
Research Article
Integrated Weighted Distance Measure for Single-Valued
Neutrosophic Linguistic Sets and Its Application in
Supplier Selection

Erhua Zhang, Fan Chen, and Shouzhen Zeng

School of Business, Ningbo University, Ningbo 315211, China

Correspondence should be addressed to Shouzhen Zeng; zszzxl@163.com

Received 15 June 2020; Accepted 1 September 2020; Published 15 September 2020

Academic Editor: Lemnaouar Zedam

Copyright © 2020 Erhua Zhang et al. )is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

)e purpose of this study is to propose an integrated distance-based methodology for multiple attribute group decision making
(MAGDM) within single-valued neutrosophic linguistic (SVNL) environments. A new SVNL distancemeasure, namely the SVNL
integrated weighted distance (SVNLIWD) measure, is first developed for achieving the aim. )e remarkable feature of the
SVNLIWD is that it integrates both merits of ordered weighting and average weighting into aggregating SVNL distances;
therefore, it can account for both the importance of aggregated deviations as well as ordered positions. )us, it can highlight the
decision makers’ subjective risk attitudes and combine the importance of objective decision information. Some distinctive
characteristics and special forms of the presented distance framework are then specifically studied. Moreover, a MAGDMmodel
on the basis of the proposed SVNLIWD form is formulated. Finally, an illustrative numerical case regarding selecting low-carbon
supplier is used to test the performance of the designed method.

1. Introduction

With the increasing vagueness and uncertainties of objects
in multiple attribute group decision making (MAGDM)
problems, people may find it more and more difficult to
express accurate evaluation on the attributes during decision
process. )erefore, it has become a hot issue in decision
making areas to research a scientific and reasonable tool for
handling such vague and uncertain information. Linguistic
term sets [1, 2], intuitionistic fuzzy sets (FSs) [3], hesitant FSs
[4], single-valued neutrosophic sets (SVNSs) [5], Pythago-
rean FSs [6], and spherical FSs [7] emerge at a historic
moment in recent years, which have been widely used to
express uncertainties or vagueness in various complex de-
cision making situations. )e emergence of these methods
greatly reduces the pressure of decision makers’ depiction of
the fuzziness of evaluation objects in the process of decision
making.

Generally speaking, due to the complexity of people’s
judgement and the fuzziness of objective things, people tend

to use language terms instead of actual values or fuzzy values.
However, the use of linguistic variables usually means that
the truth degree of a linguistic term is 1, while the degrees of
indeterminacy and falsity cannot be described. )is defect
hinders its application in decision making problems. To
improve this limitation, a new powerful fuzzy tool intro-
duced by Ye [8], called the single-valued neutrosophic
linguistic set (SVNLS), has attracted growing concerns from
worldwide authors. )e key feature of the SVNLS is that it
takes advantage of both the linguistic terms and SVNSs, and
thus, it can successfully describe the uncertain information
comprehensively and reasonably. In addition, it can elimi-
nate the limitations of intuitionistic linguistic set [9] and the
Pythagorean linguistic set [10] as it has three membership
(i.e., truth, indeterminacy, and falsity) elements, which
makes it more suitable to handle a higher degree of imprecise
evaluations.

From the latest research trends, it can be seen that the
SVNLS is widely used to deal with MAGDM problems in
uncertain and complex environments. Guo and Sun [11]
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gave a SVNL decision making using prospect theory. Zhao
et al. [12] developed some induced Choquet integral
weighted operators for SVNLS and explored their applica-
tion in MAGDM. Ye [8] extended the classic TOPSIS to
handle SVNL information and investigated its application in
selecting investment context. Ye [13] introduced several
neutrosophic linguistic aggregation methods and used them
to select the flexible operating system supplier. Wang et al.
[14] studied the usefulness of Maclaurin symmetric mean
technique in aggregating SVNL preferences. Chen et al. [15]
presented a new aggregated SVNL distance framework by
utilizing the ordered weight technique. Based on the results
obtained by Chen et al. [15], Cao et al. [16] introduced a
combined SVNL distance measure. Kazimieras et al. [17]
constructed a WASPAS model to solve SVNL MAGDM
problems. Garg and Nancy [18] introduced some prioritized
weighted methods to aggregate SVNL information with
priority among the attributes.

