
Afr. Mat.
DOI 10.1007/s13370-016-0416-1

Interval neutrosophic finite switchboard state machine

Tahir Mahmood1 · Qaisar Khan1

Received: 28 April 2015 / Accepted: 4 March 2016
© African Mathematical Union and Springer-Verlag Berlin Heidelberg 2016

Abstract In this paper we introduced the concept of interval neutrosophic finite state
machine, interval neutrosophic finite switchboard state machine using the notion of interval
neutrosophic set. We also introduced the concept of homomorphism and strong homomor-
phism of interval neutrosophic finite state machine.
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1 Introduction

The theory of fuzzy sets was introduced by Zadeh in 1965 [17] as a genralization of crisp 
sets. After the introduction of fuzzy sets many researcher applied the concept of fuzzy sets 
in various fields and achieved a great success. After that Zadeh made an extension of fuzzy 
sets and named this extension interval valued fuzzy set [18]. After these two extensions 
Attanasov introduced the concept of intutionistic fuzzy sets in 1986 [1]. That is representing 
objects by a membership and non membership fucntions. There were also other geralizations 
of fuzzy sets such as bipolar valued fuzzy set [8], vague sets [3], cubic sets [6], interval 
valued intutionistic fuzzy sets [2]. These were mathematical tools to discribe the uncertain-
ity. Florentin Smarandache [12,13] introduced the concept of neutrosophy and neutrosophic 
sets which was the genralization of fuzzy sets, intuitionistic fuzzy sets, interval valued fuzzy set 
and all defined extensions, defined above. The word “neutrosophy” etymologically,
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“neutro-sophy” (noun) comes from French neutre Latin neuter, neutral, and Greek sophia,
skill/wisdommeans knowledge of neutral thought. Neutrosophy is a branch of philospy intro-
duced by which studies the origin and scope of neutralities, as well as thier interaction with
ideational spectra. This theory considers every notion or idea 〈A〉 together with its opposite
or negation 〈antiA〉 and with their spectrum of neutralities 〈neutA〉 in between them (i.e.
notions or ideas supporting neither 〈A〉 nor 〈antiA〉). The 〈neutA〉 and 〈antiA〉 ideas together
are referred to as 〈nonA〉. Neutrosophy is a generalization of Hegel’s dialectics (the last
one is based on 〈A〉 and 〈antiA〉 only). While a “neutrosophic” (adjective), means having
the nature of, or having the characteristic of Neutrosophy. A.neutrosophic set A is charater-
ized by a truth membership function TA, Indeterminancy membership function IA, Falsity
membership function FA. Where TA, IA and FA are real standard and nonstandard subsets
of ]−0, 1+[. The neutrosophic sets is suitable for real life prolem, but it is difficult to apply
in scientific problems. The difference between neutrosophic sets and intuitionistic fuzzy sets
is that in neutrosophic sets the degree of indeterminancy is defined independently. To apply
neutrosophic set in real life and in scientific problems Wang et al. defined single valued
neutrosophic set and their set theoretic operators in 2011 [16]. In single valued neutrosophic
set closed interval [0, 1] can be taken instead of ]−0, 1+[. In 2005Wang et al. definend inter-
val neutrosophic set and thier set theoretic properties , convexcity, truth-favorite and falsity
favorite interval neutrosophic set [15]. Malik et al. introduced the concept of submachine
of fuzzy finite state machin, product of fuzzy finite state machine [10,11]. Malik et al. also
introduced subsystem of fuzzy finite state machine [9]. In 2002 Kumbhojkar and Chaudhari
introduced covering of fuzzy finite state machine [7]. Sato and Kuroki introduced fuzzy finite
switchboard state machine in 2002 [14]. After the introduction of fuzzy finite state machine
Jun in 2005 introduced the concept of intuitionistic fuzzy finite state state machine, intution-
istic submachine and their related propertis were discussed [4]. In 2006 Jun introduced the
concept of intuitionistic fuzzy finite switchboard state machine, commutative intuitionistic
fuzzy finite state machine and strong homomorphism [5]. In this paper we introduced the
concept of interval neutrosophic finite state machine, interval neutrosophic finite switch-
board state machine using the notion of interval neutrosophic set. We also introduced the
concept of homomorphism and strong homomorphism of interval neutrosophic finite state
machine.

2 Preliminaries

In this section we define some basic definitions about intuitionistic fuzzy set, interval neutro-
sophic set and intuitionistic fuzzy finite state machine, intuitionistic fuzzy finite switchboard
state machine defined in [1,4,5,15].

Definition 2.1 [1] An intutionistic fuzzy set on the universal set X is an object of the form

H = {〈a, μH (a), νH (a)〉|a ∈ X}
whereμH : X → [0, 1] andυH : X → [0, 1] are called themembership andnon-membership
functions respectively and the conditon that 0 ≤ μH (a) + νH (a) ≤ 1 for all a ∈ X.

