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For real decision-making problems, aggregating the attributes which have interactive or correlated characteristics by traditional
aggregation operators is unsuitable. Thus, applying Choquet integral operator to approximate and simulate human subjective
decision-making process, in which independence among the input arguments is not necessarily assumed, would be suitable.
Moreover, using single-valued neutrosophic uncertain linguistic sets (SVNULSs) can express the indeterminate, inconsistent,
and incomplete information better than FSs and IFSs. In this paper, we studied the MAGDM problems with SVNULSs and
proposed two single-valued neutrosophic uncertain linguistic Choquet integrate aggregation operators where the interactions
phenomena among the attributes or the experts are considered. First, the definition, operational rules, and comparison method
of single-valued neutrosophic uncertain linguistic numbers (SVNULNs) are introduced briefly. Second, induced single-valued
neutrosophic uncertain linguistic Choquet ordered averaging (I-SVNULCA) operator and induced single-valued neutrosophic
uncertain linguistic Choquet geometric (I-SVNULCG) operator are presented. Moreover, a few of its properties are discussed.
Further, the procedure and algorithm of MAGDM based on the above single-valued neutrosophic uncertain linguistic Choquet
integral operator are proposed. Finally, in the illustrative example, the practicality and effectiveness of the proposed method would
be demonstrated.

1. Introduction

In the real-life, due to the complexity of environment and
the limitation of human knowledge, human preference judg-
ments may be difficult to express by crisp numbers. The
decision information in real-world situations is uncertain,
incomplete, and inconsistent. Therefore, numerous decision
methods based on fuzzy information which can be consider-
ably appropriate to express decision makers’ preference were
developed. Zadeh [1] first proposed fuzzy sets (FSs), which
are regarded as important tools to solve decision-making
problems. Given that FSs only consider a membership
function, Atanassov [2] introduced the intuitionistic fuzzy
sets (IFSs), which are an extension of FSs and considered
membership 𝑇𝐴(𝑥) and nonmembership 𝐹𝐴(𝑥) and have

been extensively applied in solving MAGDM problems [3–
11]. However, FSs and IFSs can only express incomplete
information rather than indeterminate and inconsistent
information. Accordingly, Smarandache [12] introduced neu-
trosophic sets (NSs), which can substantially express indeter-
minate information, since it is difficult to apply NSs in the
real decision-making process without specific description.
Therefore, Wang [13] defined the concept of single-valued
neutrosophic sets (SVNS), which is an instance of NSs.More-
over, interval neutrosophic sets (INSs) [14], as a particular
extension of an NS, have also been proposed. Subsequently,
various aspects of SVNSs and INSs have been studied bymore
and more scholars and experts [15–23]. Ye [24] presented
correlation and weighted correlation coefficients of SVNSs.
Liu [21] proposed some aggregation operators by combined
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the PA operator and GWA operator to INS and discussed
these operators’ properties.

NSs are progressing rapidly in theory and application.
Shahzadi [25] proposed distance measures and similarity
measures of SVNSs which are applied to medical diag-
nosis. Then, the tangent similarity measure and cosine
similarity measure of SVNS were proposed and applied in
medical diagnosis [26, 27]. Tan [28] proposed exponential
aggregation operator of interval neutrosophic numbers for
Typhoon Disaster Evaluation. Abdel-Basset [29] developed
a hybrid method with neutrosophic sets and applied it
in developing supplier selection criteria. Abdel-Basset [30]
developed three-way decisions based on NSs and applied
it in supplier selection problem. Ye [31] presented some
exponential aggregation operator in INSs and applied it in the
selection problem of global suppliers. Yang [32] developed a
generalized interval neutrosophic fuzzy correlated averaging
operator and a linear assignment method to accommodate
the interval neutrosophic sets based on Choquet integral to
solve the selection problem of investment companies.

The people’s thinking is ambiguous and the objective
things are complex, which have occasionally prevented us
from using a few real numbers to express several pieces of
qualitative information in real MAGDM problems. However,
this qualitative information can be easily expressed by lin-
guistic terms. However, there is a downside to using linguistic
variables; it cannot handle uncertain and inconsistent infor-
mation. Therefore, Ye [33] proposed the concepts of single-
valued neutrosophic linguistic set (SVNLS) and single-valued
neutrosophic linguistic number (SVNLN) and introduced
their operational rules. Thereafter, motivated by SVNS and
intuitionistic uncertain linguistic set [34], Liu [35] proposed
the concepts of single-valued neutrosophic uncertain linguis-
tic sets (SVNULSs) and single-valued neutrosophic uncertain
linguistic numbers (SVNULNs). SVNULSs can deal with
fuzzy, uncertain, inconsistent, or indeterminate information
and are the generalization of SVNLSs. At present, research on
SVNULSs is minimal [35, 36].

Information aggregation operators generally play an
important part in the process of MAGDM problems and
thereby attract the attention of an increasing number of
researchers [37–44]. However, these aggregation operators
are assembled based on the DM’s preference and attributes
are independent of each other [45]. For real decision-making
problems, mutual influence and interaction among attributes
or experts are constantly present and ignored in the decision-
making. Therefore, the concept of fuzzy measure introduced
by Sugeno [46] is an effective tool for addressing the inter-
action phenomena among input arguments, has attracted
increasing attention from researchers, and has been applied
in numerous application domains [9, 45, 47–52]. To date,
no research has been conducted on neutrosophic uncertain
linguistic decision-making that considers the various inter-
actions between input single-valued neutrosophic uncertain
linguistic information and various decision makers. The
current study is motivated by the Choquet integral [53] and
(1) extends the induced Choquet integral to aggregate the
decision variables with SVNULNs, (2) develops two single-
valued neutrosophic uncertain linguistic Choquet integral

operators, (3) investigates their various properties, and (4)
discusses a few of their special cases. Thereafter, we pro-
pose one procedure for MAGDM under the environments
of SVNULNs based on the proposed operators in this
paper.

The rest of this article is organized as follows. First,
we simply introduce some basic concepts of SVNLSs and
LVs and a few operational laws of SVNULNs in Section 2.
Then, Section 3 reviews fuzzy measure, Choquet integral,
and I-COA operator. Section 4 proposes some aggregation
operators with SVNULNs. This section also discusses their
properties of their operators. Section 5 develops a MAGDM
method. We propose an illustrative example to demonstrate
the application of the proposed aggregation operator and
method and analyze the differences compared with other
methods in Section 6. The conclusions and further future
research are provided in the end of this paper.

2. Preliminaries

In this section, some concepts and definitions of linguistic
term sets (LTSs) provided by Zadeh, NSs, simplified neutro-
sophic sets (SNSs), and SVNULS are introduced, and these
concepts and definitions will be used in the remainder of this
paper.

2.1. Uncertain Linguistic Term Set. As an effective tool to
express qualitative information, linguistic variables are pro-
posed by Zadeh [54]. Suppose that 𝐻 = {ℎ𝑖 | 0, 1, ⋅ ⋅ ⋅ , 𝑡 − 1}
is a finite and totally ordered discrete linguistic term set, in
which ℎ𝑖 is LVs. Accordingly, ℎ𝑖 and ℎ𝑗 satisfy the following
properties [55, 56]:

(1) The set is ordered: ℎ𝑖 < ℎ𝑗 if and only if 𝑖 < 𝑗.
(2) If ℎ𝑖 ≤ ℎ𝑗, min(ℎ𝑖, ℎ𝑗) = ℎ𝑖.
(3) Negation operator: 𝑛𝑒𝑔(ℎ𝑖) = ℎ𝑡−1−𝑖.

For any LVs ℎ𝑖 and ℎ𝑗, the operations are defined as follows
[55, 56]:

(1) ℎ𝑖 ⊕ ℎ𝑗 = ℎ𝑖+𝑗.
(2) 𝜆ℎ𝑖 = ℎ𝜆𝑖, 0 ≤ 𝜆 ≤ 1.
(3) ℎ𝑖 ⊗ ℎ𝑗 = ℎ𝑖×𝑗.
(4) ℎ𝑖𝜆 = ℎ𝑖𝜆 , 0 ≤ 𝜆 ≤ 1.

For better completeness of the discrete linguistic term set,
we extend the discrete term set into a continuous linguistic
term set 𝐻 = {ℎ𝛼 | ℎ1 ≤ ℎ𝛼 ≤ ℎ𝑞, 𝛼 ∈ [1, 𝑞]}, where 𝑞
is a sufficient large number; ℎ𝛼 would be called the original
term when ℎ𝛼 ∈ 𝐻; otherwise, ℎ𝛼 is the virtual term [57].
Generally, the original linguistic terms would be utilized to
evaluate alternatives by the DM, while only in the operation
process the virtual linguistic terms appear.

Definition 1 (see [58]). Let 𝐻 = [ℎ𝑎, ℎ𝑏], where ℎ𝑎, ℎ𝑏 ∈ 𝐻,
and 𝑎 ≤ 𝑏. ℎ𝑎 is the lower bound of 𝐻 and ℎ𝑏 is the upper
bound of𝐻. Hence𝐻 is called anuncertain linguistic variable
(ULV).
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Definition 2 (see [55]). For two ULVs 𝐻1 = [ℎ𝑎1, ℎ𝑏1] and𝐻2 = [ℎ𝑎2, ℎ𝑏2], the operations are defined as follows:

𝐻1 ⊕ 𝐻2 = [ℎ𝑎1, ℎ𝑏1] ⊕ [ℎ𝑎2, ℎ𝑏2] = [ℎ𝑎1+𝑎2, ℎ𝑏1+𝑏2] ; (1)

𝐻1 ⊗ 𝐻2 = [ℎ𝑎1, ℎ𝑏1] ⊗ [ℎ𝑎2, ℎ𝑏2] = [ℎ𝑎1∗𝑎2, ℎ𝑏1∗𝑏2] ; (2)

𝜆𝐻1 = 𝜆 [ℎ𝑎1, ℎ𝑏1] = [ℎ𝜆𝑎1, ℎ𝜆𝑏1] , 𝜆 ≥ 0; (3)

𝐻1𝜆 = [ℎ𝑎1, ℎ𝑏1]𝜆 = [ℎ𝑎1𝜆 , ℎ𝑏1𝜆] , 𝜆 ≥ 0. (4)

2.2. NSs and SNSs

Definition 3 (see [12]). Let 𝑋 be a space of points, and
let 𝑥 denote a generic element in 𝑋. A neutrosophic set𝐴 in 𝑋 is characterized by the truth-membership function𝑇𝐴(𝑥), an indeterminacy-membership function 𝐼𝐴(𝑥), and
a falsity-membership function 𝐹𝐴(𝑥). The functions 𝑇𝐴(𝑥),𝐼𝐴(𝑥), and 𝐹𝐴(𝑥) are real standard or nonstandard subsets
of ]0−, 1+[. Thus, all three neutrosophic components 𝑇𝐴(𝑥),𝐼𝐴(𝑥), 𝐹𝐴(𝑥) :󳨀→]0−, 1+[ and meet the condition 0− ≤
sup𝑇𝐴(𝑥) + sup 𝐼𝐴(𝑥) + sup𝐹𝐴(𝑥) ≤ 3+.

However, NSs were difficult to be applied to practical
problems.Then, by changed nonstandard interval numbers of
NSs, Ye [59] introduced the concept and operations of SNSs,
which is a subclass of NS and can be defined as follows.

