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Abstract: The Process Capability Index (PCI) has been widely used in industry to advance the 
quality of a product. Neutrosophic statistics is the more generalized form of classical statistics and 
is applied when the data from the production process or a product lot is incomplete, incredible, and 
indeterminate. In this paper, we will originally propose a variable sampling plan for the PCI using 
neutrosophic statistics. The neutrosophic operating function will be given. The neutrosophic plan 
parameters will be determined using the neutrosophic optimization solution. A comparison 
between plans based on neutrosophic statistics and classical statistics is given. The application of 
the proposed neutrosophic sampling plan will be given using company data.  
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1. Introduction  

Acceptance sampling is the most widely used tool for the inspection of the raw material, semi-
finished product, and finished product. But, the presence of the indeterminacy in the observations or 
parameters may affect the performance of the sampling plan. A well-designed sampling plan used 
for the inspection of the product under the uncertainty and determinacy environment is needed at 
each stage to check that the finished product meets either the customer’s upper specification limit 
(USL) and lower specification limit (LSL) before sending it to market. The quality of interest beyond 
the LSL and USL creates a non-conforming item. At the time of inspection, a random sample is taken 
and lot sentencing is made on the basis of this primary information about the lot. Thus, the sample 
information may mislead the experimenters in making the decision about the submitted product lot. 
There is a chance of rejecting a good lot and accepting a bad lot on the basis of the sample information. 
Thus, the sampling schemes are developed with the aim of reducing the cost of the inspection, non-
conforming items, and minimizes the risk of the sampling. The acceptance sampling plan has two 
major types, known as attribute sampling plans and variable sampling plans. Attribute sampling 
plans are easier to apply but are more costly than the variable sampling plans. On the other hand, the 
variable sampling plans are more informative than attribute sampling plans [1]. A number of authors 
designed variable and attribute sampling plans: Jun et al. [2] studied variable sampling plans for 
sudden death testing; Balamurali and Jun [3] studied skip-lot sampling for the normal distribution; 
Fallah Nezhad et al. [4] designed a sampling plan using cumulative sums of conforming run-lengths; 
Pepelyshev et al. [5] applied a variable sampling plan in photovoltaic modules; Gui and Aslam [6] 
designed a time truncated plan for weighted exponential distribution; and Balamurali et al. [7] 
designed a mixed variable sampling plan.  

The Process Capability Index (PCI) has been widely used in industry for quality improvement 
purposes and to make a relation between specification limits and process quality. Kane [8] originally 
proposed the PCI for classical statistics. Boyles [9] provided the bounds on the process yield for the 
normally distributed process. Kotz and Johnson [10] provided a detailed review of PCIs. More details 
on PCIs can be seen in [11]. Pearn et al. [12] discussed an effective decision method for product 
inspection; Montgomery [1] mentioned the applications of PCIs. Boyles [13] studied PCIs for an 
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asymmetric tolerances case and Ebadi [14] studied a simple linear profile using PCIs. Due to the 
importance of the PCIs in industry, several authors focused on the development of inspection 
schemes using classical statistics based on PCIs for various situations including for example, and 
Chen et al. [15] studied PCIs for entire product inspection. Pearn et al. [12] presented an effective 
decision method for the inspection. Aslam et al. [16] designed various sampling plans using PCIs. 
Seifi and Nezhad [17] studied resubmitted sampling using PCI and Arif et al. [18] worked on a 
sampling plan using PCI for multiple manufacturing lines. 

Fuzzy sampling plans have been widely used in the industry when the proportion of the non-
conforming product is a fuzzy number [19]. Kanagawa and Ohta [20] introduced an attribute plan 
using fuzzy sets. [19] designed a single sampling plan using fuzzy parameters. Kahraman et al. [21] 
designed single and double sampling plans using fuzzy approach. The PCIs using fuzzy logic can be 
seen in [22–24]. 