Definition 2.2 [4] A triple M = (N ,U, H) is called intuitionistic fuzzy finite state machine.
In which N ,U, H are respectively, representing the set of states, the set of input symbols
and intuitionistic fuzzy sets in N ×U × N .
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Definition 2.3 [5] An intuitionistic fuzzy finite state machine M = (N ,U, H) is said to be
switching if it satisfies:

μH (r, a, s) = μH (s, a, r) and νH (r, a, s) = νH (s, a, r)

for all r, s,∈ N and a ∈ U .
An intutionistic fuzzy finite state machine M = (N ,U, H) is said to be commutative if it

satisfies:

μH (r, ab, s) = μH (r, ba, s) and νH (r, ab, s) = νH (r, ba, s)

for all r, s,∈ N and a, b ∈ U.

An intutionistic fuzzy finite state machine M = (N ,U, H) which is both switching and
commutative is called an intutionistic fuzzy finite switchboard state machine.

Definition 2.4 [15] Let X be a universal set. An interval neutrosophic set (I N S for short)
is of the form

S = {〈αS(a), βS(a), γS(a)〉|a ∈ X}
= {〈a, [inf αS(a), supαS(a)], [inf βS(a), supβS(a)], [inf γS(a), sup γS(a)]〉|a ∈ X}.

where αS(a), βS(a) and γS(a) respectively representing the truth-membership,
indeterminancy-memebership and falsity membership functions for each a ∈ X, αS(a),

βS(a), γS(a) ⊆ [0, 1] and the condition that 0 ≤ supαS(a) + supβS(a) + sup γS(a) ≤ 3.

Definition 2.5 [15] An INS S set is empty if inf αS(a) = supαS(a) = 0, inf βS(a) =
supβS(a) = 1, inf γS(a) = sup γS(a) = 1 for all a ∈ X.

Definition 2.6 [15] Let A and B be two INSs. Then A is contained in B if and only
if inf αA(a) ≤ inf αB(a), supαA(a) ≤ supαB(a), inf βA(a) ≥ inf βB(a), supβA(a) ≥
supβB(a), inf γA(a) ≥ inf γB(a), sup γA(a) ≥ sup γB(a).

3 Interval neutrosophic finite state machine

Definition 3.1 A triple M = (N ,U, S) is called interval neutrosophic finite state machine
(I N FSM for short), where N ,U are finite non-empty sets, called the set of states and input
symbols respectively, and S = 〈αS(a), βS(a), γS(a)〉 is an INS in N ×U × N .

The set of all words of finite length of U is denoted by U∗. The empty word is denoted
by ζ , and the length of each a ∈ U∗ is denoted by |a|.

Definition 3.2 Let M = (N ,U, S) be an INFSM. Define an INS S∗ = 〈αS∗(a), βS∗(a),

γS∗(a)〉 in N ×U∗ × N by

αS∗(r, ζ, s) :=
{
[1, 1] if r = s

[0, 0] if r 
= s

βS∗(r, ζ, s) :=
{
[0, 0] if r = s

[1, 1] if r 
= s
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and

γS∗(r, ζ, s) :=
{
[0, 0] if r = s

[1, 1] if r 
= s

αS∗(r, ab, s) = ∨v∈N [αS∗(r, a, v) ∧ αS(v, b, s)],
βS∗(r, ab, s) = ∧v∈N [βS∗(r, a, v) ∨ βS(v, b, s)]

and

γS∗(r, ab, s) = ∧v∈N [γS∗(r, a, v) ∨ γS(v, b, s)]
for all r, s ∈ N , a ∈ U∗ and b ∈ U.

Example 3.3 Let N = {r, s, v} and U = {a, b} and S be INS defined by

αS(r, a, v) = [0.1, 0.2], βS(r, a, v) = [0.4, 0.5], γS(r, a, v) = [0.5, 0.6]
αS(r, b, s) = [0.5, 0.7], βS(r, b, s) = [0.2, 0.3], γS(r, b, s) = [0.3, 0.4]
αS(s, a, v) = [0.2, o.3], βS(s, a, v) = [0.3, 0.4], γS(s, a, v) = [0.6, 0.7]
αS(v, a, v) = [0.3, 0.4], βS(v, a, v) = [0.35, 0.4], γS(v, a, v) = [0.4, 0.5]
αS(v, b, s) = [0.8, 0.9], βS(v, b, s) = [0, 0], γS(v, b, s) = [0.1, 0.2].