Definition 4 (see [59]). Let X be a universal set. A NS 𝐴 in 𝑋
is characterized by 𝑇𝐴(𝑥), 𝐼𝐴(𝑥), and 𝐹𝐴(𝑥), which are single
subintervals/subsets in the real standard [0, 1]. That is, 𝑇𝐴(𝑥),𝐼𝐴(𝑥), 𝐹𝐴(𝑥) ∈ [0, 1] and satisfy the condition 0 ≤ 𝑇𝐴(𝑥) +𝐼𝐴(𝑥) + 𝐹𝐴(𝑥) ≤ 3. Thereafter, 𝐴 can be simply denoted by𝐴 = {⟨𝑥, 𝑇𝐴(𝑥), 𝐼𝐴(𝑥), 𝐹𝐴(𝑥)⟩ | 𝑥 ∈ 𝑋}, which is called SNSs.

2.3. SVNULNs and Their Operations. Liu et al. [35] used
uncertain linguistic term sets and SNSs as bases to introduce
the concept and operations of SVNULNs and define a
method with the proposed score and accuracy functions for
comparing two SVNULNs.

Definition 5 (see [35]). Let [ℎ𝜃(𝑥), ℎ𝜏(𝑥)] ∈ 𝐻, X, and 𝑋
be the given discourse domains. Accordingly, 𝐴 = {⟨𝑥 |[ℎ𝜃(𝑥), ℎ𝜏(𝑥)], (𝑇𝐴(𝑥), 𝐼𝐴(𝑥), 𝐹𝐴(𝑥))⟩ | 𝑥 ∈ 𝑋} is called
SVNULSs, where ℎ𝜃(𝑥), ℎ𝜏(𝑥) ∈ 𝐻, and 𝑇𝐴(𝑥), 𝐼𝐴(𝑥),
and 𝐹𝐴(𝑥) are three sets of certain single value in real
unit interval [0, 1] and express the truth-membership,
indeterminacy-membership, and falsity-membership func-
tion, respectively, of the element 𝑥 to𝐴. For convenience, 𝛼 =⟨|[ℎ𝜃, ℎ𝜏], (𝑇𝛼, 𝐼𝛼, 𝐹𝛼)⟩ is defined SVNULNs. Furthermore, 𝛼
degenerates to an ULV when 𝑇𝐴 = 1, 𝐼𝐴 = 0 and 𝐹𝐴 = 0.

SVNULSs are extension of an uncertain linguistic term
and SVNS. Compared with ULVs, SVNULSs can more
accurately reflect uncertainty and fuzziness. Compared with
SVNSs, SVNULSs integrate ULVs and SVNSs, and assign
truth-membership, indeterminacy-membership, and falsity-
membership functions to a specific ULV. Thus, SVNULSs
are effective tools to address the problems which are defined

by qualitative expression that involve incomplete, indetermi-
nate, and inconsistent information.

The following section introduces the operations of
SVNULNs [35].

Definition 6 (see [35]). Suppose 𝛼 = ⟨|[ℎ𝜃1 , ℎ𝜏1], (𝑇𝛼, 𝐼𝛼, 𝐹𝛼)⟩
and 𝛽 = ⟨|[ℎ𝜃2 , ℎ𝜏2], (𝑇𝛽, 𝐼𝛽, 𝐹𝛽)⟩ be two SVNULNs, 𝜆 > 0.
The algebraic operations between 𝛼 and 𝛽 can be defined as
follows:

𝛼 ⊕ 𝛽 = ⟨[ℎ𝜃1+𝜃2 , ℎ𝜏1+𝜏2] ,
(𝑇𝛼 + 𝑇𝛽 − 𝑇𝛼𝑇𝛽, 𝐼𝛼𝐼𝛽, 𝐹𝛼𝐹𝛽)⟩ ; (5)

𝛼 ⊗ 𝛽 = ⟨[ℎ𝜃1∗𝜃2 , ℎ𝜏1∗𝜏2] ,
(𝑇𝛼𝑇𝛽, 𝐼𝛼 + 𝐼𝛽 − 𝐼𝛼𝐼𝛽, 𝐹𝛼 + 𝐹𝛽 − 𝐹𝛼𝐹𝛽)⟩ ; (6)

𝜆𝛼 = ⟨[ℎ𝜆𝜃1 , ℎ𝜆𝜏1] , 1 − (1 − 𝑇𝛼)𝜆 , 𝐼𝜆𝛼 , 𝐹𝜆𝛼 )⟩ ; (7)

𝛼𝜆 = ⟨[ℎ𝜃𝜆1 , ℎ𝜏𝜆1 ] , (𝑇𝜆𝛼 , 1 − (1 − 𝐼𝛼)𝜆 , 1 − (1 − 𝐹𝛼)𝜆)⟩ ; (8)

𝑛𝑒𝑔 (𝛼) = ⟨[ℎ−𝜃1 , ℎ−𝜏1] , (𝐹𝛼, 1 − 𝐼𝛼, 𝑇𝛼)⟩ . (9)

These operational results remain to be SVNULNs.

Theorem 7. Suppose that 𝛼 = ⟨|[ℎ𝜃1 , ℎ𝜏1], (𝑇𝛼, 𝐼𝛼, 𝐹𝛼)⟩ and𝛽 = ⟨|[ℎ𝜃2 , ℎ𝜏2], (𝑇𝛽, 𝐼𝛽, 𝐹𝛽)⟩ be two SVNULNs, 𝜆 > 0. The
operational laws have the following characteristics:

(1) 𝛼 ⊕ 𝛽 = 𝛽 ⊕ 𝛼.
(2) 𝛼 ⊗ 𝛽 = 𝛽 ⊗ 𝛼.
(3) 𝜆(𝛼 ⊕ 𝛽) = 𝜆𝛼 ⊕ 𝜆𝛽.
(4) 𝛼𝜆 ⊗ 𝛽𝜆 = (𝛼 ⊗ 𝛽)𝜆.

Definition 8 (see [35]). Let 𝛼 = ⟨|[ℎ𝜃, ℎ𝜏], (𝑇𝛼, 𝐼𝛼, 𝐹𝛼)⟩ be a
SVNULN. The score function 𝐸(𝛼) and accuracy function𝐻(𝛼) of 𝛼 can be defined, as follows:

𝑆 (𝛼) = 13 (1 + 𝑇𝛼 + 1 − 𝐼𝛼 − 𝐹𝛼) × (ℎ(𝜃+𝜏)/2)
= ℎ(2+𝑇𝛼−𝐼𝛼−𝐹𝛼)(𝜃+𝜏)/6,

(10)

𝐻(𝛼) = (𝑇𝛼 + 𝐼𝛼 + 𝐹𝛼) × (ℎ(𝜃+𝜏)/2)
= ℎ(𝑇𝛼+𝐼𝛼+𝐹𝛼)∗(𝜃+𝜏)/2. (11)

Definition 9 (see [35]). Let 𝛼 = ⟨|[ℎ𝜃1, ℎ𝜏1], (𝑇𝛼, 𝐼𝛼, 𝐹𝛼)⟩ and𝛽 = ⟨|[ℎ𝜃2, ℎ𝜏2], (𝑇𝛽, 𝐼𝛽, 𝐹𝛽)⟩ be any two SVNULNs. The
comparison method between 𝛼 and 𝛽 can be defined as
follows:

(1) If 𝑆(𝛼) < 𝑆(𝛽), then 𝛼 ≺ 𝛽.
(2) If 𝑆(𝛼) = 𝑆(𝛽) and 𝐻(𝛼) < 𝐻(𝛽), then 𝛼 ≺ 𝛽.
(3) If 𝑆(𝛼) = 𝑆(𝛽) and 𝐻(𝛼) = 𝐻(𝛽), then 𝛼 = 𝛽.
(4) If 𝑆(𝛼) = 𝑆(𝛽) and 𝐻(𝛼) > 𝐻(𝛽), then 𝛼 ≻ 𝛽.
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3. Fuzzy Measure and Choquet Integral

In real decision problems, a certain degree of interdependent
or interactive characteristics often exist among the attributes
or experts [60]. However, measuring the importance of
attributes by using additive measures is not suitable because
the independence of these attributes is often violated [61].
The concept of fuzzy measure introduced by Sugeno [46] is
an effective tool for addressing the interaction phenomena
among input arguments [45, 60, 62–65].

Definition 10 (see [66]). Let a universal set 𝑋 = {𝑥1,𝑥2, ⋅ ⋅ ⋅ , 𝑥𝑛}, while𝑃(𝑋) is the power set of𝑋. A fuzzymeasure
on 𝑋 is a set function 𝜇 : 𝑃(𝑋) 󳨀→ [0, 1] that meets the
following conditions:

(1) 𝜇(Ø) = 0 and 𝜇(𝑋) = 1.
(2) If 𝐴, 𝐵 ∈ 𝑃(𝑋) and 𝐴 ⊆ 𝐵, then 𝜇(𝐴) ≤ 𝜇(𝐵).
(3)𝜇(𝐴∪𝐵) = 𝜇(𝐴)+𝜇(𝐵)+𝜌𝜇(𝐴)𝜇(𝐵), for all𝐴,𝐵 ∈ 𝑃(𝑋)

and 𝐴 ∩ 𝐵 = Ø, where 𝜌 ∈ (−1,∞).
In particular, if 𝜌 = 0, then condition (3) in Definition 10

is reduced to the axiom of the additive measure 𝜇(𝐴 ∪ 𝐵) =𝜇(𝐴) + 𝜇(𝐵), thereby indicating a lack of interaction between
B and C; if 𝜌 > 0, then 𝜇(𝐴 ∪ 𝐵) > 𝜇(𝐴) + 𝜇(𝐵); that is to say,
sets A and B have a multiplicative effect. If 𝜌 < 0, then 𝜇(𝐴 ∪𝐵) < 𝜇(𝐴) + 𝜇(𝐵), thereby expressing that sets A and B have
a substitutive effect. The use of parameter 𝜌 can adequately
represent the interaction between sets in MAGDM.

Let𝑋 = {𝑥1, 𝑥2, ⋅ ⋅ ⋅ , 𝑥𝑛} be a finite set, in which⋃𝑛𝑖=1 𝑥𝑖 =𝑋. Sugeno [46] provided the following equation to avoid the
computational complexity of fuzzy measure on X:

𝜇 (𝑋) = 𝜇( 𝑛⋃
𝑖=1

𝑥𝑖)

=
{{{{{{{{{

1𝜌 ( 𝑛∏
𝑖=1

(1 + 𝜌𝜇 (𝑥𝑖)) − 1) 𝜌 ̸= 0
𝑛∑
𝑖=1

𝑚(𝑥𝑖) 𝜌 = 0
(12)

where 𝑥𝑖 ∩ 𝑥𝑗 = Ø for all 𝑖, 𝑗 = 1, 2, ⋅ ⋅ ⋅ , 𝑛 and 𝑖 ̸= 𝑗. Note that𝜇(𝑥𝑖) for a subset with a single 𝑥𝑖 is called a fuzzy density and
can be denoted as 𝜇𝑖 = 𝜇(𝑥𝑖).

