝛾ij

)
l×h

, as shown in
Table 7.

Step 3: Calculate the combined weights of the criteria.

First, define the ideal solution Z∗ by the new SF using Equation (16)
and obtain the maximum value of each criterion as follows:

z+1 = (s1.35, s3.63, s1.26), z+2 = (s2.69, s4.16, s1.82),
z+3 = (s4.02, s3.17, s1.26), z+4 = (s3.88, s3.30, s0.00),

z+5 = (s4.37, s0.00, s0.00).
Then, we can calculate the objective weights of the criteria using
Equations (18–21) and obtain

w = (0.452, 0.398, 0.502, 0.493, 0.375)T.
Next, combine the given subjective weights provided by the DMs
with the objective weights, and obtain the combined weights of the
criteria based on Equations (22–24):

𝜛 = (0.170, 0.121, 0.259, 0.206, 0.244)T.
Step 4: Obtain the relative weight𝜛jr of each criterion Cj.

Since 𝜛C2 = max {0.170, 0.121, 0.259, 0.206, 0.244}=0.259, the
weight of the reference criterion is 𝜛r = 0.259. Then, the relative

weights of all of the criteria Cj
(
j = 1, 2, 3, 4, 5

)
are 𝜛1r = 0.657,

𝜛2r = 0.468,𝜛3r = 1,𝜛4r = 0.798, and𝜛5r = 0.943.
Step 5: Calculate the dominance degree 𝜗 (Ai,At) of alternative Ai
over the alternative At.

First, construct the dominance degree matrices with the criteria
Cj

(
j = 1, 2, 3, 4, 5

)
(𝜃 = 1) using Equation (27):

𝜙1 =
⎡
⎢
⎢
⎢
⎢
⎣

A1 A2 A3 A4
A1 0 –0.293 0.138 –0.766
A2 0.050 0 0.128 0.120
A3 –0.809 –0.754 0 –0.496
A4 0.130 –0.707 0.084 0

⎤
⎥
⎥
⎥
⎥
⎦

,

𝜙2 =
⎡
⎢
⎢
⎢
⎢
⎣

A1 A2 A3 A4
A1 0 –1.383 –0.642 0.155
A2 0.167 0 –1.434 0.109
A3 0.078 0.173 0 0.158
A4 –1.279 –0.904 –1.307 0

⎤
⎥
⎥
⎥
⎥
⎦

,

𝜙3 =
⎡
⎢
⎢
⎢
⎢
⎣

A1 A2 A3 A4
A1 0 –0.593 –0.779 –0.733
A2 0.153 0 –0.606 0.172
A3 0.201 0.157 0 0.195
A4 0.190 –0.664 –0.755 0

⎤
⎥
⎥
⎥
⎥
⎦

,

𝜙4 =
⎡
⎢
⎢
⎢
⎢
⎣

A1 A2 A3 A4
A1 0 0.255 –1.007 –0.866
A2 –1.235 0 –1.303 –0.931
A3 0.208 0.269 0 0.188
A4 0.179 0.192 –0.911 0

⎤
⎥
⎥
⎥
⎥
⎦

,

𝜙5 =
⎡
⎢
⎢
⎢
⎢
⎣

A1 A2 A3 A4
A1 0 –1.092 –0.588 –1.338
A2 0.266 0 0.225 –0.772
A3 0.143 –0.920 0 –1.202
A4 0.326 0.188 0.293 0

⎤
⎥
⎥
⎥
⎥
⎦

.

Then, we can obtain the overall dominance degree matrix using
Equation (26):

𝜗 (Ai,At) =
⎡
⎢
⎢
⎢
⎢
⎣

A1 A2 A3 A4
A1 0 –3.107 –2.878 –3.548
A2 –0.598 0 –2.990 –1.302
A3 –0.178 –1.075 0 –1.156
A4 –0.455 –1.895 –2.596 0

⎤
⎥
⎥
⎥
⎥
⎦

Step 6: Obtain the overall dominance degree of the alternative Ai.