In MAGDM problems, it is often necessary to measure
the deviations between the alternatives and certain ideal
schemes, wherein the construction of the distance mea-
sure plays a decisive role. Until now, the weighted distance
(WD) and the ordered weighted averaging (OWAD)
measures [19] are two most widely used tools for reflecting
deviations in practical application. In general, the WD
measure can account for the importance of the attributes,
while the OWAD measure is helpful to highlight decision
makers’ risk attitude through the weight designing
schemes in the aggregation process. At present, numerous
OWAD’s extensions and their corresponding usefulness
in MAGDM problems have shown an increasing trend in
recent research, such as the induced OWAD [20, 21],
probabilistic OWAD [22], continuous OWAD [23],
intuitionistic fuzzy OWAD [24], hesitant fuzzy OWAD
[25, 26], intuitionistic fuzzy weighted induced OWAD
[27], and Pythagorean OWAD measures [28, 29]. In
particular, Chen et al. [15] defined the single-valued
neutrosophic linguistic OWAD (SVNLOWAD) measure
and explored its extension with the TOPSIS model for
handling MAGDM with SVNL information.

Following the previous literature analysis, one can see
that the SVNLS is regarded as a popularized tool, while the
OWAD measure is of great strategic significance mea-
surement tool and has shown its advantages in actual use.
)erefore, it is a very interesting topic to study the theo-
retical development and application of OWAD framework
in the SVNL context. For doing so, this paper tries to further
explore the usefulness of the OWAD in solving SVNL de-
cision making problems. To achieve this aim, we first de-
velop a new distance measure for SVNLSs, named the SVNL
integrated weighted distance (SVNLIWD)measure, which is
a useful extension of the existing SVNLOWAD measure.
Moreover, the SVNLIWDmeasure can overcome the defects
of the SVNLOWAD measure as it unifies the superiority of
the weighted distance and ordered weighted distance. Sev-
eral properties and main families of the proposed distance
measures are then explored. A MAGDM framework based
on the SVNLIWDmeasure is constructed and its application
is verified.

)e remainder of this research is carried out as follows:
Section 2 reviews some concepts of SVNLS and the OWAD
measure. Section 3 proposes the SVNLIWD measure and
explores some of its properties and families. Section 4mainly
describes the usefulness of the proposed SVNLIWD in
MAGDM field. In Section 5, feasibility and effectiveness of
the presentedmethod are discussed through comparing with
existing methods. Finally, Section 6 makes a systematic
summary of this paper.

2. Preliminaries

Some important concepts concerning the definitions of the
SVNLS, the OWAD, and the SVNLOWAD measures are
briefly reviewed in this section.

2.1. Single-Valued Neutrosophic Set (SVNS). To improve the
computational efficiency of the neutrosophic set [30], Ye [5]
gave the definition of SVNS.

Definition 1 (see [5]). A single-valued neutrosophic set
(SVNS) Z in finite set X is denoted by a mathematical form
as follows:

Z � 〈x, TZ(x), IZ(x), FZ(x)〉
􏼌􏼌􏼌􏼌 , x ∈ X􏽮 􏽯, (1)

where TZ(x), IZ(x), and FZ(x), respectively, denote the
truth, the indeterminacy, and the falsity-membership
functions, and they must satisfy the following conditions:

0≤TZ(x), IZ(x), FZ(x)≤ 1,

0≤TZ(x) + IZ(x) + FZ(x)≤ 3.
(2)

)e triplet (TZ(x), IZ(x), FZ(x)) is named SVN
number (SVNN) and simply described as Z � (TZ, IZ, FZ).
Let y � (Ty, Iy, Fy) and z � (Tz, Iz, Fz) be two SVNNs;
some mathematical operational rules are given as follows
[30]:

(1) y⊕ z � (Ty + Tz − Ty ∗Tz, Iy ∗Tz, Fy ∗Fz)

(2) λy � (1 − (1 − Ty)λ, (Iy)λ, (Fy)λ), λ> 0
(3) yλ � ((Ty)λ, 1 − (1 − Iy)λ, 1 − (1 − Fy)λ), λ> 0

2.2. Linguistic Set. A linguistic term set S is generally defined
as a finitely ordered discrete set S � sα | α � 1, . . . , l􏼈 􏼉, where
l is an odd number and sα is a possible linguistic term. Let
l � 7; then, S shall be specified
S � s1, s2, s3, s4, s5, s6, s7􏼈 􏼉 � {extremely poor, very poor, poor,
fair, good, very good, extremely good}. Let si and sj be two
linguistic terms in S, and they should meet the following
rules [1]:

(1) si ≤ sj⟺ i≤ j

(2) Neg(si) � s− i

In practical application, discrete set S shall be extended
into a continuous set S � sα | α ∈ R􏼈 􏼉 for minimizing in-
formation loss. In this case, for sα, sβ ∈ S, they shall meet the
following operational laws [31]:
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(1) sα ⊕ sβ � sα+β

(2) μsα � sμα, μ≥ 0
(3) (sα/sβ) � s(α/β)