Then (N ,U, S) is an INFSM.
The transition daigram is given below:

Lemma 3.4 Let M = (N ,U, S) be an INFSM. Then

αS∗(r, ab, s) = ∨v∈N [αS∗(r, a, v) ∧ αS∗(v, b, s)]
βS∗(r, ab, s) = ∧v∈N [βS∗(r, a, v) ∨ βS∗(v, b, s)]

and

γS∗(r, ab, s) = ∧v∈N [γS∗(r, a, v) ∨ γS∗(v, b, s)]
for all r, s ∈ N and a, b ∈ U∗.
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Proof Let r, s ∈ N and a, b ∈ U∗. We prove the result by induction on |b| = k. If k = 0,
then b = ζ, and so ab = aζ = a. Hence

∨v∈N [αS∗(r, a, v) ∧ αS∗(v, b, s)] = ∨v∈N [αS∗(r, a, v) ∧ αS∗(v, ζ, s)]
= αS∗(r, a, s) = αS∗(r, ab, s),

∧v∈N [βS∗(r, a, v) ∨ βS∗(v, b, s)] = ∧v∈N [βS∗(r, a, v) ∨ βS∗(v, ζ, s)]
= βS∗(r, a, s) = βS∗(r, ab, s)

and

∧v∈N [γS∗(r, a, v) ∨ γS∗(v, b, s)] = ∧v∈N [γS∗(r, a, v) ∨ γS∗(v, ζ, s)]
= γS∗(r, a, s) = γS∗(r, ab, s).

So the result is true for k = 0. Suppose that the result is true for |c| = k − 1. That is for all
c ∈ U∗ such that |c| = k−1, k > 0. Let b = cd, where c ∈ U∗ and d ∈ U, and |c| = k−1.
Then

αS∗(r, ab, s) = αS∗(r, acd, s) = ∨v∈N [αS∗(r, ac, v) ∧ αS(v, d, s)]
= ∨v∈N [∨w∈N [αS∗(r, a, w) ∧ αS∗(w, c, v)] ∧ αS(v, d, s)]
= ∨v∈N [∨w∈N [αS∗(r, a, w) ∧ αS∗(w, c, v)] ∧ αS(v, d, s)]
= ∨v,w∈N [αS∗(r, a, w) ∧ αS∗(w, c, v) ∧ αS(v, d, s)]
= ∨w∈N [αS∗(r, a, w) (∨v∈N [ αS∗(w, c, v) ∧ αS(v, d, s))]
= ∨w∈N [αS∗(r, a, w) ∧ αS∗(w, cd, s)]
= ∨w∈N [αS∗(r, a, w) ∧ αS∗(w, b, s)],

βS∗(r, ab, s) = βS∗(r, acd, s) = ∧v∈N [βS∗(r, ac, v) ∨ βS(v, d, s)]
= ∧v∈N [∧w∈N [βS∗(r, a, w) ∨ βS∗(w, c, v)] ∨ βS(v, d, s)]
= ∧v,w∈N [βS∗(r, a, w) ∨ βS∗(w, c, v) ∨ βS(v, d, s)]
= ∧w∈N [βS∗(r, a, w) (∧v∈N [βS∗(w, c, v) ∨ βS(v, d, s))]
= ∧w∈N [βS∗(r, a, w) ∨ βS∗(w, cd, s)]
= ∧w∈N [βS∗(r, a, w) ∨ βS∗(w, b, s)]

and

γS∗(r, ab, s) = γS∗(r, acd, s) = ∧v∈N [γS∗(r, ac, v) ∨ γS(v, d, s)]
= ∧v∈N [∧w∈N [γS∗(r, a, w) ∨ γS∗(w, c, v)] ∨ γS(v, d, s)]
= ∧v,w∈N [γS∗(r, a, w) ∨ γS∗(w, c, v) ∨ γS(v, d, s)]
= ∧w∈N [γS∗(r, a, w) (∧v∈N [ γS∗(w, c, v) ∨ γS(v, d, s))]
= ∧w∈N [γS∗(r, a, w) ∨ γS∗(w, cd, s)]
= ∧w∈N [γS∗(r, a, w) ∨ γS∗(w, b, s)].

Therfore the result is true for |b| = n. This completes the proof. 
�

4 Interval neutrosophic finite switchboard state machine

Definition 4.1 An INFSM M = (N ,U, S) is said to be switching if it satisfies:

αS(r, a, s) = αS(s, a, r), βS(r, a, s) = βS(s, a, r)
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and

γS(r, a, s) = γS(s, a, r)

for all r, s ∈ N and a ∈ U.

An INFSM M = (N ,U, S) is said to be commutative if it satisfies:

αS(r, ab, s) = αS(r, ba, s), βS(r, ab, s) = βS(r, ba, s)

and

γS(r, ab, s) = γS(r, ba, s)

for all r, s ∈ N and a, b ∈ U.

If an INFSM M = (N ,U, S) is both switching and commutative, then it is called interval
neutrosophic finite switchboard state machine (INFSSM for short).