Smarandache [25] defined the neutrosophic logic in 1998 as the generalization of fuzzy logic. 
Smarandache [26] gave the idea of descriptive neutrosophic statistics. The neutrosophic statistics is 
the more generalized form of classical statistics and applied when the data from the production 
process or a product lot is incomplete, incredible, and indeterminate [26]. Chen et al. [27,28] studied 
the rock joint roughness coefficient using neutrosophic statistics. According to [29] “All observations 
and measurements of continuous variables are not precise numbers but more or less non-precise. 
This imprecision is different from variability and errors. Therefore also lifetime data are not precise 
numbers but more or less fuzzy. The best up-to-date mathematical model for this imprecision is so-
called non-precise numbers”. 

Recently, Aslam [30] introduced the neutrosophic statistics in the area of the acceptance 
sampling plan. Aslam [30] proposed an acceptance sampling plan using the neutrosophic process 
loss function. The sampling plan for multiple manufacturing lines using the neutrosophic statistics is 
proposed by [31]. The sampling plan for the exponential distribution under the uncertainty is 
proposed by [32]. Some more details about the sampling plan using the neutrosophic plans can be 
seen in [33–37].  

The existing sampling plans using PCIs cannot apply when the data is indeterminate or 
incomplete. Also, the available sampling plans using the neutrosophic statistics do not consider the 
PCIs for the inspection of the product. By exploring the literature and best of the author knows there 
is no work on the sampling plan for PCIs using the neutrosophic statistics. In this paper, we will 
originally propose a variable sampling plan for the PCIs using the neutrosophic statistics. The 
neutrosophic operating function will be given. The neutrosophic plan parameters will be determined 
using the neutrosophic optimization solution. A comparison between plans based on neutrosophic 
statistics and classical statistics is given. We expect that the proposed plan will be more effective to 
be applied in an uncertain environment. The application of the proposed sampling plan using 
neutrosophic statistics will be given using the company data.  

2. Design of a Neutrosophic Plan Based on PCI 

Let 𝑛ே𝜖ሼ𝑛௅, 𝑛௎ሽ be a random sample selected from the population having some uncertain 
observations, where 𝑛௅ and 𝑛௎ are the lower and upper sample size of the indeterminacy interval, 
respectively. Suppose that a neutrosophic quality of interest, 𝑋ே௜, is expressed in the indeterminacy 
interval, say, 𝑋ே௜𝜖ሼ𝑋௅, 𝑋௎ሽ; 𝑖 =1,2,3,…,𝑛ே having indeterminate observations follow the neutrosophic 
normal distribution, where 𝑋௅and 𝑋௎  are the lower and the upper values, respectively, with the 
neutrosophic population mean 𝜇ே𝜖ሼ𝜇௅, 𝜇௎ሽ and neutrosophic population standard deviation (NSD) 𝜎ே𝜖ሼ𝜎௅, 𝜎௎ሽ (see [26]). The neutrosophic process capability index process (NPCI), say, �̂�ே೛ೖ, is defined 
as: 

𝐶ே೛ೖ = 𝑀𝑖𝑛 ቄ௎ௌ௅ିఓಿଷఙಿ , ఓಿି௅ௌ௅ଷఙಿ ቅ;  𝜇ே𝜖ሼ𝜇௅, 𝜇௎ሽ, 𝜎ே𝜖ሼ𝜎௅, 𝜎௎ሽ   (1) 

where 𝑈𝑆𝐿 and 𝐿𝑆𝐿 are the upper specification limit and lower specification limit, respectively.  
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Note that 𝐶ே೛ೖ reduces to PCI for classical statistics when no indeterminate observations are 
recorded in 𝑋ே. Usually, 𝜇ே𝜖ሼ𝜇௅, 𝜇௎ሽ and 𝜎ே𝜖ሼ𝜎௅, 𝜎௎ሽ are unknown in practice and the best linear 
unbiased estimate (BLUE) of  𝜇ே𝜖ሼ𝜇௅, 𝜇௎ሽ  is the neutrosophic sample mean 𝑋തே𝜖ሼ𝑋ത௅, 𝑋ത௎ሽ  and a 
BLUE of 𝜎ே𝜖ሼ𝜎௅, 𝜎௎ሽ is the neutrosophic sample standard deviation 𝑠ே𝜖ሼ𝑠௅, 𝑠௎ሽ which can be used 
to evaluate 𝐶ே೛ೖ. The 𝐶መே೛ೖ based on sample estimate is given as by: 