Table 7 Integration decision matrix.

 C1 C2 C3 C4 C5

A1
(
s1.00, s3.63, s1.26

) (
s2.76, s4.22, s2.89

) (
s3.08, s3.83, s3.42

) (
s1.35, s2.62, s1.82

) (
s2.76, s5.31, s3.56

)
A2

(
s1.35, s3.63, s1.26

) (
s1.68, s0.00, s2.62

) (
s2.81, s3.91, s1.59

) (
s2.76, s6.95, s3.63

) (
s4.17, s3.30, s0.00

)
A3

(
s2.06, s4.22, s2.29

) (
s2.69, s4.16, s1.82

) (
s4.02, s3.17, s1.26

) (
s3.88, s3.30, s0.00

) (
s3.18, s4.16, s3.11

)
A4

(
s2.00, s3.27, s2.29

) (
s1.00, s1.59, s2.52

) (
s2.69, s2.00, s2.29

) (
s2.99, s3.63, s2.88

) (
s4.37, s0.00, s0.00

)
Pdf_Folio:8

Table 4 Normalized decision matrix Z1.

 C1 C2 C3 C4 C5
A1

(
s1, s6, s1

) (
s2, s5, s2

) (
s3, s4, s4

) (
s1, s3, s1

) (
s2, s5, s3

)
A2

(
s2, s2, s2

) (
s2, s0, s3

) (
s1, s4, s2

) (
s2, s7, s3

) (
s1, s6, s1

)
A3

(
s1, s5, s2

) (
s3, s6, s3

) (
s1, s4, s1

) (
s1, s3, s3

) (
s4, s6, s5

)
A4

(
s2, s7, s3

) (
s1, s1, s1

) (
s3, s2, s4

) (
s1, s3, s2

) (
s4, s2, s4

)
Table 5 Normalized decision matrix Z2.

 C1 C2 C3 C4 C5
A1

(
s1, s2, s1

) (
s4, s5, s4

) (
s2, s2, s2

) (
s2, s3, s3

) (
s4, s6, s5

)
A2

(
s1, s4, s1

) (
s1, s6, s3

) (
s4, s5, s2

) (
s5, s8, s4

) (
s4, s2, s2

)
A3

(
s2, s3, s3

) (
s3, s4, s2

) (
s5, s2, s1

) (
s3, s3, s3

) (
s1, s2, s2

)
A4

(
s2, s1, s2

) (
s1, s2, s4

) (
s2, s1, s3

) (
s2, s4, s4

) (
s4, s0, s3

)
Table 6 Normalized decision matrix Z3.

 C1 C2 C3 C4 C5
A1

(
s1, s4, s2

) (
s2, s3, s3

) (
s4, s7, s5

) (
s1, s2, s2

) (
s2, s5, s3

)
A2

(
s1, s6, s1

) (
s2, s4, s2

) (
s3, s3, s1

) (
s0, s6, s4

) (
s6, s3, s0

)
A3

(
s3, s5, s2

) (
s2, s3, s1

) (
s5, s4, s2

) (
s6, s4, s0

) (
s4, s6, s3

)
A4

(
s2, s5, s2

) (
s1, s2, s4

) (
s3, s4, s1

) (
s5, s4, s3

) (
s5, s4, s0

)
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Table 8 The overall dominance degree for all of the alternatives.

A1 A2 A3 A4
𝛿
(
Ai
)

0 0.6517 1 0.6440

According to Equation (28), we can obtain the overall dominance
degree of each alternative 𝛿 (Ai) (i=1, 2, 3, 4) as shown in Table 8.

Step 7: Rank the alternatives.

Since 𝛿 (A3) ≻ 𝛿 (A2) ≻ 𝛿 (A4) ≻ 𝛿 (A1), the corresponding rank
result is A3 ≻ A2 ≻ A4 ≻ A1, and the optimal alternative is A3.

Case 2: If we adopt the subjective weights of the criteria given
directly by theDMs, thenwe can skip Step of the proposedmethod
to obtain the optimal alternative.