In particular, we have the following equation for every
subset 𝐴 ⊆ 𝑃(𝑋):

𝜇 (𝐴) =
{{{{{{{{{

1𝜌 (∏
𝑥𝑖∈𝐴

(1 + 𝜌𝜇𝑖) − 1) 𝜌 ̸= 0
∑
𝑥𝑖∈𝐴

𝜇𝑖 𝜌 = 0 (13)

The value of 𝜌 can be uniquely determined by 𝜇(𝑋) = 1 based
on (2) and can be expressed as follows:

𝑛∏
𝑖=1

(1 + 𝜌𝜇𝑖) = 1 + 𝜌. (14)

Definition 11 (see [53, 60]). Let 𝑓 be a positive real-valued
function on 𝑋 and 𝜇 be a fuzzy measure on 𝑋. The discrete

Choquet integral of 𝑓 with respective to 𝜇 is defined as
follows:

𝐶𝜇 (𝑓) = 𝑛∑
𝑖=1

𝑓(𝑖) [𝜇 (𝐴 (𝑖)) − 𝜇 (𝐴 (𝑖−1))] (15)

where the subscript (.) indicates a permutation on 𝑋 such
that 𝑓(1) ≥ 𝑓(2) ≥ ⋅ ⋅ ⋅ ≥ 𝑓(𝑛), 𝑓(𝑖) is the largest value in
the set {𝑓1, 𝑓2, ⋅ ⋅ ⋅ , 𝑓𝑛}, while 𝐴 (𝑖) = {𝑥(1), ⋅ ⋅ ⋅ , 𝑥(𝑖)} when𝑖 = 1, 2, ⋅ ⋅ ⋅ , 𝑛, 𝐴 (0) = Ø.

The Choquet integral can aggregate the attributes even
when the mutual preferential independence assumption
is violated [67]. Inspired by the Induced ordered weight
averaging (IOWA) operator [68], Yager [69] considered a
considerably general policy toward ordering the arguments
and formulating the ordered argument vector and defined a
considerably general type of Choquet integral operator (i.e.,
I-COA operator), as follows.

Definition 12 (see [69]). Let 𝑓 be a positive real-valued
function on 𝑋 and 𝜇 be a fuzzy measure on 𝑋. An induced
Choquet ordered averaging operator of dimension 𝑛 is a
function I-COA: (𝑅+ × Ω)𝑛 󳨀→ Ω, which is defined to
aggregate the set of second arguments of a list of 𝑛 2-
tuples {⟨𝑢1, 𝑓1⟩, ⟨𝑢2, 𝑓2⟩, ⋅ ⋅ ⋅ , ⟨𝑢𝑛, 𝑓𝑛⟩} based on the following
expression:

I-COA𝜇 (⟨𝑢1, 𝑓1⟩ , ⟨𝑢2, 𝑓2⟩ , ⋅ ⋅ ⋅ , ⟨𝑢𝑛, 𝑓𝑛⟩)
= 𝑛∑
𝑖=1

𝑓(𝑖) [𝜇 (𝐴 (𝑖)) − 𝜇 (𝐴 (𝑖−1))] (16)

where (𝑖) : {1, 2, ⋅ ⋅ ⋅ , 𝑛} 󳨀→ {1, 2, ⋅ ⋅ ⋅ , 𝑛} is a permutation,
such that 𝑢(1) ≥ 𝑢(2) ≥ ⋅ ⋅ ⋅ ≥ 𝑢(𝑛), ⟨𝑢(𝑖), 𝑓(𝑖)⟩ indicates
the 2-tuple with 𝑢(𝑖) as the 𝑖𝑡ℎ largest value in the set{𝑢1, 𝑢2, ⋅ ⋅ ⋅ , 𝑢𝑛}, 𝐴 (𝑖) = {1, ⋅ ⋅ ⋅ , 𝑖}, 𝑖 = 1, 2, ⋅ ⋅ ⋅ , 𝑛 when 𝑖 ≥ 1,
and 𝐴 (0) = Ø.

4. Induced Simplified Neutrosophic Linguistic
Choquet Integral Operators

The I-COA operator [69] can only aggregate crisp numbers
and has not been used in conditions where the input argu-
ments are SVNULNs. We use Definitions 6, 10, and 12, as
base to (1) extend the I-COA operator to accommodate the
conditions of the input arguments are SVNULNs, (2) define
the I-SVNULCA and I-SVNULCGoperators, and (3) analyze
a few necessary properties under the SVNUL environments.

Definition 13. Let 𝛼𝑖 = ⟨[ℎ𝜃𝑖 , ℎ𝜏𝑖], (𝑇𝑖, 𝐼𝑖, 𝐹𝑖)⟩ (𝑖 = 1, 2, ⋅ ⋅ ⋅ , 𝑛)
be a collection of SVNULNs on 𝑋 and 𝜇 be a fuzzy measure
on 𝑃(𝑋). An I-SVNULCA operator of dimension 𝑛 is a
function I-SVNULCA: (𝑅+ × Ω)𝑛 󳨀→ Ω, which is defined to
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aggregate the set of second arguments of a collection of 𝑛 2-
tuples {⟨𝑢1, 𝛼1⟩, ⟨𝑢2, 𝛼2⟩, ⋅ ⋅ ⋅ , ⟨𝑢𝑛, 𝛼𝑛⟩} based on the following
expression:

I-SVNULCA (⟨𝑢1, 𝛼1⟩ , ⟨𝑢2, 𝛼2⟩ , ⋅ ⋅ ⋅ , ⟨𝑢𝑛, 𝛼𝑛⟩)
= 𝑛⨁
𝑖=1

𝛼(𝑖) (𝜇 (𝐴 (𝑖)) − 𝜇 (𝐴 (𝑖−1))) (17)

where the subscript (𝑖) : {1, 2, ⋅ ⋅ ⋅ , 𝑛} 󳨀→ {1, 2, ⋅ ⋅ ⋅ , 𝑛} is a
permutation, such that 𝑢(1) ≥ 𝑢(2) ≥ ⋅ ⋅ ⋅ ≥ 𝑢(𝑛). That is,⟨𝑢𝑖, 𝛼𝑖⟩ is 2-tuple with 𝑢(𝑖) being the 𝑖𝑡ℎ largest value in the
set {𝑢1, 𝑢2, ⋅ ⋅ ⋅ , 𝑢𝑛}, 𝐴 (𝑖) = {𝑥(1), 𝑥(2), ⋅ ⋅ ⋅ , 𝑥(𝑖)}, 𝑖 = 1, 2, ⋅ ⋅ ⋅ , 𝑛,
and 𝐴 (0) = Ø.

Theorem 14. Let 𝛼𝑖 = ⟨[ℎ𝜃𝑖 , ℎ𝜏𝑖], (𝑇𝑖, 𝐼𝑖, 𝐹𝑖)⟩ (𝑖 = 1, 2, ⋅ ⋅ ⋅ , 𝑛)
be a collection of SVNULNs on 𝑋 and 𝜇 be a fuzzy measure
on 𝑃(𝑋). Their aggregated value by using the I-SVNULCA
operator is also an SVNULN,

I-SVNULCA (⟨𝑢1, 𝛼1⟩ , ⟨𝑢2, 𝛼2⟩ , ⋅ ⋅ ⋅ , ⟨𝑢𝑛, 𝛼𝑛⟩)
= ([ℎ∑𝑛𝑖=1(𝜇(𝐴(𝑖))−𝜇(𝐴(𝑖−1)))𝜃(𝑖) , ℎ∑𝑛𝑖=1(𝜇(𝐴(𝑖))−𝜇(𝐴(𝑖−1)))𝜏(𝑖)] ,
(1 − 𝑛∏

𝑖=1

(1 − 𝑇𝛼(𝑖))𝜇(𝑖)−𝜇(𝑖−1) , 𝑛∏
𝑖=1

(𝐼𝛼(𝑖))𝜇(𝑖)−𝜇(𝑖−1) ,
𝑛∏
𝑖=1

(𝐹𝛼(𝑖))𝜇(𝑖)−𝜇(𝑖−1)))

(18)

Proof. (1) For 𝑛 = 2, according to the operational laws of
Definition 2, we have

𝛼(1) (𝜇 (𝐴 (1)) − 𝜇 (𝐴 (0))) = ⟨[ℎ(𝜇(𝐴(1))−𝜇(𝐴(0)))𝜃(1) ,
ℎ(𝜇(𝐴(1))−𝜇(𝐴(0)))𝜏(1)] , (1 − (1 − 𝑇𝛼(1))𝜇(𝐴(1))−𝜇(𝐴(0)) ,
(𝐼𝛼(1))𝜇(𝐴(1))−𝜇(𝐴(0)) , (𝐹𝛼(1))𝜇(𝐴(1))−𝜇(𝐴(0)))⟩

𝛼(2) (𝜇 (𝐴 (2)) − 𝜇 (𝐴 (1))) = ⟨[ℎ(𝜇(𝐴(2))−𝜇(𝐴(1)))𝜃(2) ,
ℎ(𝜇(𝐴(2))−𝜇(𝐴(1)))𝜏(2)] , (1 − (1 − 𝑇𝛼(2))𝜇(𝐴(2))−𝜇(𝐴(1)) ,
(𝐼𝛼(2))𝜇(𝐴(2))−𝜇(𝐴(1)) , (𝐹𝛼(2))𝜇(𝐴(2))−𝜇(𝐴(1)))⟩

(19)

Since 𝛼 ⊕ 𝛽 = ⟨[ℎ𝜃1+𝜃2, ℎ𝜏1+𝜏2], (𝑇𝛼 + 𝑇𝛽 − 𝑇𝛼𝑇𝛽, 𝐼𝛼𝐼𝛽, 𝐹𝛼𝐹𝛽)⟩,
then

I-SVNULCA (⟨𝑢1, 𝛼1⟩ , ⟨𝑢2, 𝛼2⟩) = 𝛼(1) (𝜇 (𝐴 (1))
− 𝜇 (𝐴 (0))) + 𝛼(2) (𝜇 (𝐴 (2)) − 𝜇 (𝐴 (1)))
= ⟨[ℎ∑2𝑖=1(𝜇(𝐴(𝑖))−𝜇(𝐴(𝑖−1)))𝜃(𝑖) , ℎ∑2𝑖=1(𝜇(𝐴(𝑖))−𝜇(𝐴(𝑖−1)))𝜏(𝑖)] ,

(1 − (1 − 𝑇𝛼(1))𝜇(𝐴(1))−𝜇(𝐴(0)) + 1 − (1
− 𝑇𝛼(2))𝜇(𝐴(2))−𝜇(𝐴(1)) − (1
− (1 − 𝑇𝛼(1))𝜇(𝐴(1))−𝜇(𝐴(0)))(1
− (1 − 𝑇𝛼(2))𝜇(𝐴(2))−𝜇(𝐴(1))) , (𝐼𝛼(1))𝜇(𝐴(1))−𝜇(𝐴(0))
⋅ (𝐼𝛼(2))𝜇(𝐴(2))−𝜇(𝐴(1)) , (𝐹𝛼(1))𝜇(𝐴(1))−𝜇(𝐴(0))
⋅ (𝐹𝛼(2))𝜇(𝐴(2))−𝜇(𝐴(1)))⟩
= ⟨[ℎ∑2𝑖=1(𝜇(𝐴(𝑖))−𝜇(𝐴(𝑖−1)))𝜃(𝑖) ,
ℎ∑2𝑖=1(𝜇(𝐴(𝑖))−𝜇(𝐴(𝑖−1)))𝜏(𝑖)] , ((1
− 2∏
𝑖=1

(1 − 𝑇𝛼(𝑖))𝜇(𝑖)−𝜇(𝑖−1) , 2∏
𝑖=1

(𝐼𝛼(𝑖))𝜇(𝑖)−𝜇(𝑖−1) ,
2∏
𝑖=1

(𝐹𝛼(𝑖))𝜇(𝑖)−𝜇(𝑖−1)))⟩
(20)

(2) When 𝑛 = 𝑘, we obtain (21) by using (18).