2.3. Single-Valued Neutrosophic Linguistic Set (SVNLS)

Definition 2 (see [8]). )emathematical form of a SVNLS in
X is described as in

P � 〈x, sθ(x), TP(x), IP(x), FP(x)( 􏼁􏽨 􏽩〉
􏼌􏼌􏼌􏼌􏼌 , x ∈ X􏼚 􏼛,

(3)

where sθ(x) ∈ S, while Tp(x), Ip(x), and Fp(x) have the
following constraints:

0≤Tp(x), Ip(x), Fp(x)≤ 1,

0≤Tp(x) + Ip(x) + Fp(x)≤ 3.
(4)

For a SVNLS P in X, the SVNL number (SVNLN)
〈sθ(x), (TP(x), IP(x), FP(x))〉 is simply formulated as x �

〈sθ(x), (Tx, Ix, Fx)〉 for the convenience of application. Let
xi � 〈sθ(xi)

, (Txi
, Ixi

, Fxi
)〉(i � 1, 2) be two SVNLNs; then,

the following are considered:

(1) x1 ⊕ x2 � 〈sθ(x1)+θ(x2), (Tx1
+ Tx2

− Tx1
∗Tx2

, Ix1
∗

Tx2
, Fx1
∗Fx2

)〉

(2) λx1 � 〈sλθ(x1), (1 − (1 − Tx1
)λ, (Ix1

)λ, (Fx1
)λ)〉, λ> 0

(3) xλ
1 � 〈sθλ(x1)

, ((Tx1
)λ, 1 − (1 − Ix1

)λ, 1 − (1−

Fx1
)λ)〉, λ> 0

Definition 3 (see [8]). Let λ> 0; then, the distance measure
between SVNLNs xi � 〈sθ(xi)

, (Txi
, Ixi

, Fxi
)〉(i � 1, 2) is de-

fined as follows:

dSVNL x1, x2( 􏼁 � θ x1( 􏼁Tx1
− θ x2( 􏼁Tx2

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
λ

+ θ x1( 􏼁Ix1
− θ x2( 􏼁Ix2

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
λ

+ θ x1( 􏼁Fx1
− θ x2( 􏼁Fx2

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
λ

􏼔 􏼕
(1/λ)

. (5)

On the basis of Definition 3, the SVNL weighted distance
(SVNLWD) measure is formulated in equation (6) if we
consider different importance for the individual deviation:

SVNLWD x1, x1′( 􏼁, . . . , xn, xn
′( 􏼁( 􏼁 � 􏽘

n

j�1
wjdSVNL xj, xj

′􏼐 􏼑,

(6)

where the relative weight vector W satisfies wj ∈ [0, 1] and
􏽐

n
j�1 wj � 1.

2.4. OWAD Measure. )e OWAD measure introduced by
Merigó and Gil-Lafuente [19] is used to characterize indi-
vidual distances on the basis of the ordered weighted av-
eraging method [32]. Let η � η1, η2, . . . , ηn􏼈 􏼉 and
c � c1, c2, . . . , cn􏼈 􏼉 be two crisp sets and di � |ηi − ci| be the
distance between the crisp numbers ηi and ci; then, we can
define the OWAD measure as follows.

Definition 4 (see [19]). An OWAD measure with the
weighting vector W � wj | 􏽐

n
i�1 wj � 1, 0≤wj ≤ 1􏽮 􏽯 is

defined as

OWAD(A, B) � OWAD d1, . . . , dn( 􏼁 � 􏽘
n

j�1
wjdσ(j), (7)

where dσ(j)(j � 1, . . . , n) is the reorder values of
dj(j � 1, . . . , n), such that dσ(1) ≥ . . . ≥ dσ(n).

)e OWAD measure is generally effective for crisp sets.
In order to adapt the OWAD measure to deal with SVNL
information, Chen et al. [15] developed the SVNLOWAD
measure.

Definition 5 (see [15]). Let dSVNL(xj, xj
′) be the deviation

between two SVNLNs xj, xj
′ (j � 1, . . . , n) defined in

equation (5); then, SVNLOWAD measure is defined as

SVNLOWAD x1, x1′( 􏼁, . . . , xn, xn
′( 􏼁( 􏼁 � 􏽘

n

j�1
wjdSVNL xσ(j), x(j)

′􏼐 􏼑,

(8)

where dSVNL(xσ(j), xσ(j)
′) (j � 1, . . . , n) is the reorder

values of dSVNL(xj, xj
′) (j � 1, . . . , n) such that

dSVNL(xσ(1), xσ(1)
′)≥ . . . ≥dSVNL(xσ(n), xσ(n)

′).
w � (w1, . . . , wn)T is the associated weighting vector of the
SVNLOWAD measure, satisfying 􏽐

n
j�1 wj � 1 and

wj ∈ [0, 1].
Chen et al. [15] explored some characteristics of the

SVNLOWAD measure, such as commutativity, bounded-
ness, idempotency, and monotonicity. Moreover, they
verified its desired performance in solving SVNL MAGDM
problems by constructing a new TOPSIS model. However,
the SVNLOWADmeasure has some shortcomings; that is, it
can only integrate the decision makers’ special interests but
fails to account for the weights of attributes in aggregation
outcomes, which goes against its further application. So we
shall present a new SVNL distance measure in the next
section.