𝐶መே೛ೖ = 𝑀𝑖𝑛 ቄ௎ௌ௅ି௑തಿଷ௦ಿ , ௑തಿି௅ௌ௅ଷ௦ಿ ቅ; 𝑋തே𝜖ሼ𝑋ത௅, 𝑋ത௎ሽ, 𝑠ே = ሼ𝑠௅, 𝑠௎ሽ (2) 

where 𝑋ത௅ = ∑ 𝑥௜௅ 𝑛௅⁄ ,௡௜ୀଵ   

𝑋ത௎ = ∑ 𝑥௜௎ 𝑛௎⁄௡௜ୀଵ , 𝑠௅ = ට∑ ሺ𝑥௜௅ − 𝑋ത௅ሻଶ 𝑛௅⁄௡௜ୀଵ  and  𝑠௎ = ට∑ ሺ𝑥௜௎ − 𝑋ത௎ሻଶ 𝑛௎⁄௡௜ୀଵ   

To design the proposed sampling plan, it is assumed that there is uncertainty in the selection of 
a random sample from the submitted product lot. Thus, a random sample will be selected from a 
neutrosophic interval. The proposed sampling plan is stated as follows: 

Step 1: Select a random sample of size 𝑛ே𝜖ሼ𝑛௅, 𝑛௎ሽ  from the product lot. Compute the statistic 𝐶መே೛ೖ𝜖𝑀𝑖𝑛 ቄ௎ௌ௅ି௑തಿଷ௦ಿ , ௑തಿି௅ௌ௅ଷ௦ಿ ቅ; 𝑋തே𝜖ሼ𝑋ത௅, 𝑋ത௎ሽ, 𝑠ே𝜖ሼ𝑠௅, 𝑠௎ሽ. 

Step 2: Accept a product lot of 𝐶መே೛ೖ ≥ 𝑘ே ; 𝑘ே𝜖ሼ𝑘௔௅, 𝑘௔௎ሽ , otherwise reject a product lot, where 𝑘ே𝜖ሼ𝑘௔௅, 𝑘௔௎ሽ is the neutrosophic acceptance number. An acceptance number is also called the action 
number/boundary number. A product lot is rejected if the statistic 𝐶መே೛ೖ  is smaller than 𝑘ே , 
otherwise, the product lot is accepted.  

The evaluation of the proposed sampling plan will be used on two parameters, namely 𝑛ே =ሼ𝑛௅, 𝑛௎ሽ and 𝑘ே𝜖ሼ𝑘௔௅, 𝑘௔௎ሽ. The neutrosophic operating characteristic (NOC) for the proposed 
plan is derived as follows: 

𝐿ሺ𝑝ሻ = 𝑃 ቀ𝐶መே೛ೖ ≥ 𝑘ேቁ = 𝑃ሼ𝐿𝑆𝐿 + 3𝑘ே𝑠ே ≤ 𝑋തே ≤ 𝑈𝑆𝐿 − 3𝑘ே𝑠ேሽ = 𝑃ሼ𝑋തே + 3𝑘ே𝑠ே ≤𝑈𝑆𝐿ሽ − 𝑃ሼ𝑋തே − 3𝑘ே𝑠ே ≤ 𝐿𝑆𝐿ሽ; 𝑛ே𝜖ሼ𝑛௅, 𝑛௎ሽ, 𝑋തே𝜖ሼ𝑋ത௅, 𝑋ത௎ሽ 𝑠ே𝜖ሼ𝑠௅, 𝑠௎ሽ and 𝑘ே𝜖ሼ𝑘௔௅, 𝑘௔௎ሽ.  