I-SVNULCA (⟨𝑢1, 𝛼1⟩ , ⟨𝑢2, 𝛼2⟩ , ⋅ ⋅ ⋅ , ⟨𝑢𝑘, 𝛼𝑘⟩)
= ([ℎ∑𝑘𝑖=1(𝜇(𝐴(𝑖))−𝜇(𝐴(𝑖−1)))𝜃(𝑖) , ℎ∑𝑘𝑖=1(𝜇(𝐴(𝑖))−𝜇(𝐴(𝑖−1)))𝜏(𝑖)] ,
(1 − 𝑘∏

𝑖=1

(1 − 𝑇𝛼(𝑖))𝜇(𝑖)−𝜇(𝑖−1) , 𝑘∏
𝑖=1

(𝐼𝛼(𝑖))𝜇(𝑖)−𝜇(𝑖−1) ,
𝑘∏
𝑖=1

(𝐹𝛼(𝑖))𝜇(𝑖)−𝜇(𝑖−1)))

(21)

(3) When 𝑛 = 𝑘 + 1, by utilizing (18) and Definition 8, we
obtain

I-SVNULCA (⟨𝑢1, 𝛼1⟩ , ⟨𝑢2, 𝛼2⟩ , ⋅ ⋅ ⋅ , ⟨𝑢𝑘+1, 𝛼𝑘+1⟩)
= ([ℎ∑𝑘+1𝑖=1 (𝜇(𝐴(𝑖))−𝜇(𝐴(𝑖−1)))𝜃(𝑖) ,
ℎ∑𝑘+1𝑖=1 (𝜇(𝐴(𝑖))−𝜇(𝐴(𝑖−1)))𝜏(𝑖)] , (1 − 𝑘∏

𝑖=1

(1 − 𝑇𝛼(𝑖))𝜇(𝑖)−𝜇(𝑖−1)
+ 1 − (1 − 𝑇𝛼(𝑘+1))𝜇(𝑘+1)−𝜇(𝑘)
− (1 − 𝑘∏

𝑖=1

(1 − 𝑇𝛼(𝑖))𝜇(𝑖)−𝜇(𝑖−1))
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⋅ (1 − (1 − 𝑇𝛼(𝑘+1))𝜇(𝑘+1)−𝜇(𝑘)) , 𝑘+1∏
𝑖=1

(𝐼𝛼(𝑖))𝜇(𝑖)−𝜇(𝑖−1) ,
𝑘+1∏
𝑖=1

(𝐹𝛼(𝑖))𝜇(𝑖)−𝜇(𝑖−1))) = ([ℎ∑𝑘+1𝑖=1 (𝜇(𝐴(𝑖))−𝜇(𝐴(𝑖−1)))𝜃(𝑖) ,
ℎ∑𝑘+1𝑖=1 (𝜇(𝐴(𝑖))−𝜇(𝐴(𝑖−1)))𝜏(𝑖)] , (1
− 𝑘+1∏
𝑖=1

(1 − 𝑇𝛼(𝑖))𝜇(𝑖)−𝜇(𝑖−1) , 𝑘+1∏
𝑖=1

(𝐼𝛼(𝑖))𝜇(𝑖)−𝜇(𝑖−1) ,
𝑘+1∏
𝑖=1

(𝐹𝛼(𝑖))𝜇(𝑖)−𝜇(𝑖−1)))
(22)

Therefore, we obtain (18) for any 𝑛 based on the previous
results. This condition completes the proof.

Theorem 15 (commutativity). Let 𝛼𝑖 (𝑖 = 1, 2, ⋅ ⋅ ⋅ , 𝑛) be a
collection of SVNULNs, while (⟨𝑢󸀠1, 𝛼󸀠1⟩, ⟨𝑢󸀠2, 𝛼󸀠2⟩, ⋅ ⋅ ⋅ , ⟨𝑢󸀠𝑛, 𝛼󸀠𝑛⟩)
is any permutation of (⟨𝑢1, 𝛼1⟩, ⟨𝑢2, 𝛼2⟩, ⋅ ⋅ ⋅ , ⟨𝑢𝑛, 𝛼𝑛⟩). Thus,
we have

I-SVNULCA (⟨𝑢1, 𝛼1⟩ , ⟨𝑢2, 𝛼2⟩ , ⋅ ⋅ ⋅ , ⟨𝑢𝑛, 𝛼𝑛⟩)
= I-SVNULCA (⟨𝑢󸀠1, 𝛼󸀠1⟩ , ⟨𝑢󸀠2, 𝛼󸀠2⟩ , ⋅ ⋅ ⋅ , ⟨𝑢󸀠𝑛, 𝛼󸀠𝑛⟩) . (23)

Proof. Let

I-SVNULCA (⟨𝑢1, 𝛼1⟩ , ⟨𝑢2, 𝛼2⟩ , ⋅ ⋅ ⋅ , ⟨𝑢𝑛, 𝛼𝑛⟩)
= 𝛼(1) (𝜇(1) − 𝜇(0)) ⊕ 𝛼(2) (𝜇(2) − 𝜇(1)) ⊕ ⋅ ⋅ ⋅

⊕ 𝛼(𝑛) (𝜇(𝑛) − 𝜇(𝑛−1))
I-SVNULCA (⟨𝑢󸀠1, 𝛼󸀠1⟩ , ⟨𝑢󸀠2, 𝛼󸀠2⟩ , ⋅ ⋅ ⋅ , ⟨𝑢󸀠𝑛, 𝛼󸀠𝑛⟩)

= 𝛼󸀠(1) (𝜇(1) − 𝜇(0)) ⊕ 𝛼󸀠(2) (𝜇(2) − 𝜇(1)) ⊕ ⋅ ⋅ ⋅
⊕ 𝛼󸀠(𝑛) (𝜇(𝑛) − 𝜇(𝑛−1))

(24)

Since (⟨𝑢󸀠1, 𝛼󸀠1⟩, ⟨𝑢󸀠2, 𝛼󸀠2⟩, ⋅ ⋅ ⋅ , ⟨𝑢󸀠𝑛, 𝛼󸀠𝑛⟩) is any permutation of(⟨𝑢1, 𝛼1⟩, ⟨𝑢2, 𝛼2⟩, ⋅ ⋅ ⋅ , ⟨𝑢𝑛, 𝛼𝑛⟩), we have 𝛼(𝑖) = 𝛼󸀠(𝑖) (𝑖 =1, 2, ⋅ ⋅ ⋅ , 𝑛), and then

I-SVNULCA (⟨𝑢1, 𝛼1⟩ , ⟨𝑢2, 𝛼2⟩ , ⋅ ⋅ ⋅ , ⟨𝑢𝑛, 𝛼𝑛⟩)
= I-SVNULCA (⟨𝑢󸀠1, 𝛼󸀠1⟩ , ⟨𝑢󸀠2, 𝛼󸀠2⟩ , ⋅ ⋅ ⋅ , ⟨𝑢󸀠𝑛, 𝛼󸀠𝑛⟩) . (25)

Theorem 16 (idempotency). Let 𝛼𝑖 = ([ℎ𝜃𝑖 , ℎ𝜏𝑖], (𝑇𝑖, 𝐼𝑖,𝐹𝑖)) (𝑖 = 1, 2, ⋅ ⋅ ⋅ , 𝑛) be a collection of SVNULNs. If 𝛼𝑖 =([ℎ𝜃𝑖 , ℎ𝜏𝑖], (𝑇𝑖, 𝐼𝑖, 𝐹𝑖)) = 𝛼 = ([ℎ𝜃, ℎ𝜏], (𝑇, 𝐼, 𝐹)) for all 𝑖, then
I-SVNULCA (⟨𝑢1, 𝛼1⟩ , ⟨𝑢2, 𝛼2⟩ , ⋅ ⋅ ⋅ , ⟨𝑢𝑛, 𝛼𝑛⟩) = 𝛼 (26)

Proof. Since 𝛼𝑖 = 𝛼 (𝑖 = 1, 2, ⋅ ⋅ ⋅ , 𝑛) for all 𝑖, then
I-SVNULCA (⟨𝑢1, 𝛼1⟩ , ⟨𝑢2, 𝛼2⟩ , ⋅ ⋅ ⋅ , ⟨𝑢𝑛, 𝛼𝑛⟩)

= 𝛼(1) (𝜇(1) − 𝜇(0)) ⊕ 𝛼(2) (𝜇(2) − 𝜇(1)) ⊕ ⋅ ⋅ ⋅
⊕ 𝛼(𝑛) (𝜇(𝑛) − 𝜇(𝑛−1))
= ([ℎ∑𝑛𝑖=1(𝜇(𝐴(𝑖))−𝜇(𝐴(𝑖−1)))𝜃(𝑖) , ℎ∑𝑛𝑖=1(𝜇(𝐴(𝑖))−𝜇(𝐴(𝑖−1)))𝜏(𝑖)] ,
1 − 𝑛∏
𝑖=1

(1 − 𝑇𝛼(𝑖))𝜇(𝑖)−𝜇(𝑖−1) , 𝑛∏
𝑖=1

(𝐼𝛼(𝑖))𝜇(𝑖)−𝜇(𝑖−1) ,
𝑛∏
𝑖=1

(𝐹𝛼(𝑖))𝜇(𝑖)−𝜇(𝑖−1))
= ([ℎ∑𝑛𝑖=1(𝜇(𝐴(𝑖))−𝜇(𝐴(𝑖−1)))𝜃, ℎ∑𝑛𝑖=1(𝜇(𝐴(𝑖))−𝜇(𝐴(𝑖−1)))𝜏] , 1
− 𝑛∏
𝑖=1

(1 − 𝑇)𝜇(𝑖)−𝜇(𝑖−1) , 𝑛∏
𝑖=1

(𝐼)𝜇(𝑖)−𝜇(𝑖−1) ,
𝑛∏
𝑖=1

(𝐹)𝜇(𝑖)−𝜇(𝑖−1)) = ([ℎ𝜃, ℎ𝜏] , 1 − (1 − 𝑇)𝜇(𝑛)−𝜇(0) ,
(𝐼)𝜇(𝑛)−𝜇(0) , (1 − 𝐹)𝜇(𝑛)−𝜇(0)) = ([ℎ𝜃, ℎ𝜏] , (𝑇, 𝐼, 𝐹)) = 𝛼

(27)

Theorem 17 (monotonicity). Let 𝛼𝑖 = ([ℎ𝜃𝑖 , ℎ𝜏𝑖], (𝑇𝑖, 𝐼𝑖,𝐹𝑖)) (𝑖 = 1, 2, ⋅ ⋅ ⋅ , 𝑛) and 𝛼󸀠𝑖 = ([ℎ󸀠𝜃𝑖 , ℎ𝜏𝑖], (𝑇󸀠𝑖 , 𝐼󸀠𝑖 , 𝐹󸀠𝑖 )) (𝑖 =1, 2, ⋅ ⋅ ⋅ , 𝑛) be a collection of SVNULNs. If (⟨𝑢1, 𝛼1⟩,⟨𝑢2, 𝛼2⟩, ⋅ ⋅ ⋅ , ⟨𝑢𝑛, 𝛼𝑛⟩) and (⟨𝑢󸀠1, 𝛼󸀠1⟩, ⟨𝑢󸀠2, 𝛼󸀠2⟩, ⋅ ⋅ ⋅ , ⟨𝑢󸀠𝑛, 𝛼󸀠𝑛⟩)
are two collections of 2-tuples, such that 𝛼𝑖 ≤ 𝛼󸀠𝑖 , 𝑖 = 1, 2, ⋅ ⋅ ⋅ , 𝑛,
then
I-SVNULCA (⟨𝑢1, 𝛼1⟩ , ⟨𝑢2, 𝛼2⟩ , ⋅ ⋅ ⋅ , ⟨𝑢𝑛, 𝛼𝑛⟩)