3. SVNL Integrated Weighted Distance
(SVNLIWD) Measure

)e SVNL integrated weighted distance (SVNLIWD) is a
new extension of SVNL distance that unifies both the merits
of the SVNLOWAD and the the SVNLWD measures.
)erefore, it can highlight the decision makers’ attitudes
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through the ordered weighted arguments and combine the
importance of attributes’ weights in decision making.
Moreover, it enables decision makers the chance to flexibly
change the weight ratio of the SVNLWD and the
SVNLOWAD according to the demands for the specific
problem or actual preferences.

Definition 6. Let dSVNL(xj, xj
′) be the distance between two

SVNLNs xj, xj
′(j � 1, . . . , n) described as in equation (5); if

SVNLIWD x1, x1′( 􏼁, . . . , xn, xn
′( 􏼁( 􏼁 � 􏽘

n

j�1
wjdSVNL xσ(j), x

’
(j)􏼐 􏼑,

(9)

then the SVNLIWD is called the SVNL integrated weighted
distance measure, where dSVNL(xσ(j), x’

σ(j)) (j � 1, . . . , n)

is the reorder values of dSVNL(xj, xj
′) (j � 1, . . . , n) such

that dSVNL(xσ(1), x’
σ(1))≥ . . . ≥ dSVNL(xσ(n), x’

σ(n)). )e in-
tegrated weightwj is determined by two weight values: one is
the weight wj for the OWA satisfying 􏽐

n
j�1 wj � 1 and

wj ∈ [0, 1], and the other is the weight ωj for weighted
average with 􏽐

n
j�1 ωj � 1 and ωj ∈ [0, 1]. )e unified weight

wj(j � 1, . . . , n) is defined as

wj �
w

θ
jω

1− θ
σ(j)

􏽘

n

j�1
w

θ
jω

1− θ
σ(j)􏼐 􏼑

,
(10)

with θ ∈ [0, 1] and ωσ(j) is the reordered element of the
weight ωj.

Following the Definition 6, one can see that the
SVNLIWD is generalized to the SVNLWD and SVNLO-
WAD measures when θ � 0 and θ � 1, respectively. )us,
the SVNLIWD measure is a generalized model that unifies
the SVNLWD, SVNLOWAD, and many other existing
distance measures. A mathematical example is utilized to
illustrate the computational process of the SVNLIWD
measure.

Example 1. Let X � (x1, x2, x3, x4, x5) � (〈s3, (0.6, 0.3,

0.1)〉, 〈s5, (0.2, 0.5, 0.5)〉, 〈s6, (0.7, 0.1, 0.1)〉, 〈s1, (0.6, 0.1,

0.6)〉, 〈s4, (0.3, 0.1, 0.9)〉) and X′ � (x1′, x2′, x3′, x4′, x5′) �

(〈s5, (0.2, 0.9, 0)〉, 〈s4, (0.5, 0.7, 0.2)〉, 〈s5, (0.4, 0.4, 0.5)〉,

〈s3, (0.5, 0.7, 0.2)〉, 〈s3, (0.4, 0.2, 0.6)〉) be two SVNLSs de-
fined in set S � s1, s2, s3, s4, s5, s6, s7􏼈 􏼉. )e weighting vector
of SVNLIWD measure is supposed to be
w � (0.3, 0.15, 0.25, 0.2, 0.1)T. )en, the computational
process through the SVNLUWD can be performed as
follows:

(1) Calculate distances dSVNL(xi, xi
′) (i � 1, 2, . . . , 5)

according to equation (5) (let λ � 1):

dSVNL x1, x1′( 􏼁 � |3 × 0.6 − 5 × 0.2| +|3 × 0.3 − 5 × 0.9| +|3 × 0.1 − 5 × 0| � 4.7,

dSVNL x2, x2′( 􏼁 � |5 × 0.2 − 4 × 0.5| +|5 × 0.5 − 4 × 0.7| +|5 × 0.5 − 4 × 0.2| � 3,

dSVNL x3, x3′( 􏼁 � |6 × 0.7 − 5 × 0.4| +|6 × 0.1 − 5 × 0.4| +|6 × 0.1 − 5 × 0.5| � 5.5,

dSVNL x4, x4′( 􏼁 � |1 × 0.6 − 3 × 0.5| +|1 × 0.1 − 3 × 0.7| +|1 × 0.6 − 3 × 0.2| � 2.9,

dSVNL x5, x5′( 􏼁 � |4 × 0.3 − 3 × 0.4| +|4 × 0.1 − 3 × 0.2| +|4 × 0.9 − 3 × 0.6| � 2.