In this case, the overall dominance degree of each alternative
𝛿 (Ai) (i=1, 2, 3, 4) can be calculated as follows: 𝛿 (A1) = 0, 𝛿 (A2) =
0.4910, 𝛿 (A3) = 1, 𝛿 (A4) = 0.6376, so we have A3 ≻ A4 ≻ A2 ≻
A1. It is obvious that the ranking result is different with the diverse
weights of the criteria.

From the above cases, it can be concluded that criteria weights
play an effective role in the decision-making result. The sub-
jective weight vector of the criteria in Example is 𝜆 =
(0.2, 0.15, 0.25, 0.1, 0.3)T, and thus we can obtain the ranking
result—A3 ≻ A4 ≻ A2 ≻ A1. By adjustment of the objec-
tive weights, the combination weight vector of the criteria is 𝜛 =
(0.170, 0.121, 0.259, 0.206, 0.244)T and the corresponding ranking
result is A3 ≻ A2 ≻ A4 ≻ A1. The combined weight model in this
paper is based on the minimum total deviation between the eval-
uation values with the combined weights and the original weights,
which reflects the DMs’ preferences and the difference between the
evaluation values under the different criteria. Compared to the cri-
teria weights given by the DMs in Case , the proposed combined
weight model can decrease the subjectivity weight and simultane-
ously make full use of the objective information of the evaluated
object. Therefore, the combined weight model in this paper is more
reasonable and suitable to allocate weights for each of the criterion
in the decision-making process.

6.2. An Analysis of the Effect of the
Attenuation of Losses

The improved TODIM method is a new MCGDM method with
parameter 𝜃. The 𝜃 is an attenuation factor of the loss that is sug-
gested to have a value between 1.0 and 2.5 [26]. To analyze the
influence of parameter 𝜃 on the ranking results of the alternatives,
we take different values of 𝜃 by increasing it by 0.1 in Step of the
procedure of the proposed method for Example . The ranking
results of the four alternatives on the basis of the different 𝜃 values
are listed in Table 9.

In Table 9, we can see that the ranking result of the alternatives
change from 𝜃 = 1.3. When 𝜃 changes from 1.0 to 1.2, the order of
the alternatives isA3 ≻ A2 ≻ A4 ≻ A1; when 𝜃 changes from 1.3 to
2.5, the order of the alternatives change into A3 ≻ A4 ≻ A2 ≻ A1.
However, the optimal alternative obtained with the different values
of 𝜃 is the same, that is , A2. Meanwhile, the dominance degree for
the same alternative based on the proposed method increases with
different values of 𝜃. That is, when 𝜃 is bigger, the DMs have a more
sensitive response to a loss. Different DMs can choose an appro-
priate parameter value for 𝜃 based on their different risk attitudes.

6.3. The Verification of the Effectiveness

In the following, we need to prove the effectiveness of our proposed
method by an example. In this example, we compare the ranking
results of the proposed MCGDM method with the results of the
Fang and Ye [18] method, which is based on the LNWAA operator
and the Liang et al. [32] method, which is based on the extended
TOPSIS model.

Example 5.2. An investment firm plans to select an industry
as a project and there are four possible investment alternatives
{A1,A2,A3,A4}, which are the medical industry, the internet
industry, the processed food industry, and the sports industry,
respectively. Three criteria are considered. They are the market

Table 9 The ranking results of the different parameter 𝜃 values.