≤ I-SVNULCA (⟨𝑢1, 𝛼󸀠1⟩ , ⟨𝑢2, 𝛼󸀠2⟩ , ⋅ ⋅ ⋅ , ⟨𝑢𝑛, 𝛼󸀠𝑛⟩) (28)

Proof. Let

I-SVNULCA (⟨𝑢1, 𝛼1⟩ , ⟨𝑢2, 𝛼2⟩ , ⋅ ⋅ ⋅ , ⟨𝑢𝑛, 𝛼𝑛⟩)
= 𝛼(1) (𝜇(1) − 𝜇(0)) ⊕ 𝛼(2) (𝜇(2) − 𝜇(1)) ⊕ ⋅ ⋅ ⋅

⊕ 𝛼(𝑛) (𝜇(𝑛) − 𝜇(𝑛−1))
I-SVNULCA (⟨𝑢1, 𝛼󸀠1⟩ , ⟨𝑢2, 𝛼󸀠2⟩ , ⋅ ⋅ ⋅ , ⟨𝑢𝑛, 𝛼󸀠𝑛⟩)

= 𝛼󸀠(1) (𝜇(1) − 𝜇(0)) ⊕ 𝛼󸀠(2) (𝜇(2) − 𝜇(1)) ⊕ ⋅ ⋅ ⋅
⊕ 𝛼󸀠(𝑛) (𝜇(𝑛) − 𝜇(𝑛−1))

(29)

Since 𝛼𝑖 ≤ 𝛼󸀠𝑖 (𝑖 = 1, 2, ⋅ ⋅ ⋅ , 𝑛), it follows that 𝛼(𝑖) ≤ 𝛼󸀠(𝑖) (𝑖 =1, 2, ⋅ ⋅ ⋅ , 𝑛), then
I-SVNULCA (⟨𝑢1, 𝛼1⟩ , ⟨𝑢2, 𝛼2⟩ , ⋅ ⋅ ⋅ , ⟨𝑢𝑛, 𝛼𝑛⟩)
≤ I-SVNULCA (⟨𝑢1, 𝛼󸀠1⟩ , ⟨𝑢2, 𝛼󸀠2⟩ , ⋅ ⋅ ⋅ , ⟨𝑢𝑛, 𝛼󸀠𝑛⟩) (30)
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Theorem 18 (boundedness). Let 𝛼𝑚𝑖𝑛 = min(𝛼1, 𝛼2, ⋅ ⋅ ⋅ , 𝛼𝑛)
and 𝛼𝑚𝑎𝑥 = max(𝛼1, 𝛼2, ⋅ ⋅ ⋅ , 𝛼𝑛), then

𝛼𝑚𝑖𝑛
≤ I-SVNULCA (⟨𝑢1, 𝛼1⟩ , ⟨𝑢2, 𝛼2⟩ , ⋅ ⋅ ⋅ , ⟨𝑢𝑛, 𝛼𝑛⟩)
≤ 𝛼𝑚𝑎𝑥

(31)

where (𝑖) : {1, 2, ⋅ ⋅ ⋅ , 𝑛} 󳨀→ {1, 2, ⋅ ⋅ ⋅ , 𝑛} is a permutation such
that ⟨𝑢(𝑖), 𝛼(𝑖)⟩ is the 2-tuple with 𝑢(𝑖) being the 𝑖th largest value
in the set {𝑢1, 𝑢2, ⋅ ⋅ ⋅ , 𝑢𝑛}, 𝐴 (𝑖) = {𝑥(1), 𝑥(2), ⋅ ⋅ ⋅ , 𝑥(𝑖)} when 𝑖 ≥1 and 𝐴 (0) = Ø.

Proof. Let (𝑖) : {1, 2, ⋅ ⋅ ⋅ , 𝑛} 󳨀→ {1, 2, ⋅ ⋅ ⋅ , 𝑛} be a permutation
such that ⟨𝑢(𝑖), 𝛼(𝑖)⟩ is the 2-tuple with 𝑢(𝑖) the 𝑖th largest value
in the set {𝑢1, 𝑢2, ⋅ ⋅ ⋅ , 𝑢𝑛}, then 𝛼min ≤ 𝛼(𝑖) ≤ 𝛼max.

So, we have

𝑛⨁
𝑖=1

𝛼min (𝜇 (𝐴 (𝑖)) − 𝜇 (𝐴 (𝑖−1)))
≤ 𝑛⨁
𝑖=1

𝛼(𝑖) (𝜇 (𝐴 (𝑖)) − 𝜇 (𝐴 (𝑖−1)))
≤ 𝑛⨁
𝑖=1

𝛼max (𝜇 (𝐴 (𝑖)) − 𝜇 (𝐴 (𝑖−1))) .
(32)

Since ⊕𝑛𝑖=1(𝜇(𝐴 (𝑖)) − 𝜇(𝐴 (𝑖−1))) = 1,
thus 𝛼min ≤ I-SVNULCA(⟨𝑢1, 𝛼1⟩, ⟨𝑢2, 𝛼2⟩, ⋅ ⋅ ⋅ , ⟨𝑢𝑛,𝛼𝑛⟩) ≤ 𝛼max.
If the order-inducing variable is the argument variable,

then the I-SVNULCA operator is reduced to the SVNULCA
operator. That is, if 𝑢𝑖 = 𝛼𝑖, for all 𝑖, then the I-SVNULCA
operator (see (18)) is reduced to the single-valued neu-
trosophic uncertain linguistic Choquet ordered averaging
(SVNULCA) operator.

SVNULCA (𝛼1, 𝛼2, ⋅ ⋅ ⋅ , 𝛼𝑛)
= ([ℎ∑𝑛𝑖=1(𝜇(𝐴(𝑖))−𝜇(𝐴(𝑖−1)))𝜃(𝑖) , ℎ∑𝑛𝑖=1(𝜇(𝐴(𝑖))−𝜇(𝐴(𝑖−1)))𝜏(𝑖)] ,
(1 − 𝑛∏

𝑖=1

(1 − 𝑇𝛼(𝑖))𝜇(𝑖)−𝜇(𝑖−1) , 𝑛∏
𝑖=1

(𝐼𝛼(𝑖))𝜇(𝑖)−𝜇(𝑖−1) ,
𝑛∏
𝑖=1

(𝐹𝛼(𝑖))𝜇(𝑖)−𝜇(𝑖−1)))

(33)

where the subscript (𝑖) : {1, 2, ⋅ ⋅ ⋅ , 𝑛} 󳨀→ {1, 2, ⋅ ⋅ ⋅ , 𝑛} is a
permutation, such that 𝛼(1) ≥ 𝛼(2) ≥ ⋅ ⋅ ⋅ ≥ 𝛼(𝑛), 𝐴 (𝑖) ={𝑥(1), 𝑥(2), ⋅ ⋅ ⋅ , 𝑥(𝑖)}, 𝑖 = 1, 2, ⋅ ⋅ ⋅ , 𝑛, and 𝐴 (0) = Ø.

The SVNULCA operator has the same properties as
those of the I-SVNULCA operator, such as commutativity,
idempotency, and monotonicity.

In the following, we propose an I-SVNULCG operator
based on Definition 13 and the OWG operator.

Definition 19. Let 𝛼𝑖 = ⟨[ℎ𝜃𝑖 , ℎ𝜏𝑖], (𝑇𝑖, 𝐼𝑖, 𝐹𝑖)⟩ (𝑖 = 1, 2, ⋅ ⋅ ⋅ , 𝑛)
be a collection of SVNULNs on 𝑋 and 𝜇 be a fuzzy measure
on 𝑃(𝑋). An I-SVNULCG operator of dimension 𝑛 is a
function I-SVNULCG: (𝑅+ × Ω)𝑛 󳨀→ Ω, which is defined to
aggregate the set of second arguments of a collection of 𝑛 2-
tuples {⟨𝑢1, 𝛼1⟩, ⟨𝑢2, 𝛼2⟩, ⋅ ⋅ ⋅ , ⟨𝑢𝑛, 𝛼𝑛⟩} based on the following
expression:

I-SVNULCG (⟨𝑢1, 𝛼1⟩ , ⟨𝑢2, 𝛼2⟩ , ⋅ ⋅ ⋅ , ⟨𝑢𝑛, 𝛼𝑛⟩)
= 𝑛⨂
𝑖=1

𝛼(𝑖)𝜇(𝐴(𝑖))−𝜇(𝐴(𝑖−1)) (34)

where the subscript (𝑖) : {1, 2, ⋅ ⋅ ⋅ , 𝑛} 󳨀→ {1, 2, ⋅ ⋅ ⋅ , 𝑛} is a
permutation such that 𝑢(1) ≥ 𝑢(2) ≥ ⋅ ⋅ ⋅ ≥ 𝑢(𝑛). That is,⟨𝑢𝑖, 𝛼𝑖⟩ is 2-tuple with 𝑢(𝑖) as the 𝑖𝑡ℎ largest value in the set{𝑢1, 𝑢2, ⋅ ⋅ ⋅ , 𝑢𝑛}, 𝐴 (𝑖) = {𝑥(1), 𝑥(2), ⋅ ⋅ ⋅ , 𝑥(𝑖)}, 𝑖 = 1, 2, ⋅ ⋅ ⋅ , 𝑛,
and 𝐴 (0) = Ø.

Theorem 20. Let 𝛼𝑖 = ⟨[ℎ𝜃𝑖 , ℎ𝜏𝑖], (𝑇𝑖, 𝐼𝑖, 𝐹𝑖)⟩ (𝑖 = 1, 2, ⋅ ⋅ ⋅ , 𝑛)
be a collection of SVNULNs on 𝑋 and 𝜇 be a fuzzy measure
on 𝑃(𝑋). Their aggregated value by using the I-SVNULCG
operator is also an SVNULN.

I-SVNULCG (⟨𝑢1, 𝛼1⟩ , ⟨𝑢2, 𝛼2⟩ , ⋅ ⋅ ⋅ , ⟨𝑢𝑛, 𝛼𝑛⟩)
= 𝑛⨂
𝑖=1

𝛼(𝑖)(𝜇(𝐴(𝑖))−𝜇(𝐴(𝑖−1)))

= ([ℎ
∏𝑛𝑖=1𝜃

𝜇(𝐴(𝑖))−𝜇(𝐴(𝑖−1))

(𝑖)

, ℎ
∏𝑛𝑖=1𝜏

𝜇(𝐴(𝑖))−𝜇(𝐴(𝑖−1))

(𝑖)

] ,
( 𝑛∏
𝑖=1

(𝑇𝛼(𝑖))𝜇(𝐴(𝑖))−𝜇(𝐴(𝑖−1)) , 1
− 𝑛∏
𝑖=1

(1 − 𝐼𝛼(𝑖))𝜇(𝐴(𝑖))−𝜇(𝐴(𝑖−1)) , 1
− 𝑛∏
𝑖=1

(1 − 𝐹𝛼(𝑖))𝜇(𝐴(𝑖))−𝜇(𝐴(𝑖−1))))

(35)

The I-SVNULCG operator has the following properties that are
similar to those of the I-SVNULCA operator.