(11)

(2) Sort the d(xi, xi
′) (i � 1, 2, . . . , 5) in nonincreasing

order:

dSVNL xσ(1), x
’
σ(1)􏼐 􏼑 � dSVNL x3, x3′( 􏼁 � 5.5,

dSVNL xσ(2), x
’
σ(2)􏼐 􏼑 � dSVNL x1, x1′( 􏼁 � 4.7,

dSVNL xσ(3), x
’
σ(3)􏼐 􏼑 � dSVNL x2, x2′( 􏼁 � 3,

dSVNL xσ(4), x
’
σ(4)􏼐 􏼑 � dSVNL x4, x4′( 􏼁 � 2.9,

dSVNL xσ(5), x
’
σ(5)􏼐 􏼑 � dSVNL x5, x5′( 􏼁 � 2.

(12)
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(3) Let ω � (0.15, 0.2, 0.1, 0.35, 0.2)T and θ � 0.5; com-
pute the integrated weights wj according to equation
(10):

w1 �
w

0.5
1 ω1− 0.5

σ(1)

􏽘

n

j�1
w

0.5
j ω1− 0.5

σ(j)􏼐 􏼑

�
0.30.5

× 0.10.5

0.30.5
× 0.10.5

+ 0.150.5
× 0.150.5

+ 0.250.5
× 0.20.5

+ 0.20.5
× 0.350.5

+ 0.10.5
× 0.20.5

􏼐 􏼑
� 0.1791.

(13)

Similarly, we can obtain

w2 � 0.1901,

w3 � 0.2183,

􏽢w4 � 0.2366,

w5 � 0.1757.

(14)

(4) Utilize the SVNLIWD given in equation (9) to
compute the distance measure between X and X′:

SVNLIWD X, X′( 􏼁 � 0.1791 × 5.5 + 0.1901 × 4.7

+ 0.2183 × 3 + 0.2366 × 2.9

+ 0.1757 × 2 � 3.5719.

(15)

If we use the SVNLOWAD and the SVNLWD to per-
form the aggregation process, we have

SVNLOWAD X, X′( 􏼁 � 0.3 × 5.5 + 0.15 × 4.7 + 0.25 × 3

+ 0.2 × 2.9 + 0.1 × 2 � 3.885,

SVNLWD X, X′( 􏼁 � 0.15 × 4.7 + 0.2 × 3 + 0.1 × 5.5

+ 0.35 × 2.9 + 0.2 × 2 � 3.27.

(16)

Apparently, we obtain different results from three
methods. In fact, the SVNLWD model only considers the
importance of the individual deviations, while the
SVNLOWAD focuses on the weights of the ordered devi-
ations. )e SVNLIWD measure unifies the features of both
the SVNLOWAD and the SVNLWD measures, and thus, it
can not only highlight the ordered weights of positions but
also incorporate deviations’ importance.

Moreover, some particular SVNL weighted distance
measures can be obtained if we sign different weighted
schemes for the SVNLIWD measure:

(i) If w1 � 1 and wj � 0 for j ∈ [2, n], then we obtain
the max-SVNLIWD measure

(ii) If wn � 1 and wj � 0 for j ∈ [1, n − 1], then the min-
SVNLIWD measure is constructed

(iii) )e step-SVNLIWD measure is formed by signing
w1 � . . . � wk− 1 � 0, wk � 1, and
wk+1 � . . . � wn � 0

(iv) Other special cases of the SVNLIWD can be created
by using the similar methods provided in references
[15, 33–36]

)e SVNLIWD measure is monotonic, bounded,
idempotent, and commutative, which can be demonstrated
by following theorems.

Theorem 1 (monotonicity). If dSVNL(yi, yi
′)≥ dSVNL(xi, xi

′)
for all i, then the following feature holds:

SVNLIWD y1, y1′( 􏼁, . . . , yn, yn
′( 􏼁( 􏼁≥ SVNLIWD x1, x1′( 􏼁,(

. . . , xn, xn
′( 􏼁􏼁.

(17)

Theorem 2 (boundedness). Let dmin � min
i

dSVNL(xi, xi
′)􏼈 􏼉

and dmax � max
i

dSVNL(xi, xi
′)􏼈 􏼉; then,

dmin ≤ SVNLIWD x1, x1′( 􏼁, . . . , xn, xn
′( 􏼁( 􏼁≤dmax. (18)

Theorem 3 (idempotency). If dSVNL(xi, xi
′) � D for all i,

then

SVNLIWD x1, x1′( 􏼁, . . . , xn, xn
′( 􏼁( 􏼁 � D. (19)

Theorem 4 (commutativity). <is property can also be
rendered from the following equation:

SVNLIWD x1, x1′( 􏼁, . . . , xn, xn
′( 􏼁( 􏼁 � SVNLIWD x1′, x1( 􏼁,(

. . . , xn
′, xn( 􏼁􏼁.