𝜃 = 1.0 𝜃 = 1.1 𝜃 = 1.2 𝜃 = 1.3 𝜃 = 1.4 𝜃 = 1.5
𝛿 Order 𝛿 Order 𝛿 Order 𝛿 Order 𝛿 Order 𝛿 Order

A1 0 4 0 4 0 4 0 4 0 4 0 4
A2 0.6517 2 0.6523 2 0.6530 2 0.6536 3 0.6541 3 0.6547 3
A3 1 1 1 1 1 1 1 1 1 1 1 1
A4 0.6440 3 0.6475 3 0.6508 3 0.6540 2 0.6571 2 0.6601 2

𝜃 = 1.6 𝜃 = 1.7 𝜃 = 1.8 𝜃 = 1.9 𝜃 = 2.0 𝜃 = 2.1
𝛿 Order 𝛿 Order 𝛿 Order 𝛿 Order 𝛿 Order 𝛿 Order

A1 0 4 0 4 0 4 0 4 0 4 0 4
A2 0.6552 3 0.6558 3 0.6563 3 0.6568 3 0.6573 3 0.6577 3
A3 1 1 1 1 1 1 1 1 1 1 1 1
A4 0.6630 2 0.6658 2 0.6685 2 0.6711 2 0.6737 2 0.6762 2

𝜃 = 2.2 𝜃 = 2.3 𝜃 = 2.4 𝜃 = 2.5
𝛿 Order 𝛿 Order 𝛿 Order 𝛿 Order

A1 0 4 0 4 0 4 0 4
A 0.6582 3 0.6586 3 0.6590 3 0.6595 3
A3 1 1 1 1 1 1 1 1
A4 0.6786 2 0.6810 2 0.6833 2 0.6855 2
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competition (C1), the profitability (C2) and the capital liquidity
(C3). (We assume that their weight vector isW = (0.35, 0.25, 0.4)T).
The evaluation information of the alternatives {A1,A2,A3,A4}
under the criteria Cj

(
j = 1, 2, 3

)
is in the form of LNNs and

is based on the LTs: S = {s0 = extremelylow, s1 = prettylow,
s2 = low, s3 = slightlylow, s4 = medium, s5 = slightlyhigh,
s6 = high, s7 = prettyhigh, s8 = perfect}. The decision matrix, Y =
[yij]4×3, is provided in Table 10.

To obtain a scientific and effective result, we assume these methods
adopt the same weight vector of the criteriaW = (0.35, 0.25, 0.4)T
and the comparison results are shown in Table 11.

From Table 11, we see that the ranking result of the alternatives by
the proposedmethod is the same as those of the methods described
in References [18, 32], that is, A4 ≻ A2 ≻ A1 ≻ A3. It is obvious
that our proposed MCGDMmethod is feasible and rational.

Table 10 Linguistic neutrosophic decision matrix of Example .

C1 C2 C3

A1
(
s6, s1, s2

) (
s7, s2, s1

) (
s5, s2, s3

)
A2

(
s7, s2, s2

) (
s6, s1, s1

) (
s6, s2, s2

)
A3

(
s6, s2, s2

) (
s6, s1, s2

) (
s6, s3, s2

)
A4

(
s7, s1, s2

) (
s6, s2, s1

) (
s6, s2, s1

)
Table 11 The ranking results by the different approaches of Example .

Approaches Ranking Orders
Approach with LNWAA operator [18] A4 ≻ A2 ≻ A1 ≻ A3
Approach with LNN–TOPSIS [32] A4 ≻ A2 ≻ A1 ≻ A3
the proposed method A4 ≻ A2 ≻ A1 ≻ A3

6.4. Further Comparisons with Other
Methods

In the above subsection, we completed the validation of the pro-
posed method by obtaining the same ranking result as two exist-
ing methods [18, 32] Next, we will illustrate the advantages of the
proposed method by using different approaches to obtain rank-
ing results. Example will show the advantages of the improved
TODIM approach by comparison with a method based on the
LNN–TOPSIS model [32]. Example will show the advantages of
the LNNs by comparison with the TODIM approach under SVNs

.