Theorem 21 (commutativity). Let 𝛼𝑖 (𝑖 = 1, 2, ⋅ ⋅ ⋅ , 𝑛) be
a collection of SVNULNs; (⟨𝑢󸀠1, 𝛼󸀠1⟩, ⟨𝑢󸀠2, 𝛼󸀠2⟩, ⋅ ⋅ ⋅ , ⟨𝑢󸀠𝑛, 𝛼󸀠𝑛⟩) is
any permutation of (⟨𝑢1, 𝛼1⟩, ⟨𝑢2, 𝛼2⟩, ⋅ ⋅ ⋅ , ⟨𝑢𝑛, 𝛼𝑛⟩). Thus, we
have the following equation:

I-SVNULCG (⟨𝑢1, 𝛼1⟩ , ⟨𝑢2, 𝛼2⟩ , ⋅ ⋅ ⋅ , ⟨𝑢𝑛, 𝛼𝑛⟩)
= I-SVNULCG (⟨𝑢󸀠1, 𝛼󸀠1⟩ , ⟨𝑢󸀠2, 𝛼󸀠2⟩ , ⋅ ⋅ ⋅ , ⟨𝑢󸀠𝑛, 𝛼󸀠𝑛⟩) . (36)

Theorem 22 (idempotency). Let 𝛼𝑖 =([ℎ𝜃𝑖 , ℎ𝜏𝑖], (𝑇𝑖, 𝐼𝑖, 𝐹𝑖)) (𝑖 = 1, 2, ⋅ ⋅ ⋅ , 𝑛) be a collection
of SVNULNs. If 𝛼𝑖 = ([ℎ𝜃𝑖 , ℎ𝜏𝑖], (𝑇𝑖, 𝐼𝑖, 𝐹𝑖)) = 𝛼 =([ℎ𝜃, ℎ𝜏], (𝑇, 𝐼, 𝐹)) for all 𝑖, then

I-SVNULCG (⟨𝑢1, 𝛼1⟩ , ⟨𝑢2, 𝛼2⟩ , ⋅ ⋅ ⋅ , ⟨𝑢𝑛, 𝛼𝑛⟩) = 𝛼 (37)
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Theorem 23 (monotonicity). Let 𝛼𝑖 = ([ℎ𝜃𝑖 , ℎ𝜏𝑖], (𝑇𝑖, 𝐼𝑖,𝐹𝑖)) (𝑖 = 1, 2, ⋅ ⋅ ⋅ , 𝑛) and 𝛼󸀠𝑖 = ([ℎ󸀠𝜃𝑖 , ℎ𝜏𝑖], (𝑇󸀠𝑖 , 𝐼󸀠𝑖 , 𝐹󸀠𝑖 )) (𝑖 =1, 2, ⋅ ⋅ ⋅ , 𝑛) be a collection of SVNULNs. If (⟨𝑢1, 𝛼1⟩,⟨𝑢2, 𝛼2⟩, ⋅ ⋅ ⋅ , ⟨𝑢𝑛, 𝛼𝑛⟩) and (⟨𝑢󸀠1, 𝛼󸀠1⟩, ⟨𝑢󸀠2, 𝛼󸀠2⟩, ⋅ ⋅ ⋅ , ⟨𝑢󸀠𝑛, 𝛼󸀠𝑛⟩)
are two collections of 2-tuples, such that 𝛼𝑖 ≤ 𝛼󸀠𝑖 , 𝑖 = 1, 2, ⋅ ⋅ ⋅ , 𝑛,
then

I-SVNULCG (⟨𝑢1, 𝛼1⟩ , ⟨𝑢2, 𝛼2⟩ , ⋅ ⋅ ⋅ , ⟨𝑢𝑛, 𝛼𝑛⟩)
≤ I-SVNULCG (⟨𝑢1, 𝛼󸀠1⟩ , ⟨𝑢2, 𝛼󸀠2⟩ , ⋅ ⋅ ⋅ , ⟨𝑢𝑛, 𝛼󸀠𝑛⟩) . (38)

Theorem 24 (boundedness). Let 𝛼𝑚𝑖𝑛 = min(𝛼1, 𝛼2, ⋅ ⋅ ⋅ , 𝛼𝑛)
and 𝛼𝑚𝑎𝑥 = max(𝛼1, 𝛼2, ⋅ ⋅ ⋅ , 𝛼𝑛), then

𝛼𝑚𝑖𝑛
≤ I-SVNULCG (⟨𝑢1, 𝛼1⟩ , ⟨𝑢2, 𝛼2⟩ , ⋅ ⋅ ⋅ , ⟨𝑢𝑛, 𝛼𝑛⟩)
≤ 𝛼𝑚𝑎𝑥

(39)

where (𝑖) : {1, 2, ⋅ ⋅ ⋅ , 𝑛} 󳨀→ {1, 2, ⋅ ⋅ ⋅ , 𝑛} is a permutation,
such that ⟨𝑢(𝑖), 𝛼(𝑖)⟩ is the 2-tuple with 𝑢(𝑖) as the 𝑖th largest
value in the set {𝑢1, 𝑢2, ⋅ ⋅ ⋅ , 𝑢𝑛}, 𝐴 (𝑖) = {𝑥(1), 𝑥(2), ⋅ ⋅ ⋅ , 𝑥(𝑖)}
when 𝑖 ≥ 1 and 𝐴 (0) = Ø.

If the order-inducing variable is the argument variable,
then the I-SVNULCG operator is reduced to the SVNULCG
operator. That is, if 𝑢𝑖 = 𝛼𝑖, for all 𝑖, then the I-SVNULCG
operator (see (35)) is reduced to the single-valued neutrosophic
uncertain linguistic Choquet ordered geometric (SVNULCG)
operator.

SVNULCG (𝛼1, 𝛼2, ⋅ ⋅ ⋅ , 𝛼𝑛) = 𝑛⨂
𝑖=1

𝛼(𝑖)(𝜇(𝐴(𝑖))−𝜇(𝐴(𝑖−1)))

= ([ℎ
∏𝑛𝑖=1𝜃

𝜇(𝐴(𝑖))−𝜇(𝐴(𝑖−1))

(𝑖)

, ℎ
∏𝑛𝑖=1𝜏

𝜇(𝐴(𝑖))−𝜇(𝐴(𝑖−1))

(𝑖)

] ,
( 𝑛∏
𝑖=1

(𝑇𝛼(𝑖))𝜇(𝐴(𝑖))−𝜇(𝐴(𝑖−1)) , 1
− 𝑛∏
𝑖=1

(1 − 𝐼𝛼(𝑖))𝜇(𝐴(𝑖))−𝜇(𝐴(𝑖−1)) , 1
− 𝑛∏
𝑖=1

(1 − 𝐹𝛼(𝑖))𝜇(𝐴(𝑖))−𝜇(𝐴(𝑖−1))))

(40)

where the subscript (𝑖) : {1, 2, ⋅ ⋅ ⋅ , 𝑛} 󳨀→ {1, 2, ⋅ ⋅ ⋅ , 𝑛} is a
permutation such that 𝛼(1) ≥ 𝛼(2) ≥ ⋅ ⋅ ⋅ ≥ 𝛼(𝑛), 𝐴 (𝑖) ={𝑥(1), 𝑥(2), ⋅ ⋅ ⋅ , 𝑥(𝑖)}, 𝑖 = 1, 2, ⋅ ⋅ ⋅ , 𝑛, and 𝐴 (0) = Ø.

5. MAGDM Method Based on Induced Single-
Valued Neutrosophic Uncertain Linguistic
Choquet Aggregation Operator

The MAGDM problem is to determine the optimal alter-
native in the candidate alternatives. The alternatives for
the decision-making would be evaluated by the experts
from the perspectives of some specific attributes. However,

MAGDM problems often include uncertain and inaccurate
information and attributes and expert weights are usually
relevant. Therefore, this section will investigate an approach
to MAGDM problems by using the proposed operators. In
particular, the decision information given takes the form of
SVNULNs.

For a MAGDM problem, let 𝐴 = (𝑎1, 𝑎2, ⋅ ⋅ ⋅ , 𝑎𝑚) (𝑖 =1, 2, ⋅ ⋅ ⋅ , 𝑚) be a set of alternatives, 𝐶 = (𝑐1, 𝑐2, ⋅ ⋅ ⋅ , 𝑐𝑛) (𝑗 =1, 2, ⋅ ⋅ ⋅ , 𝑛) be a set of attributes, and𝐷 = (𝑑1, 𝑑2, ⋅ ⋅ ⋅ , 𝑑𝑡) (𝑘 =1, 2, ⋅ ⋅ ⋅ , 𝑡). Assume that 𝑅𝑘 = (𝛼𝑘𝑖𝑗)𝑚×𝑛 is the SVNUL matrix.
With respect to attribute 𝑐𝑗 (𝑗 = 1, 2, ⋅ ⋅ ⋅ , 𝑛) value of the
alternative 𝑎𝑖 (𝑖 = 1, 2, ⋅ ⋅ ⋅ , 𝑚) performance is expressed as
the SVNULN𝛼𝑘𝑖𝑗 = ⟨[ℎ𝑘𝜃𝑖𝑗 , ℎ𝑘𝜏𝑖𝑗], (𝑇𝑘𝑖𝑗, 𝐼𝑘𝑖𝑗, 𝐹𝑘𝑖𝑗)⟩ by the experts𝐷𝑘 ,
where 𝛼𝑘𝑖𝑗 indicates that the attribute 𝑐𝑗 value given by the DM𝐷𝑘. Thereafter, we apply the I-SVNULCA or I-SVNULCG
operator to deal with MAGDM problem with single-valued
neutrosophic uncertain linguistic information.

Themain steps by utilizing the proposed decision-making
method are as follows.

Step 1. Standardize decision matrices. Generally, benefit and
cost types are observed in the attributes. The attributes
should be converted to the same type before aggregating the
information. For the decision matrix 𝐷𝑘 = (𝑑𝑘𝑖𝑗)𝑚×𝑛, we can
use the following conversion form:

𝛼𝑘𝑖𝑗 = 𝑑𝑘𝑖𝑗 = ⟨[ℎ𝑘𝜃𝑖𝑗 , ℎ𝑘𝜏𝑖𝑗] , (𝑇𝑘𝑖𝑗, 𝐼𝑘𝑖𝑗, 𝐹𝑘𝑖𝑗)⟩
for benefit attribute 𝑐𝑗

𝛼𝑘𝑖𝑗 = ⟨[ℎ𝑘𝑙−1−𝜏𝑖𝑗 , ℎ𝑘𝑙−1−𝜃𝑖𝑗] , (𝑇𝑘𝑖𝑗, 𝐼𝑘𝑖𝑗, 𝐹𝑘𝑖𝑗)⟩
for cost attribute 𝑐𝑗

(41)

Thereafter, the standardized decision matrix 𝑅𝑘 = (𝛼𝑘𝑖𝑗)𝑚×𝑛
can be obtained.

Step 2. Determine the fuzzy measures of 𝜔𝑘 weighting vector
of the DMs 𝐷𝑘 (𝑘 = 1, 2, ⋅ ⋅ ⋅ , 𝑡) and sets of DMs𝐷.

Step 3. Utilize the decision information given in matrix 𝑅𝑘 =(𝛼𝑘𝑖𝑗)𝑚×𝑛 (𝑘 = 1, 2, ⋅ ⋅ ⋅ , 𝑡) and the I-SVNULCA operator or
I-SVNULCG operator,

𝛼𝑖𝑗 = ⟨[ℎ𝜃𝑖𝑗 , ℎ𝜏𝑖𝑗] , (𝑇𝑖𝑗, 𝐼𝑖𝑗, 𝐹𝑖𝑗)⟩
= I-SVNULCA (⟨𝜇 (𝐷1) , 𝛼1𝑖𝑗⟩ , ⟨𝜇 (𝐷2) , 𝛼2𝑖𝑗⟩ , ⋅ ⋅ ⋅ ,
⟨𝜇 (𝐷𝑡) , 𝛼𝑡𝑖𝑗⟩)

or 𝛼𝑖𝑗 = ⟨[ℎ𝜃𝑖𝑗 , ℎ𝜏𝑖𝑗] , (𝑇𝑖𝑗, 𝐼𝑖𝑗, 𝐹𝑖𝑗)⟩
= I-SVNULCG (⟨𝜇 (𝐷1) , 𝛼1𝑖𝑗⟩ , ⟨𝜇 (𝐷2) , 𝛼2𝑖𝑗⟩ , ⋅ ⋅ ⋅ ,
⟨𝜇 (𝐷𝑡) , 𝛼𝑡𝑖𝑗⟩)

(42)

to get the collective decision matrix 𝑅 = (𝛼𝑖𝑗)𝑚×𝑛, where 𝜇 =(𝜇(𝐷1), 𝜇(𝐷2), ⋅ ⋅ ⋅ , 𝜇(𝐷𝑡)) represents the weighting vector of
the DMs.
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Table 1: Decision matrix R1.