(20)

It is noted that the proof of these theorems are omitted as
they are straightforward.

In addition, we can utilize the generalized mean method
[37] to achieve a more generalization for SVNL distance
measure, obtaining the SVNL generalized integrated
weighted distance (SVNLGIWD) measure:

Journal of Mathematics 5



SVNLGIWD x1, x1′( 􏼁, . . . , xn, xn
′( 􏼁( 􏼁 � 􏽘

n

j�1
wj dSVNL xσ(j), x

’
(j)􏼐 􏼑􏼐 􏼑

p
⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭

(1/p)

, (21)

where p is a parameter that meets p ∈ (− ∞, +∞) − 0{ }.
Several representative cases of the SVNLGIWDmeasure can
be determined based on the variation of parameter p; for
example, the SVNLIWD is formed when p � 1, the SVNL
integrated weighted quadratic distance (SVNLIWQD) is
obtained if p � 2, and the SVNL integrated weighted har-
monic distance (SVNLIWHD) is rendered if p � − 1. Many
other cases of the SVNLGIWD measure can be analyzed by
using the similar method provided in references [37–43].

4. Application of SVNLIWD in
MAGDM Problems

As a more representative distance measurement method, the
SVNLIWD can be broadly used in different areas, such as
social management, pattern recognition, decision making,
data analysis, medical diagnosis, and financial investment.
Subsequently, an application of the SVNLIWD measure in
MAGDM is presented within SVNL environments. Let A �

A1,A2, . . . ,An􏼈 􏼉 be a set of finite attributes and
B � B1,B2, . . . ,Bm􏼈 􏼉 be the set of schemes; then, the decision
procedure is summarized as follows.

Step 1. Each expert et(t � 1, 2, . . . , k) (the weight is δt with
δt ≥ 0 and 􏽐

k
t�1 δt � 1) expresses his or her evaluation on

each attribute of the assessed objects in the form of SVNLNs,
thus forming the individual SVNL decision matrix
Xt � (x

(t)
ij )m×n.

Step 2. Apply the SVNL weighted average (SVNLWA)
operator [8] to aggregate all individual evaluations into a
group decision matrix:

X � xij􏼐 􏼑
m×n

�

x11 · · · x1n

⋮ ⋱ ⋮

xm1 · · · xmn

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, (22)

where the SVNLN xij � 􏽐
k
t�1 δtx

(t)
ij .

Step 3. Determine the ideal gradation of each attribute to
construct the ideal solution shown in Table 1.

Step 4. Calculate the deviations between the alternative
Bi(i � 1, 2, ..., m) and the ideal alternative I by utilizing the
SVNLIWD measure.

Step 5. Rank all alternatives and select the best one(s)
according to the distances rendered from the previous step.

Step 6. End.

5. Application in Low-Carbon
Supplier Selection

)e green and low-carbon economic development mode has
received more and more attention from the governments
and enterprises all over the world. Choosing a suitable low-
carbon supplier has become an important issue for the
development of enterprises. As a result, many supplier se-
lection methods have been proposed in the existing litera-
ture [44, 45]. In this section, a mathematical case of selecting
a low-carbon supplier introduced by Chen et al. [15] is used
to verify the usefulness of the proposed method. A company
invites three experts to evaluate four potential low-carbon
suppliers Bi(i � 1, 2, 3, 4) from the following aspects: low-
carbon technology (A1), cost (A2), risk factor (A3), and
capacity (A4). )e SVNL decision matrices expressed by the
experts regarding these four attributes within set
S � s1, s2, s3, s4, s5, s6, s7􏼈 􏼉 are given in Tables 2–4.

)e weights of the experts are supposed to be δ1 � 0.30,
δ2 � 0.37, and δ3 � 0.33, respectively. )e group SVNL
decision matrix is then formed by aggregating the three
individual opinions, which are listed in Table 5.

According to the actual performance level of these al-
ternative companies, the experts determine the ideal scheme
listed in Table 6.

Let the weighting vectors of the SVNLIWDmeasure and
the attributes be w � (0.15, 0.3, 0.3, 0.25)T and
ω � (0.2, 0.3, 0.3, 0.2)T, respectively. According to the
available information, let the parameter θ � 0.5; then, the
SVNLIWD can be used to compute the deviations between
the alternative Bi(i � 1, 2, 3, 4) and the ideal supplier I:

SVNLIWD I, B1( 􏼁 � 5.0563,

SVNLIWD I, B2( 􏼁 � 5.7334,

SVNLIWD I, B3( 􏼁 � 6.5700,

SVNLIWD I, B4( 􏼁 � 6.5798.