Example 5.3. An investment company decides to invest in a
domestic coal mine and there are four possible alternatives. Five
criteria need to be considered including the production (C1), the
technical capacity (C2), the market development (C3), the man-
agement capacity (C4), and the social policy (C5). We assume that
their weight vector isW = (0.08, 0.20, 0.15, 0.27, 0.30)T. The eval-
uation information of the alternatives {A1,A2,A3,A4} combined
with the criteria Cj

(
j = 1, 2, 3, 4, 5

)
is provided by the DM is in

s1 = prettylow, s2 = low, s3 = slightlylow, s4 = medium,
s5 = slightlyhigh, s6 = high, s7 = prettyhigh, s8 = perfect}. The
decision matrix, Y= [yij]4×5 =

(
s𝜍ij

, s𝜃ij
, s𝜏ij

)
4×5

, is constructed

and shown in Table 12, and the comparison results are presented
in Table 13.

i. Comparisonwith themethod based on the TOPSISmodel [ ]
The LNN–TOPSIS model described in Reference [32]
first needs to construct the weighted decision-making
matrix Y∗= [y∗ij]4×5 =

(
s∗𝜍ij

, s∗𝜃ij
, s∗𝜏ij

)
4×5

, where s∗𝜍ij
=𝜛js𝜍ij

,

s∗𝜃ij
= 𝜛js𝜃ij

and s∗𝜏ij = 𝜛js𝜏ij .

Table 12 Linguistic neutrosophic decision matrix of Example .

 C1 C2 C3 C4 C5

A1
(
s1, s4, s1

) (
s3, s4, s3

) (
s4, s2, s3

) (
s1, s3, s2

) (
s3, s2, s1

)
A2

(
s1, s3, s1

) (
s2, s3, s2

) (
s2, s4, s2

) (
s4, s6, s5

) (
s3, s4, s0

)
A3

(
s2, s3, s3

) (
s3, s4, s1

) (
s3, s2, s2

) (
s1, s4, s2

) (
s3, s4, s2

)
A4

(
s1, s3, s2

) (
s2, s3, s3

) (
s4, s3, s3

) (
s4, s5, s7

) (
s4, s2, s0

)
Table 13 The ranking results of the different approaches.

Approaches Ranking Orders
Approach with LNN–TOPSIS [32] A1 ≻ A3 ≻ A4 ≻ A2
the proposed method A1 ≻ A3 ≻ A2 ≻ A4

the negative ideal solution under each crite-
rion according the SF described in Definition .
That is, y+j = maxi

(
𝜓
(
y∗ij
))

(i = 1, 2,⋯ , 4), and

y–j = mini
(
𝜓
(
y∗ij
))

(i = 1, 2,⋯ , 4).
Next, for each criterion, we can calculate the distance between
the evaluation value y∗ij and the positive ideal solution y+ or
the negative ideal solution y– by Equation 8, which is denoted

as d+i =
l

∑
j=1

dH
(
y+j , y∗ij

)
, d–i =

l

∑
j=1

dH
(
y–j , y∗ij

)
. Therefore, we

can obtain the correlation coefficient, DCi =
d–i

d+i +d
–
i

.

In Example , the corresponding correlation coefficients of
each alternative are DC1 = 0.8122, DC2 = 0.3247,DC3 =
0.5868,DC4 = 0.4163. Therefore, the ranking result based
on the LNN–TOPSIS model is A1 ≻ A3 ≻ A4 ≻ A2,
which is different from the ranking of the proposed
method−A1 ≻ A3 ≻ A2 ≻ A4.
As we can see, the difference of the ranking results between
the LNN–TOPSIS model [32] and the proposed method is the
order of A2 and A4. There can be two reasons that account for
this difference:
(a) The first is the difference of the SF. The LNN–TOPSIS

model described in Reference [32] and the method pro-
posed in this paper apply different SFs to compare the
evaluation value of the different alternatives under each
criterion. The SF in the LNN–TOPSIS model [32] is
based on the definition from Reference [18]-𝜓 (m) =
4t+𝜍–𝜃–𝜏

6t
, while the proposed method utilizes the new

SF-𝜓′ (m) = 4t+𝜍–𝜏–b𝜃
6t

(
b= 𝜏

𝜍+𝜏
)
, which is more effi-

cient than the SF from Reference [18]. In the case of
Example , y∗11 = (s0.08, s0.32, s0.08) ≠ y∗31 =
(s0.16, s0.32, s0.16) ≠y∗41 = (s0.08, s0.24, s0.16), but their SF
values that are based on the definition in Reference [18]
are the same. By using the new SF, we obtain 𝜓′(y∗11) =