𝐶1 𝐶2 𝐶3𝐴1 ⟨[𝑠5, 𝑠5], (0.265, 0.350, 0.385)⟩ ⟨[𝑠2, 𝑠3], (0.330, 0.390, 0.280)⟩ ⟨[𝑠5, 𝑠6], (0.245, 0.275, 0.480)⟩𝐴2 ⟨[𝑠4, 𝑠5], (0.345, 0.245, 0.410)⟩ ⟨[𝑠5, 𝑠5], (0.430, 0.290, 0.280)⟩ ⟨[𝑠3, 𝑠4], (0.245, 0.375, 0.380)⟩𝐴3 ⟨[𝑠3, 𝑠4], (0.365, 0.300, 0.335)⟩ ⟨[𝑠4, 𝑠4], (0.480, 0.315, 0.295)⟩ ⟨[𝑠4, 𝑠5], (0.340, 0.370, 0.290)⟩𝐴4 ⟨[𝑠6, 𝑠6], (0.430, 0.300, 0.270)⟩ ⟨[𝑠2, 𝑠3], (0.460, 0.245, 0.295)⟩ ⟨[𝑠3, 𝑠4], (0.310, 0.520, 0.170)⟩
Table 2: Decision matrix R2.

𝐶1 𝐶2 𝐶3𝐴1 ⟨[𝑠3, 𝑠4], (0.125, 0.470, 0.405)⟩ ⟨[𝑠3, 𝑠4], (0.220, 0.420, 0.360)⟩ ⟨[𝑠3, 𝑠4], (0.345, 0.490, 0.165)⟩𝐴2 ⟨[𝑠5, 𝑠6], (0.355, 0.315, 0.330)⟩ ⟨[𝑠3, 𝑠4], (0.300, 0.370, 0.330)⟩ ⟨[𝑠4, 𝑠5], (0.205, 0.630, 0.165)⟩𝐴3 ⟨[𝑠4, 𝑠5], (0.315, 0.380, 0.305)⟩ ⟨[𝑠4, 𝑠4], (0.330, 0.565, 0.105)⟩ ⟨[𝑠2, 𝑠3], (0.280, 0.520, 0.200)⟩𝐴4 ⟨[𝑠5, 𝑠5], (0.365, 0.365, 0.270)⟩ ⟨[𝑠4, 𝑠5], (0.335, 0.320, 0.325)⟩ ⟨[𝑠2, 𝑠3], (0.425, 0.485, 0.090)⟩
Table 3: Decision matrix R3.

𝐶1 𝐶2 𝐶3𝐴1 ⟨[𝑠5, 𝑠5], (0.260, 0.425, 0.315)⟩ ⟨[𝑠3, 𝑠4], (0.220, 0.450, 0.330)⟩ ⟨[𝑠4, 𝑠5], (0.255, 0.500, 0.245)⟩𝐴2 ⟨[𝑠4, 𝑠5], (0.270, 0.370, 0.360)⟩ ⟨[𝑠5, 𝑠5], (0.320, 0.215, 0.465)⟩ ⟨[𝑠2, 𝑠3], (0.135, 0.575, 0.290)⟩𝐴3 ⟨[𝑠4, 𝑠4], (0.245, 0.465, 0.290)⟩ ⟨[𝑠5, 𝑠5], (0.250, 0.570, 0.180)⟩ ⟨[𝑠1, 𝑠3], (0.175, 0.660, 0.165)⟩𝐴4 ⟨[𝑠3, 𝑠4], (0.390, 0.340, 0.270)⟩ ⟨[𝑠3, 𝑠4], (0.305, 0.475, 0.220)⟩ ⟨[𝑠4, 𝑠5], (0.465, 0.485, 0.050)⟩
Step 4. Determine the fuzzy measure of attribute of 𝑐𝑗 (𝑗 =1, 2, ⋅ ⋅ ⋅ , 𝑛) and attribute sets of 𝐶.
Step 5. Utilize the decision information given inmatrix𝑅 and
the I-SVNULCA operator or I-SVNULCG operator

𝛼𝑖 = ⟨[ℎ𝜃𝑖 , ℎ𝜏𝑖] , (𝑇𝑖, 𝐼𝑖, 𝐹𝑖)⟩
= I-SVNULCA (⟨𝜇 (𝑐1) , 𝛼𝑖𝑗⟩ , ⟨𝜇 (𝑐2) , 𝛼𝑖𝑗⟩ , ⋅ ⋅ ⋅ ,
⟨𝜇 (𝑐𝑚) , 𝛼𝑖𝑗⟩)

or 𝛼𝑖 = ⟨[ℎ𝜃𝑖 , ℎ𝜏𝑖] , (𝑇𝑖, 𝐼𝑖, 𝐹𝑖)⟩
= I-SVNULCG (⟨𝜇 (𝑐1) , 𝛼𝑖𝑗⟩ , ⟨𝜇 (𝑐2) , 𝛼𝑖𝑗⟩ , ⋅ ⋅ ⋅ ,
⟨𝜇 (𝑐𝑚) , 𝛼𝑖𝑗⟩)

(43)

to get the collective comprehensive value 𝛼𝑖 = ⟨[ℎ𝜃𝑖 , ℎ𝜏𝑖],(𝑇𝑖, 𝐼𝑖, 𝐹𝑖)⟩ of the alternative 𝑎𝑖, where 𝜇 = (𝜇(𝑐1), 𝜇(𝑐2), ⋅ ⋅ ⋅ ,𝜇(𝑐𝑚)) represents the weighting vector of the attributes.
Step 6. Calculate the scores 𝑆(𝛼𝑖) and 𝐻(𝛼𝑖) (𝑖 = 1, 2, ⋅ ⋅ ⋅ , 𝑚)
of the collective overall values 𝛼𝑖 = ⟨[ℎ𝜃𝑖 , ℎ𝜏𝑖], (𝑇𝑖, 𝐼𝑖, 𝐹𝑖)⟩.
Step 7. Rank the alternatives according to 𝑆(𝛼𝑖) and𝐻(𝛼𝑖) (𝑖 = 1, 2, ⋅ ⋅ ⋅ , 𝑚). The larger the 𝑆(𝛼𝑖), the better the
alternative.

Step 8. End.

6. Illustrative Example

6.1. An Illustration of the Proposed Approach. In this section,
an illustrative example adapted from Liu [35] is employed to

the application and effectiveness of the proposed MAGDM
method under single-valued neutrosophic uncertain linguis-
tic environment.

An investment company wants to select the best invest-
ment alternative. Suppose that four candidate companies𝐴 𝑖 (𝑖 = 1, 2, 3, 4) are available, and three attributes are
considered: (1) 𝐶1 is the growth index. (2) 𝐶2 refers
to the potential market and market risk index. (3) 𝐶3
indicates the social-political and environmental impact
index.

Suppose that linguistic term set 𝐻 = (ℎ0, ℎ1,ℎ2,ℎ3, ℎ4, ℎ5, ℎ6) = {V𝑒𝑟𝑦 𝑝𝑜𝑜𝑟, 𝑝𝑜𝑜𝑟, 𝑠𝑙𝑖𝑔ℎ𝑡𝑙𝑦 𝑝𝑜𝑜𝑟, 𝑓𝑎𝑖𝑟,𝑠𝑖𝑔ℎ𝑡𝑙𝑦 𝑔𝑜𝑜𝑑, 𝑔𝑜𝑜𝑑, V𝑒𝑟𝑦 𝑔𝑜𝑜𝑑}. The assessment value 𝛼𝑘𝑖𝑗
of each company 𝐴 𝑖 under attributes 𝐶𝑗 (𝑗 = 1, 2, 3) is
expressed by the form of SVNULNs by the decision experts𝐸𝑘 (𝑘 = 1, 2, 3), and then the three normalized standardized
decision matrices 𝑅𝑘 = (𝛼𝑘𝑖𝑗)𝑚×𝑛 (𝑘 = 1, 2, 3) are provided in
Tables 1, 2, and 3.

Utilize I-SVNULCA operator to solve the problem based
on the following steps.

Step 1. We determine the fuzzy density of each DM and its𝜌 parameter. Suppose that fuzzy measure of the weighting
vector of the decisionmakers𝐷𝑘 (𝑘 = 1, 2, 3) and sets ofDMs𝐷 are as follows:

𝜇 (𝐷1) = 0.4,
𝜇 (𝐷2) = 0.4,
𝜇 (𝐷3) = 0.4.

(44)
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Thereafter, 𝜌 of the experts can be determined: 𝜌1 = −0.44.
We obtain the following equation based on (14):

𝜇 (𝐷1, 𝐷2) = 𝜇 (𝐷1, 𝐷3) = 𝜇 (𝐷2, 𝐷3) = 0.73,
𝜇 (𝐷1, 𝐷3) = 0.65,
𝜇 (𝐷2, 𝐷3) = 0.50,

𝜇 (𝐷1, 𝐷2, 𝐷3) = 1.
(45)

Thus,

𝜔(1) = 𝜇 (𝐷1) − 𝜇 (Ø) = 0.4,
𝜔(2) = 𝜇 (𝐷1, 𝐷2) − 𝜇 (𝐷1) = 0.33,
𝜔(3) = 𝜇 (𝐷1, 𝐷2, 𝐷3) − 𝜇 (𝐷1, 𝐷2) = 0.27.

(46)

Step 2. Utilize the given decision-making matrix 𝑅𝑘 =(𝛼𝑘𝑖𝑗)𝑚×𝑛 (𝑘 = 1, 2, 3) and the I-SVNULCA operator; we
obtain the collective decision matrix 𝑅 = (𝛼𝑖𝑗)4×3 as follows:

𝑅 = [[[[
[

⟨[𝑠4.34, 𝑠4.67] , (0.220, 0.407, 0.371)⟩ ⟨[𝑠2.60, 𝑠3.60] , (0.266, 0.415, 0.318)⟩ ⟨[𝑠4.07, 𝑠5.07] , (0.282, 0.391, 0.281)⟩⟨[𝑠4.33, 𝑠5.33] , (0.329, 0.298, 0.368)⟩ ⟨[𝑠4.34, 𝑠4.67] , (0.360, 0.290, 0.339)⟩ ⟨[𝑠3.06, 𝑠4.06] , (0.203, 0.499, 0.268)⟩⟨[𝑠3.60, 𝑠4.33] , (0.318, 0.365, 0.312)⟩ ⟨[𝑠4.27, 𝑠4.27] , (0.376, 0.448, 0.184)⟩ ⟨[𝑠2.53, 𝑠3.80] , (0.279, 0.484, 0.220)⟩⟨[𝑠4.86, 𝑠5.13] , (0.398, 0.331, 0.270)⟩ ⟨[𝑠2.93, 𝑠3.93] , (0.381, 0.320, 0.281)⟩ ⟨[𝑠2.94, 𝑠3.94] , (0.393, 0.499, 0.099)⟩
]]]]
]

(47)

Step 3. Suppose that the fuzzy measure of the weighting
vector of attribute 𝐶𝑘 (𝑘 = 1, 2, 3) and attribute sets of 𝐶 are
as follows:

𝜇 (𝐶1) = 0.362,
𝜇 (𝐶2) = 0.2,
𝜇 (𝐶3) = 0.438.