(3) 

 
Duncan [38] suggested 𝑋തே ± 𝑘ே𝑠ே ; 𝑋തே𝜖ሼ𝑋ത௅, 𝑋ത௎ሽ  and 𝑠ே = ሼ𝑠௅, 𝑠௎ሽ  is distributed as an 

approximately neutrosophic normal distribution, that is 𝑋തே ± 𝑘ே𝑠ே~𝑁ே ቀ𝜇ே ± 𝑐𝜎ே, ఙమಿ௡ಿ + ௖మఙమಿଶ௡ಿ ቁ.  

where 𝑁ேሺ. ሻ shows neutrosophic normal distribution.  
Suppose that quality of interest 𝑋ே beyond the USL or LSL is labeled as the defective item and 

this probability is defined as 𝑝௎ = 𝑃ሼ𝑋ே > 𝑈𝑆𝐿|𝜇ேሽ and 𝑝௎ = 𝑃ሼ𝑋ே < 𝐿𝑆𝐿|𝜇ேሽ; 𝜇ே = ሼ𝜇௅, 𝜇௎ሽ. Thus, 
the probability of acceptance is given by the following [39]: 

𝐿ሺ𝑝ሻ = Φ ቐ ௎ௌ௅ିఓಿିଷ௞ಿఙಿሺఙಿ ௡ಿ⁄ ሻටଵାଽ௞మಿ ଶ⁄ ቑ − Φ ቐ ௅ௌ௅ିఓಿାଷ௞ಿఙಿሺఙಿ ௡ಿ⁄ ሻටଵାଽ௞మಿ ଶ⁄ ቑ   (4) 

Let us define the neutrosophic standard normal random variable as:  

𝑍ே೛ೆ = ௎ௌ௅ିఓಿఙಿ   and −𝑍ே೛ಽ = ௅ௌ௅ିఓಿఙಿ   (5) 

Now, the final form of NFOC is given by: 

𝐿ሺ𝑝ሻ = Φ ൝൭൫𝑍ே௣ೆ − 3𝑘ே൯ට ௡ಿଵା൫ଽ௞మಿ ଶ⁄ ൯൱ൡ − Φ ቊቆ−൫𝑍ே௣ಽ − 3𝑘ே൯ට ௡ಿଵା൫ଽ௞మಿ ଶ⁄ ൯ቇቋ     (6) 
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where Φሺ. ሻ is the neutrosophic cumulative standard normal distribution. 

Research Methodology 

To meet the given producer’s risk, say, 𝛼, and the custumer’s risk, say, 𝛽, the plan parameters 
of the proposed sampling plan will be determined in such a way that NFOC passes through the two 
points ሺ𝑝ଵ, 1 − 𝛼ሻ and ሺ𝑝ଶ, 𝛽ሻ, where 𝑝ଵ is the acceptable quality limit (AQL) and 𝑝ଶ is the limiting 
quality limit (LQL). The plan parameters of the proposed sampling plans will be determined through 
the following non-linear solution under the neutrosophic statistical interval method: 
Minimize:   𝑛ே𝜖ሼ𝑛௅, 𝑛௎ሽ (7) 

 

(7) 

subject to: 

𝐿ேሺ𝑝ଵሻ = Φ ൝൭൫𝑍ே௣ೆభ − 3𝑘ே൯ට ௡ಿଵା൫ଽ௞మಿ ଶ⁄ ൯൱ൡ − Φ ቊቆ−൫𝑍ே௣ಽభ − 3𝑘ே൯ට ௡ಿଵା൫ଽ௞మಿ ଶ⁄ ൯ቇቋ ≥ 1 −𝛼; 𝑘ே𝜖ሼ𝑘௔௅, 𝑘௔௎ሽ; 𝑛ே𝜖ሼ𝑛௅, 𝑛௎ሽ    
(8) 

and: 