Pdf_Folio:10

Then, identify the positive ideal solution y+ and
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5.2

5.2
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the form of LNNs based on the LTs:S = {s0 = extremelylow,

5.4

5.3

5.3

y–

32

that is described in Reference [33].
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0.66, 𝜓′(y∗31) = 0.6573, and 𝜓′(y∗41) = 0.6567. There-
fore, there can be a different positive ideal solution or a
negative ideal solution for each criterion with two SFs.
Now, we utilize the new SFs in the LNN–TOPSIS model,
and we can get DC′1 = 0.7657,DC′2 = 0.3230,DC′3 =
0.6312,. DC′4 = 0.3828. Although the order of the alter-
natives does not change, the gap of correlation coeffi-
cients between A2 and A4 is now narrowing.

(i) The other reason is the influence of the DMs’ psycho-
logical behavior on the two approaches. The LNN–
TOPSIS model assumes that the DMs are perfectly
rational while the proposed method holds that the
DMs are not rational to some degree due to the incom-
pleteness and asymmetry of the information and the
fuzziness of the DMs’ cognitive ability. From the pro-
cedures of the LNN–TOPSIS model and the pro-
posed method, we can see that the two approaches
need to compare the evaluation values of the different
alternatives under each criterion. However, the TOP-
SIS model is based on the assumption of the ratio-
nal behavior of the DMs, while the proposed method
is based on the bounded rationality and risk prefer-
ences of DMs. Then, the dominance degree values
of the alternatives are calculated, which are denoted

as
l

∑
t=1

h

∑
j=1

𝜙j (Ai,At), where 𝜙j (Ai,At) is measured by

the weight and distance. The TOPSIS model calcu-
lates the distance between the alternative and the pos-
itive ideal solution (or the negative ideal solution)
to select the optimal alternative, which is denoted

as d+i =
l

∑
j=1

dH
(
y+j , y∗ij

)(
or d–i =

l

∑
j=1

dH
(
y–j , y∗ij

))
.

Clearly, the integrated index of the proposed method
can make better use of the evaluation information
than the LNN–TOPSIS model.
Therefore, the improvedTODIMmethod in this paper
ismore general and reasonable than the LNN–TOPSIS
model because the new SF can compare LNNs more
effectively, and the proposed method can reflect the
DMs’ psychological behavior through a comparison of
each evaluation value.

Example 5.4. An enterprise plans to select suppli-
ers and there are four alternatives {A1,A2,A3,A4} and
some criteria need to be considered as follows: quality
(C1), price (C2), supply capacity (C3), after-sale ser-
vice (C4), and corporate reputation (C5), (suppose the
weight vector is W = (0.08, 0.20, 0.15, 0.27, 0.30)T).
The DM gives the evaluation information of the alter-
natives with the criteria Cj

(
j = 1, 2, 3, 4, 5

)
by LNNs

based on the LTs: S = {s0 = worst, s1 = worse,
s2 = bad, s3 = slightlybad, s4 = medium, s5 =
relativelygood, s6 = good, s7 = better, s8 = best}. The
decision matrix, Y = [yij]4×5, is presented in Table 14.
Then, we can obtain the ranking results that are shown
in Table 15.

Table 14 Linguistic neutrosophic decision matrix of Example .

 C1 C2 C3 C4 C5

A1
(
s1, s4, s1

) (
s3, s4, s3

) (
s3, s4, s3

) (
s1, s3, s2

) (
s3, s5, s4

)
A2

(
s2, s4, s1

) (
s3, s4, s2

) (
s3, s4, s2

) (
s3, s7, s4

) (
s4, s3, s1

)
A3

(
s2, s4, s3

) (
s1, s2, s1

) (
s3, s2, s2

) (
s2, s4, s3

) (
s3, s4, s3

)
A4

(
s1, s3, s4

) (
s2, s3, s4

) (
s4, s3, s1

) (
s4, s3, s0

) (
s4, s0, s0

)
Table 15 The ranking results of the different approaches.