(48)

Thereafter, 𝜌 of the attributes can be determined: 𝜌2 = 0.856.
We obtain the following equation based on (14); we have

𝜇 (𝐶1, 𝐶2) = 0.626,
𝜇 (𝐶1, 𝐶3) = 0.713,
𝜇 (𝐶2, 𝐶3) = 0.936,

𝜇 (𝐶1, 𝐶2, 𝐶3) = 1.
(49)

Thus, 𝑤(1) = 𝜇(𝐶3) − 𝜇(Ø) = 0.438, 𝑤(2) = 𝜇(𝐷1, 𝐷3) −𝜇(𝐷3) = 0.275, and 𝜔(3) = 1 − 𝜇(𝐷1, 𝐷3) = 0.287.
Step 4. Utilize the decision information given in matrix 𝑅 =(𝛼𝑖𝑗)𝑚×𝑛 (𝑖 = 1, 2, 3, 4; 𝑗 = 1, 2, 3) and the I-SVNULCA
operator; we get the collective comprehensive value 𝑅𝑖 (𝑖 =1, 2, 3, 4) for each alternative as follows:

𝑅1 = ⟨[𝑠3.722, 𝑠4.538] , (0.261, 0.402, 0.314)⟩ ,
𝑅2 = ⟨[𝑠3.777, 𝑠4.584] , (0.286, 0.371, 0.313)⟩
𝑅3 = ⟨[𝑠3.324, 𝑠4.081] , (0.319, 0.430, 0.230)⟩ ,
𝑅4 = ⟨[𝑠3.465, 𝑠4.264] , (0.391, 0.392, 0.176)⟩

(50)

Step 5. We calculate the value 𝑆(𝑅𝑖) of 𝑅𝑖 (𝑖 = 1, 2, 3, 4).
𝑆 (𝑅1) = ℎ2.126,
𝑆 (𝑅2) = ℎ2.233,
𝑆 (𝑅3) = ℎ2.036,
𝑆 (𝑅4) = ℎ2.348.

(51)

Step 6. Based on the comparison method described in
Definition 9, 𝑆(𝑅4) > 𝑆(𝑅2) > 𝑆(𝑅1) > 𝑆(𝑅3). Thereafter,𝐴4 ≻ 𝐴2 ≻ 𝐴1 ≻ 𝐴3.

Thus, the most desirable alternative is 𝐴4.
Apply I-SVNULCG operator to solve the problem based

on the following steps.

Step 1. By utilizing the given decision-making matrix 𝑅𝑘 =(𝛼𝑘𝑖𝑗)𝑚×𝑛 (𝑘 = 1, 2, 3) and the I-SVNULCG operator, we
obtain a collective decision matrix 𝑅 = (𝛼𝑖𝑗)4×3 as follows:

𝑅

= [[[[[
[

⟨[𝑠4.224, 𝑠4.645] , (0.206, 0.412, 0.374)⟩ ⟨[𝑠2.551, 𝑠3.565] , (0.288, 0.417, 0.321)⟩ ⟨[𝑠3.977, 𝑠4.996] , (0.277, 0.416, 0.328)⟩⟨[𝑠4.306, 𝑠5.310] , (0.326, 0.304, 0.371)⟩ ⟨[𝑠4.224, 𝑠4.645] , (0.353, 0.299, 0.351)⟩ ⟨[𝑠2.957, 𝑠3.984] , (0.197, 0.526, 0.290)⟩⟨[𝑠3.565, 𝑠4.306] , (0.312, 0.375, 0.313)⟩ ⟨[𝑠4.248, 𝑠4.248] , (0.356, 0.480, 0.205)⟩ ⟨[𝑠2.189, 𝑠3.680] , (0.267, 0.512, 0.228)⟩⟨[𝑠4.685, 𝑠5.064] , (0.397, 0.333, 0.270)⟩ ⟨[𝑠2.805, 𝑠3.83] , (0.371, 0.339, 0.286)⟩ ⟨[𝑠2.836, 𝑠3.864] , (0.384, 0.499, 0.113)⟩
]]]]]
]

(52)
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Table 4: Ranking results of different methods.

Methods Ranking results
Ye’s [70]method by the proposed operator:
INLWAA 𝐴4 ≻ 𝐴2 ≻ 𝐴3 ≻ 𝐴1
INLWGA 𝐴4 ≻ 𝐴2 ≻ 𝐴1 ≻ 𝐴3
Method proposed by Liu et al.’s [35] (p=1,q=1) 𝐴4 ≻ 𝐴2 ≻ 𝐴1 ≻ 𝐴3
The proposed method in this paper 𝐴4 ≻ 𝐴2 ≻ 𝐴1 ≻ 𝐴3

Step 2. Utilize the above decision-making matrix 𝑅 =(𝛼𝑖𝑗)𝑚×𝑛 (𝑖 = 1, 2, 3, 4; 𝑗 = 1, 2, 3) and the I-SVNULCGoper-
ator, we obtain the collective comprehensive value 𝑅𝑖 (𝑖 =1, 2, 3, 4).

𝑅1 = ⟨[𝑠3.560, 𝑠4.445] , (0.258, 0.415, 0.339)⟩ ,
𝑅2 = ⟨[𝑠3.632, 𝑠4.506] , (0.267, 0.411, 0.331)⟩
𝑅3 = ⟨[𝑠3.028, 𝑠4.004] , (0.302, 0.468, 0.246)⟩ ,
𝑅4 = ⟨[𝑠3.246, 𝑠4.154] , (0.384, 0.413, 0.210)⟩

(53)

Step 3. We calculate the value 𝑆(𝑅𝑖) of 𝑅𝑖 (𝑖 = 1, 2, 3, 4).
𝑆 (𝑅1) = ℎ2.007,
𝑆 (𝑅2) = ℎ2.069,
𝑆 (𝑅3) = ℎ1.861,
𝑆 (𝑅4) = ℎ2.171.

(54)

Step 4. Based on the comparison method described in Defi-
nition 9, hence,𝑆(𝑅4) > 𝑆(𝑅2) > 𝑆(𝑅1) > 𝑆(𝑅3). Thereafter, 𝐴4 ≻ 𝐴2 ≻𝐴1 ≻ 𝐴3.

Thus, the most desirable investment company is 𝐴4.
As shown above, the ranking orders and most desirable

alternative have the same result. That is, 𝐴4 ≻ 𝐴2 ≻ 𝐴1 ≻𝐴3, by using two MAGDM method based on SVNULCA
operator and SVNULCG operator.

6.2. Comparison with Other Existing Methods. In this sec-
tion, we validate the feasibility and the advantages of the
proposed method by comparative analysis, compared to the
existing methods which are the interval neutrosophic lin-
guistic weighted arithmetic average (INLWAA) operator and
interval neutrosophic linguistic weighted geometric average
(INLWGA) operator developed by Ye [70] and the decision-
making method proposed by Liu [35]. Table 4 lists the
ranking results yielded by those methods.

Table 4 shows that a slight difference is observed in
the ranking results. From these three methods, the best
alternatives are the same. To compare with the method
proposed by Ye [70], the assessment value 𝛼 = ⟨|[ℎ𝜃𝛼 ,ℎ𝜏𝛼], (𝑇𝛼, 𝐼𝛼, 𝐹𝛼)⟩ in this illustrative example is transformed
into interval neutrosophic linguistic number 𝛼 =⟨|ℎ𝑠𝛼 , ([inf 𝑇𝛼, sup𝑇𝛼], [inf 𝐼𝛼, sup 𝐼𝛼], [inf 𝐹𝛼, sup𝐹𝛼])⟩ by 𝛼

= ⟨|ℎ𝑠𝛼 , ([inf 𝑇𝛼, sup𝑇𝛼], [inf 𝐼𝛼, sup 𝐼𝛼], [inf 𝐹𝛼, sup𝐹𝛼])⟩ =⟨|[ℎ(𝜃𝛼+𝜏𝛼)/2], ([𝑇𝛼, 𝑇𝛼], [𝐼𝛼, 𝐼𝛼], [𝐹𝛼, 𝐹𝛼])⟩. Then, the ranking
result 𝐴4 ≻ 𝐴2 ≻ 𝐴3 ≻ 𝐴1 is obtained by the proposed
approach in this paper which are consistent with the result
obtained by the INLWGA operator proposed in Ye [70];
the ranking result 𝐴4 ≻ 𝐴2 ≻ 𝐴1 ≻ 𝐴3 is obtained using
the INLWAG operator proposed by Ye [70]. Although the
ranking results are slightly different in a few conditions, the
approach proposed in this paper is superior in credibility.The
main reason is that we proposed method which considers
the induced variance determined by the decision maker’s
preference and interaction among the attributes to yield
a reasonable result. This result is in accordance with the
practical decision-making process. Moreover, compared to
the linguistic terms, the ULVs perform more outstanding
in expressing qualitative information. That is, the proposed
approach in this paper is considerably convenient and
feasible when SVNULNs are incorporated.

Compared with the proposed method by Liu [35], the
ranking results obtained by the method in this paper are
consistent with the proposed approach in [35]. This case
demonstrates the availability and feasibility of this approach,
because it can obtain different results in varying induced
preference conditions, whereas the methods in [35] disregard
them.

Therefore, the developed method has strength in that
it can easily reflect and express the fuzziness nature
of decision maker’s subjective judgments by SVNULNs,
because SVNULNs are fit to represent imprecise, uncer-
tain, and inconsistent information in some decision-making
situations. Moreover, the proposed method can consider
the order-inducing variables in accordance with decision
maker preference and the correlation or interaction among
attributes and decisionmakers under a SVNUL environment.
Thus, the method we proposed has superiority in feasibil-
ity and practice than other decision-making methods in
MAGDM.

7. Conclusion

In real decision-making, incomplete, indeterminate, and
inconsistent are the common features in the decision-making
information of alternatives provided by DMs. SVNULNs
can considerably describe the decision maker’s preference.
In particular, the Choquet integral operator can determine
the interaction of the attributes and experts. Then, we
extend the I-COA operator to the SVNUL environment and
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defined I-SVNULCA and I-SVNULCG integral operators.
We likewise investigate their properties in detail. Moreover,
we develop MAGDM methods based on the I-SVNULCA
and I-SVNULCG operators under a SVNUL environment.
Lastly, the practicality and effectiveness of the proposed
method would be demonstrated by an illustrative example;
the results have shown that the proposed method is more
suitable than the existing method.

The main advantages of this study are as follows. First,
the proposed aggregation operator considers the interaction
phenomena among the attributes and decision makers under
SVNUL environment, and the result can change based on
various linguistic scale and induced variables. This condition
enables DMs to choose the most appropriate linguistic scale
and input induced parameter according to their preferences
and interest. Moreover, SVNULNs can reflect the fuzziness
nature of decision maker’s subjective judgments very prop-
erly. Finally, the proposed method based on the I-SVNULCA
and I-SVNULCG operators can accommodate situations, in
which the input arguments are represented by SVNULNs.
That is, the proposedmethod is quite feasible and practical for
real-world applications. In the future research, the developed
aggregation operator andmethod are further applied tomany
areas such as medical diagnosis and pattern recognition.
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