𝐿ேሺ𝑝ଶሻ = Φ ൝൭൫𝑍ே௣ೆమ − 3𝑘ே൯ට ௡ಿଵା൫ଽ௞మಿ ଶ⁄ ൯൱ൡ − Φ ቊቆ−൫𝑍ே௣ಽమ − 3𝑘ே൯ට ௡ಿଵା൫ଽ௞మಿ ଶ⁄ ൯ቇቋ ≤ 𝛽; 𝑘ே𝜖ሼ𝑘௔௅, 𝑘௔௎ሽ; 𝑛ே𝜖ሼ𝑛௅, 𝑛௎ሽ 
(9) 

The plan parameters of the proposed plan are determined through Equations (7)–(9) using the 
search grid method for the various combinations of AQL and LQL. Several combinations of plan 
parameters in the indeterminacy interval satisfy Equations (7)–(9). The plan parameters having the 
smallest range in indeterminacy interval are chosen and placed in Table 1. To save the space, we 
present Table 1 when 𝛼 = 0.05 and 𝛽 = 0.10. Similar tables for other values of 𝛼  and 𝛽  can be 
prepared. The neutrosophic lot acceptance probabilities, 𝐿ேሺ𝑝ଵሻ and 𝐿ேሺ𝑝ଶሻ at the consumer’s risk 
and producer’s risk are also reported in Table 1.  

From Table 1, we note that, for the fixed values of all other parameters, the values of 𝑘ே𝜖ሼ𝑘௔௅, 𝑘௔௎ሽ; 𝑛ே𝜖ሼ𝑛௅, 𝑛௎ሽ decrease as LQL increases. This means the indeterminacy in the sample 
size and acceptance number reduces. For example, under the uncertainty, when AQL = 0.001 and 
LQL = 0.02, the sample size will be in the interval [18,20]. This means the industrial engineers should 
select a sample size between 18 and 20. Furthermore, for the smaller values of AQL and LQL, larger 
the values of 𝑛ே𝜖ሼ𝑛௅, 𝑛௎ሽ are required. Note here that the appropriate sample size is decided on the 
basis of pre-defined parameters, such as AQL, LQL, 𝛼, and 𝛽. The following algorithm is used to 
determine the neutrosophic plan parameters: 

1. Specify the values of AQL, LQL, 𝛼 and 𝛽. 
2. Specify the suitable ranges for 𝑛ே𝜖ሼ𝑛௅, 𝑛௎ሽ  such that 𝑛௅ < 𝑛௎   and 𝑘ே𝜖ሼ𝑘௔௅, 𝑘௔௎ሽ such that 𝑘௔௅ < 𝑘௔௎.  
3. Perform the simulation by the grid search method and select those values of the neutrosophic 

plan parameters where 𝑛ே𝜖ሼ𝑛௅, 𝑛௎ሽ and satisfy the conditions given in Equations (7)–(9).  

Table 1. The plan parameters of the plan when 𝜶 = 𝟎. 𝟎𝟓, 𝜷 = 0.10 

p1 p2 𝒏𝑵 𝒌𝑵  𝑳𝑵ሺ𝒑𝟏ሻ 𝑳𝑵ሺ𝒑𝟐ሻ 
0.001 0.002 [602, 643] [1.093, 1.095] [0.9500, 0.95033] [0.0441, 0.0891] 

 0.003 [218, 228] [1.052, 1.054] [0.9500, 0.9505] [0.06223, 0.0898] 
 0.004 [128, 133] [1.022, 1.024] [0.9506, 0.9513] [0.0700, 0.0914] 
 0.006 [69, 71] [0.978, 0.980] [0.9513, 0.9517] [0.0807, 0.0969] 
 0.008 [47, 49] [0.946, 0.948] [0.9506, 0.9528] [0.0848, 0.0977] 
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 0.010 [36, 38] [0.921, 0.923] [0.9502, 0.9504] [0.0849, 0.0958] 
 0.015 [24, 28] [0.874, 0.876] [0.9541, 0.9675] [0.0914, 0.0959] 
 0.020 [18, 20] [0.842, 0.844] [0.9521, 0.9614] [0.0761, 0.0823] 

0.0025 0.030 [21, 23] [0.793, 0.795] [0.9529, 0.9606] [0.0923, 0.0995] 
 0.050 [13, 15] [0.731, 0.735] [0.9567, 0.9674] [0.0607, 0.0754] 