Approaches Ranking Orders
Approach with f = f1(si) [33] A4 ≻ A3 ≻ A2 ≻ A1
Approach with f = f2(si) [33] A4 ≻ A2 ≻ A3 ≻ A1
The proposed method A2 ≻ A4 ≻ A3 ≻ A1

ii. Compared with the SVN–TODIMmethod [33]
The approach proposed in Reference [33] uses SVNNs. There
are several methods to translate LNNs into SVNNs. We use
two LSFs−f1(si) and f2(si) from Reference [34] to achieve the
transformation. Specifically, when f = f1(si), the evaluation
value y12 = (s3, s4, s2) is converted into (0.375,0.5,0.25); when
f = f2(si) (r = 1.37), the evaluation value y12 is converted into
(0.427,0.5,0.326).

In Table
the LNN–TODIM model has different ranking results from those
of the SVN–TODIMmethod. Two possible reasons are as follows:

One is the difference of the SFs between the two approaches. In
the SVN–TODIM method, we obtain y22 ≻ y32 based on the SF
described in Reference [18] while there is y22 ≺ y32 developed by
the new SF in the proposed method. Suppose there is y22 ≺ y32
in the SVN–TODIMmethod, then we can obtain the same ranking
as the proposed method−A2 ≻ A4 ≻ A3 ≻ A1. From this it can be
seen that, the different SF s may bring about the different results.

Another reason is that the evaluation information is different. The
two approaches take different forms to describe the evaluation
information. Furthermore, there are different conversion results
due to the two different types of transformations in the SVN–
TODIM method. The characteristics of the two types of LSFs is
graphically shown in Figure 1 (suppose r = 1.37).

Figure 1 Illustration of linguistic scale
function 1 (LSF1), LSF2.
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By using bidirectional geometric growth, an LSF2 can better reflect
the psychological processes of the DMs when judging the good
and bad characteristics of the different criteria values. Although the
ranking result of SVN–TODIM method based on LSF2s are closer
to the proposed method, the LNNs can represent more complex
information by using LTSs than by using SVNs, especially in a qual-
itative decision-making environment. All these examples show that
the proposed method-based new SFs with LNNs is more flexible
and more innovative.

It can be seen from the above comparisons and analysis that the
proposed method based on the new SFs of LNNs has an advantage
over the SVN–TODIM method that is described in Reference [33]
and the TOPSISmethod that is described in Reference [32] because
it takes full advantage of the evaluation information by the LNNs
and can consider the DMs’ psychological behavior by comparing
evaluation values.

7. CONCLUSION

As an effective linguistic expression, an LNN makes the best use of
the advantages of the LVs and SVNNs that describe uncertain and
inconsistent information by using LVs. Then, the TODIM method
is a suitable and reasonable tool for MCGDM problems that can
consider the DMs’ psychological behavior. Therefore, it is a good
idea to apply the TODIM method under a linguistic neutrosophic
environment. To better reflect the risk preferences of the DMs
facing a gain or a loss, we improved the SF of the LNNs that can
effectively compare LNNs without the assistance of an accuracy
function. Based on a subjective weight model and the objective
weight model, we developed a combined weight model that not
only considers the DMs’ preferences but also makes full use of
the evaluation information. Consequently, an improved TODIM
method based on the revised SF and the combined weight model is
proposed. Then, we demonstrated the procedures of the proposed
method and validated the effectiveness and advantages of the pro-
posed method by comparison with other methods found in Ref-
erences [18, 32, 33]. The main contribution of this paper is a new
approach forMCGDMproblemswith LNNs that enriches the exist-
ing research theories of LNNs. For our future studies, we will focus
on the information preferences of the DMs in the form of the LNNs
and we would like to develop potential applications of the pro-
posedmethod in different domains, such as facility location, quality
assessment, personnel recruitment, and so on.
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