(23)

)e smaller the value of SVNLIWD(I, Bi) is, the closer
the alternative Bi is to the ideal scheme and the better scheme
Bi is. )us, the ranking of all alternatives yields

B1≻B2≻B3≻B4. (24)

)e results show that B1 is the most desirable alternative
as it possesses the smallest distance from the ideal scheme.

To more effectively show the superiority of the
SVNLIWD measure, we also utilize the SVNLOWAD and
the SVNLWD measures to calculate the subsequent dis-
tances of each alternative to the ideal supplier. For the
SVNLOWAD measure, we have
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SVNLOWAD I, B1( 􏼁 � 5.0171,

SVNLOWAD I, B2( 􏼁 � 5.6742,

SVNLOWAD I, B3( 􏼁 � 6.5613,

SVNLOWAD I, B4( 􏼁 � 6.6086.

(25)

And for the SVNLWD measure, we have

SVNLWD I, B1( 􏼁 � 5.1268,

SVNLWD I, B2( 􏼁 � 5.8078,

SVNLWD I, B3( 􏼁 � 6.6038,

SVNLWD I, B4( 􏼁 � 6.5743.

(26)

Table 1: Ideal solution.

A1 A2 · · · An

I 􏽥y1 􏽥y2 . . . 􏽥yn

Table 2: SVNL decision matrix X1.

A1 A2 A3 A4

B1 〈s
(3)
5 , (0.7, 0.2, 0.1)〉 〈s

(3)
4 , (0.5, 0.2, 0.2)〉 〈s

(3)
3 , (0.4, 0.1, 0.1)〉 〈s

(3)
4 , (0.6, 0.1, 0.2)〉

B2 〈s
(3)
6 , (0.4, 0.6, 0.2)〉 〈s

(3)
4 , (0.7, 0.2, 0.2)〉 〈s

(3)
5 , (0.7, 0.2, 0.1)〉 〈s

(3)
5 , (0.5, 0.2, 0.3)〉

B3 〈s
(3)
4 , (0.3, 0.6, 0.2)〉 〈s

(3)
5 , (0.6, 0.1, 0.3)〉 〈s

(3)
4 , (0.6, 0.2, 0.1)〉 〈s

(3)
6 , (0.5, 0.1, 0.3)〉

B4 〈s
(3)
4 , (0.5, 0.2, 0.3)〉 〈s

(3)
6 , (0.6, 0.2, 0.4)〉 〈s

(3)
5 , (0.2, 0.1, 0.6)〉 〈s

(3)
6 , (0.5, 0.2, 0.3)〉

Table 3: SVNL decision matrix X2.

A1 A2 A3 A4

B1 〈s
(1)
6 , (0.6, 0.1, 0.2)〉 〈s

(1)
4 , (0.6, 0.1, 0.2)〉 〈s

(1)
3 , (0.3, 0.1, 0.2)〉 〈s

(1)
5 , (0.7, 0.0, 0.1)〉

B2 〈s
(1)
3 , (0.6, 0.2, 0.4)〉 〈s

(1)
5 , (0.6, 0.1, 0.2)〉 〈s

(1)
4 , (0.5, 0.2, 0.2)〉 〈s

(1)
6 , (0.6, 0.1, 0.2)〉

B3 〈s
(1)
5 , (0.3, 0.5, 0.2)〉 〈s

(1)
4 , (0.5, 0.2, 0.3)〉 〈s

(1)
3 , (0.5, 0.3, 0.1)〉 〈s

(1)
4 , (0.3, 0.2, 0.3)〉

B4 〈s
(1)
4 , (0.5, 0.3, 0.3)〉 〈s

(1)
5 , (0.4, 0.2, 0.3)〉 〈s

(1)
3 , (0.3, 0.2, 0.5)〉 〈s

(1)
5 , (0.4, 0.2, 0.3)〉

Table 4: SVNL decision matrix X3.

A1 A2 A3 A4

B1 〈s
(2)
6 , (0.6, 0.3, 0.3)〉 〈s

(2)
5 , (0.7, 0.2, 0.3)〉 〈s

(2)
4 , (0.4, 0.2, 0.2)〉 〈s

(2)
4 , (0.8, 0.1, 0.2)〉

B2 〈s
(2)
4 , (0.5, 0.4, 0.2)〉 〈s

(2)
6 , (0.7, 0.2, 0.3)〉 〈s

(2)
5 , (0.6, 0.2, 0.2)〉 〈s

(2)
6 , (0.7, 0.2, 0.3)〉

B3 〈s
(2)
5 , (0.4, 0.4, 0.1)〉 〈s

(2)
6 , (0.6, 0.3, 0.4)〉 〈s

(2)
4 , (0.6, 0.1, 0.3)〉 〈s

(2)
6 , (0.4, 0.2, 0.4)〉

B4 〈s
(2)
3 , (0.7, 0.1, 0.1)〉 〈s

(2)
6 , (0.5, 0.1, 0.2)〉 〈s

(2)
5 , (0.3, 0.1, 0.6)〉 〈s

(2)
5 , (0.4, 0.3, 0.4)〉

Table 5: Group SVNL decision matrix R.