0.005 0.050 [19, 21] [0.730, 0.732] [0.9512, 0.9599] [0.0897, 0.0967] 
 0.100 [9, 11] [0.631, 0.633] [0.9575, 0.9740] [0.0957, 0.0961] 

0.01 0.020 [274, 290] [0.854, 0.856] [0.9500, 0.9504] [0.0513, 0.0881] 
 0.030 [95, 99] [0.803, 0.805] [0.9504, 0.9512] [0.0696, 0.0918] 

0.03 0.060 [165, 174] [0.718, 0.720] [0.9503, 0.9509] [0.0581, 0.0903] 
 0.090 [55, 57] [0.659, 0.661] [0.9505, 0.9511] [0.0756, 0.0950] 

0.05 0.100 [123, 129] [0.647, 0.649] [0.9502, 0.9505] [0.0690, 0.0986] 
 0.150 [41, 43] 0.584, 0.586 0.9509, 0.9530 0.0736, 0.0911 

3. Comparison Study 

In this section, we will compare the efficiency of the proposed plan with the sampling plan using 
classical statistics in terms of the sample size required for the inspection of the submitted product lot. 
For a fair comparison, we will consider the same values of all the specified parameters. The sample 
size 𝑛ே along with range (R = 𝑛௎ − 𝑛௅) in the indeterminacy interval of the proposed plan and sample 
size 𝑛 using classical statistics when 𝛼 = 0.05, 𝛽 = 0.10 are placed in Table 2. From Table 2, it can be 
noted that the proposed plan provides a smaller indeterminacy interval in the sample size as 
compared to the plan using classical statistics. For example, when AQL = 0.001 and LQL = 0.002, the 
proposed plan has 𝑛ே ∈ [602,643] while the existing plan has 𝑛=1134. Therefore, the proposed plan 
needs a smaller sample size and range in the indeterminacy interval for the inspection of a product 
lot. From this comparison, it is quite clear that the proposed plan using neutrosophic statistics is more 
efficient than the existing sampling plan under classical statistics in terms of sample size. In addition, 
the proposed plan is quite suitable, effective, and informative to be used in uncertainty than the 
existing plan.  

Table 2: The comparison of proposed plan and the plan based on classical statistics. 

p 1 p 2 
Proposed Plan Plan based on Classical Statistics 𝒏𝑵 𝒏 

0.001 0.002 [602, 643] (R = 41) 1134 (R = 1134) 
 0.003 [218, 228] (R = 10) 351 (R = 351) 
 0.004 [128, 133] (R = 5) 161 (R = 161) 
 0.006 [69, 71] (R = 2) 74 (R = 74) 
 0.008 [47, 49] (R = 2) 47 (R = 47) 

0.01 0.020 [274, 290] (R = 16) 449 (R = 449) 
 0.030 [95, 99] (R = 4) 132 (R = 132) 

0.03 0.060 [165, 174] (R = 9) 240 (R = 240) 
 0.090 [55, 57] (R = 2) 68 (R = 68) 

0.05 0.100 [123, 129] (R = 6) 167 (R = 167) 
 0.150 [41, 43] (R = 2) 46 (R = 46) 

4. Application of the Proposed Plan 

In this section, we will give the application of the proposed plan using the data of the amplified 
pressure sensor that came from industry. Viertl [29] commented that the observations obtained from 
the measurements are not usually precise. According to [40] “For this amplified pressure sensor 
process, the span is the focused characteristic”. As the observations for the quality of interest are 
measured, some observations in the data may be indeterminate or imprecise. Under the uncertainty, 
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the experimenter is not sure about the sample size for the inspection of a product lot when some 
indeterminate or imprecise observations are recorded. For this data, LSL = 1.9 V, USL 2.1. Suppose 
that AQL = 0.001, LQL = 0.04,𝛼 = 0.05, and 𝛽 = 0.10. The neutrosophic plan parameters from Table 1 
are 𝑛ே𝜖ሼ128,133ሽ. Thus, the experimenter should select a random sample between 128 and 133. 
Suppose that the industrial engineers decided to select a random sample size of 128 for the inspection 
of a product lot. The amplified pressure sensor data of 𝑛 = 128 having some indeterminate 
observations are reported in Table 3. Based on the given data, the neutrosophic average and standard 
deviation (SD) are computed as follows: 𝑋തே = [ଵ.ଽସଶଶ,ଵ.ଽସଶଶ]ା[ଵ.ଽ଺ହଵ,ଵ.ଽ଺ହଵ]ା[ଶ.଴ଶଷ଴,ଶ.଴ଶଷ଴]ା⋯ା[ଵ.ଽଽଽସ,ଵ.ଽଽଽସ],[ଵ.ଽସଶଶ,ଵ.ଽସଶଶ]ା[ଵ.ଽ଺ହଵ,ଵ.ଽ଺ହଵ]ା[ଶ.଴ସଷହ,ଶ.଴ସଷହ]ା⋯ା[ଶ.଴ହଵଶ,ଶ.଴ହଵଶ]ଵଶ଼ = [1.9805,1.9827]  
and, similarly, 𝑠ே = ሼ0.0193,0.0225ሽ.    
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Table 3. Indeterminate data of Amplified Sensors from [40].  

[1.9422,1.9422] 
[1.9651, 
1.9651] 

[2.0230, 
2.0435] 

[1.9712,1.9712] [1.9975,1.9975] [2.0164,2.0164] [1.9927,1.9927] [1.9566,1.9566] 

[1.9738, 
1.9738] 

[1.9541, 
1.9541] 

[1.9800, 
1.9800] 

[1.9596, 
1.9596] 

[1.9811, 
1.9811] 

[2.0088, 
2.0088] 

[1.9858, 
1.9858] 

[1.9677, 1.9677] 

[2.0001, 
2.0001] 

[1.9659, 
1.9659] 

[1.9955, 
1.9955] 

[1.9842, 
1.9842] 

[1.9909,2.0512] 
[1.9829, 
1.9829] 

[1.9684, 
1.9684] 

[1.9942, 1.9942] 

[1.9897, 
1.9897] 

[1.9836, 
1.9836] 

[1.9891, 
1.9891] 

[1.9608, 
1.9608] 

[2.0109, 
2.0109] 

[1.9912, 
1.9912] 

[2.0077, 
2.0077] 

[1.9803, 1.9803] 

[2.0106, 
2.0106] 

[1.9885, 
1.9885] 

[1.9704, 
1.9704] 

[1.9882, 
1.9882] 

[1.9689, 
1.9689] 

[1.9553, 
1.9553] 

[1.9741, 
1.9741] 

[1.9825, 1.9825] 

[1.9640, 
1.9640] 

[2.0187, 
2.0187] 

[1.9616, 
1.9616] 

[1.9865, 
1.9865] 

[1.9556, 
1.9556] 

[1.9817, 
1.9817] 

[1.9774, 
1.9774] 

[1.9316, 1.9316] 

[1.9841, 
1.9841] 

[1.9919, 
1.9919] 

[1.9737, 
1.9737] 

[1.9958, 
1.9958] 

[2.0121, 
2.0121] 

[2.0021, 
2.0521] 

[1.9665, 
1.9665] 

[1.9773, 1.9773] 

[1.9841, 
1.9841] 

[1.9570, 
1.9875] 

[1.9610, 
1.9610] 

[2.0015, 
2.0015] 

[1.9750, 
1.9750] 

[1.9825, 
1.9825] 

[1.9758, 
1.9758] 

[1.9682, 1.9682] 

[1.9668, 
1.9668] 

[1.9696, 
1.9696] 

[2.0334, 
2.0334] 

[1.9656, 
1.9656] 

[1.9819, 
1.9819] 

[2.0116, 
2.0116] 

[1.9754, 
1.9754] 

[1.9986, 1.9986] 

[2.0114, 
2.0114] 

[1.9861, 
1.9861] 