A1 A2 A3 A4

C1 〈s5.70, (0.633, 0.180, 0.186)〉 〈s4.33, (0.611, 0.155, 0.229)〉 〈s3.67, (0.365, 0.128, 0.163)〉 〈s4.37, (0.714, 0.000, 0.155)〉

C2 〈s4.23, (0.514, 0.350, 0.258)〉 〈s4.70, (0.666, 0.155, 0.229)〉 〈s2.37, (0.602, 0.200, 0.162)〉 〈s5.70, (0.611, 0.155, 0.258)〉

C3 〈s4.70, (0.335, 0.491, 0.159)〉 〈s4.96, (0.566, 0.186, 0.330)〉 〈s3.37, (0.566, 0.185, 0.144)〉 〈s5.26, (0.399, 0.163, 0.330)〉

C4 〈s3.67, (0.578, 0.185, 0.209)〉 〈s5.63, (0.450, 0.159, 0.286)〉 〈s2.37, (0.271, 0.129, 0.561)〉 〈s5.30, (0.432, 0.229, 0.330)〉

Table 6: Ideal scheme.

A1 A2 A3 A4

I 〈s7, (0.9, 0.1, 0)〉 〈s7, (1, 0, 0.1)〉 〈s7, (0.9, 0, 0.1)〉 〈s6, (0.9, 0, 0)〉
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From the results, one can find that B1 is the best choice
for both the SVNLOWAD and SVNLWDmeasures, which is
consistent with the result obtained by the SVNLIWD
measure. However, from the comparisons with the
SVNLWD and SVNLOWAD measures discussed in the
previous example, one can see that the SVNLIWD measure
can not only overcome the SVNLWD’s disadvantage of just
considering the importance of attributes but also make up
for the SVNLOWAD’s defects of only reflecting expert’s risk
preference but fails to integrate attributes’ weights; therefore,
it can yield a more reasonable result. Furthermore, the
SVNLIWD-based MAGDM method will not be affected by
the parameter θ change, which can be verified by Figure 1.

Following the results from Figure 1, the best alternative is
A1 for all θ ∈ [0, 1]. It shows that the variation of parameter
θ will not affect the final integration results; that is, the
MAGDM approach based on the SVNLIWD will not be
affected by the parameter variation. )us, the proposed
method has certain stability and robustness.

6. Conclusions

)is paper introduces a new integrated aggregation distance
method for handling single-valued neutrosophic linguistic
MAGDM problems. )us, we obtain the SVNL integrated
weighted (SVNLIWD) measure. Given that the presented
distance measure generalizes both advantages of the arith-
metic weight and ordered weight approaches during ag-
gregating process, the importance for separate attributes and
attitudes towards ordered deviations is taken into account.
Moreover, the SVNLIWDmeasure generalizes a wide type of
SVNL distance measures, such as the SVNLWD and the
SVNLOWADmeasures.)erefore, it provides a much wider
model to solve complex situations in a more efficient and
flexible way, which further illustrates the promotion of the
previous methods. )e application of the proposed model is
taken to deal with the supplier selection problem, which

demonstrates that the presented methodology can consider
capricious decision makers’ preferences as well as the dif-
ferent importance of attributes during the decision process.
Finally, we verify that the presented SVNLIWD-based
MAGDM method will not be affected by the parameter
variation. )erefore, this method has certain stability and
robustness and can achieve more accurate results.

In future work, both extensions of mathematical formula
and application in different areas will be considered. Various
variables can be considered in the SVNLIWD for future
analysis, such as the induced variables, heavy aggregation,
and q-rung orthopair fuzzy set [46]. Also, the method of
entropy will be considered to account for the weighting
schemes.
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method for Pythagorean fuzzy multiple attribute group de-
cision making,” International Journal of Intelligent Systems,
vol. 33, no. 3, pp. 573–585, 2018.

[38] S. Zeng, D. Luo, C. Zhang, and X. Li, “A correlation-based
TOPSIS method for multiple attribute decision making with
single-valued neutrosophic information,” International
Journal of Information Technology & Decision Making, vol. 19,
no. 01, pp. 343–358, 2020.
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