[1.9743, 
1.9743] 

[1.9594, 
1.9594] 

[1.9712,1.9914] 
[1.9849, 
1.9849] 

[1.9711, 
1.9711] 

[1.9486, 1.9486] 

[1.9837, 
1.9837] 

[1.9424, 
1.9424] 

[1.9744, 
1.9744] 

[1.9605, 
1.9605] 

[1.9719, 
1.9719] 

[1.9656, 
1.9656] 

[1.9549, 
1.9549] 

[2.0174, 2.0174] 

[1.9779, 
1.9779] 

[2.0072, 
2.0072] 

[1.9875, 
1.9875] 

[1.9781, 
1.9781] 

[1.9834, 
1.9834] 

[1.9893, 
1.9893] 

[1.9276, 
1.9276] 

[1.9513 , 
1.9513] 

[1.9971, 
1.9971] 

[1.9963, 
1.9963] 

[1.9375, 
1.9375] 

[1.9941, 
1.9941] 

[1.9763, 
1.9763] 

[2.0108, 
2.0108] 

[1.9687, 
1.9687] 

[1.9559, 1.9559] 

[1.9611, 
1.9611] 

[1.9729, 
1.9729] 

[1.9992, 
1.9992] 

[1.9925, 
1.9925] 

[2.0073, 
2.0073] 

[1.9742, 
1.9742] 

[1.9557, 
1.9557] 

[1.9726, 1.9726] 

[1.9964, 
1.9964] 

[1.9614, 
1.9614] 

[1.9768, 
1.9768] 

[1.9991, 
1.9991] 

[1.9832, 
1.9832] 

[1.9847, 
1.9847] 

[1.9849, 
1.9849] 

[1.9918, 1.9918] 

[1.9748, 
1.9748] 

[1.9664, 
1.9664] 

[2.0035, 
2.0245] 

[1.9822, 
1.9822] 

[1.9882,1.9999] 
[1.9809, 
1.9809] 

[1.9920, 
1.9920] 

[1.9994,2.0512] 
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The NPCI is computed as follows: 𝐶መே೛ೖ = 𝑀𝑖𝑛 ቄ௎ௌ௅ି௑തಿଷ௦ಿ , ௑തಿି௅ௌ௅ଷ௦ಿ ቅ , 𝐶መே೛ೖ𝜖 [1.7377,2.0639] for 𝑋തே =[1.9805,1.9827] and 𝑠ே = ሼ0.0193,0.0225ሽ.  
The proposed plan will be implemented as follows:  

Step 1: Select a random sample of size 𝑛ே =  ሼ128,133ሽ  from a product lot. Compute the 
statistic 𝐶෡ே೛ೖ𝜖 [1.7377,2.0639].  
Step 2: Accept a product lot as [1.7377,2.0639] ≥ ሼ1.022,1.024ሽ.  

The application of the proposed sampling plan shows that the proposed sampling plan is quite 
effective, adequate, and flexible to be used under the uncertainty environment than the plan based 
on classical statistics which provide the determined values of the plan parameters. 

5. Concluding Remarks 

In this paper, we originally proposed a variable sampling plan for the PCI under the 
neutrosophic logic. We presented the NPCI in the paper and used it to design the sampling plan. The 
proposed plan is the extension of the plan using classical statistics which can be applied where data 
is indeterminate or unclear. The plan parameters are presented for practical use in industry. A real 
example from industry is also added to show the application of the proposed sampling plan. The 
proposed plan is designed under the assumption that the data follow the neutrosophic normal 
distribution which can be tested using some statistical test or graphical depictions. For non-normal 
data, a suitable transformation can be applied to transfer non-normal data to normal data. From the 
comparison study, it is concluded that the proposed plan is more efficient than the plan based on 
classical statistics in terms of sample size. It is recommended to use the proposed plan in the industry 
where the data came from the complex situation or where there is a chance of some unclear data in 
the sampling. The proposed sampling plan using a double sampling scheme will be considered as a 
future research. The proposed plan using big data can be considered as future research.  
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