Proposition 4.2 If M = (N ,U, S) is a commutative INFSM, then

αS∗(r, ba, s) = αS∗(r, ab, s), βS∗(r, ba, s) = βS∗(r, ab, s)

and

γS∗(r, ba, s) = γS∗(r, ab, s).

for all r, s ∈ N and a ∈ U, b ∈ U∗.

Proof Let r, s ∈ N and a, b ∈ U∗. We prove the result by induction on |b| = k. If k = 0,
then b = ζ, hence

αS∗(r, ba, s) = αS∗(r, ζa, s) = αS∗(r, a, s) = αS∗(r, aζ, s) = αS∗(r, ab, s),

βS∗(r, ba, s) = βS∗(r, ζa, s) = βS∗(r, a, s) = βS∗(r, aζ, s) = βS∗(r, ab, s)

and

γS∗(r, ba, s) = γS∗(r, ζa, s) = γS∗(r, a, s) = γS∗(r, aζ, s) = γS∗(r, ab, s).

Therefore the result is true for k = 0. Suppose that the result is true for |c| = k − 1. That is
for all c ∈ U∗ with |c| = k − 1, k > 0. Let d ∈ U be such that b = cd. Then

αS∗(r, ba, s) = αS∗(r, cda, s) = ∨v∈N [αS∗(r, c, v) ∧ αS∗(v, da, s)]
= ∨v∈N [αS∗(r, c, v) ∧ αS∗(v, ad, s)]
= αS∗(r, cad, s)

= ∨v∈N [αS∗(r, ca, v) ∧ αS(v, d, s)]
= ∨v∈N [αS∗(r, ac, v) ∧ αS(v, d, s)]
= αS∗(r, acd, s) = αS∗(r, ab, s),

βS∗(r, ba, s) = βS∗(r, cda, s) = ∧v∈N [βS∗(r, c, v) ∨ βS∗(v, da, s)]
= ∧v∈N [βS∗(r, c, v) ∨ βS∗(v, ad, s)]
= βS∗(r, cad, s)

= ∧v∈N [βS∗(r, ca, v) ∨ βS(v, d, s)]
= ∧v∈N [βS∗(r, ac, v) ∨ βS(v, d, s)]
= βS∗(r, acd, s) = βS∗(r, ab, s)
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and

γS∗(r, ba, s) = γS∗(r, cda, s) = ∧v∈N [γS∗(r, c, v) ∨ γS∗(v, da, s)]
= ∧v∈N [γS∗(r, c, v) ∨ γS∗(v, ad, s)]
= γS∗(r, cad, s)

= ∧v∈N [γS∗(r, ca, v) ∨ γS(v, d, s)]
= ∧v∈N [γS∗(r, ac, v) ∨ γS(v, d, s)]
= γS∗(r, acd, s) = γS∗(r, ab, s).

Hence the result is true for |b| = k. Thus completes the proof. 
�
Proposition 4.3 If M = (N ,U, S) is an INFSSM, then

αS∗(r, a, s) = αS∗(s, a, r), βS∗(r, a, s) = βS∗(s, a, r)

and

γS∗(r, a, s) = γS∗(s, a, r)

for all r, s ∈ N and a ∈ U∗.

Proof Let r, s ∈ N and a ∈ U∗. We prove the result by induction on |a| = k. If k = 0, then
b = ζ, hence

αS∗(r, a, s) = αS∗(r, ζ, s) = αS∗(s, ζ, r) = αS∗(s, a, r),

βS∗(r, a, s) = βS∗(r, ζ, s) = βS∗(s, ζ, r) = βS∗(s, a, r)

and

γS∗(r, a, s) = γS∗(r, ζ, s) = γS∗(s, ζ, r) = γS∗(s, a, r).

Therefore the result is true for k = 0. Assume that the result is true for |b| = k − 1. That is
for all b ∈ U∗ with |b| = k − 1, k > 0, we have

αS∗(r, b, s) = αS∗(s, b, r), βS∗(r, b, s) = βS∗(s, b, r)

and

γS∗(r, b, s) = γS∗(s, b, r).

Let x ∈ U and b ∈ U∗ be such that a = bx . Then

αS∗(r, a, s) = αS∗(r, bx, s) = ∨v∈N [αS∗(r, b, v) ∧ αS(v, x, s)]
= ∨v∈N [αS∗(v, b, r) ∧ αS(s, x, r)]
= ∨v∈N [αS∗(v, b, r) ∧ αS∗(s, x, r)]
= ∨v∈N [αS∗(s, x, r) ∧ αS∗(r, b, v)]
= αS∗(s, xb, r) = αS∗(s, bx, r) = αS∗(s, a, r),

βS∗(r, a, s) = βS∗(r, bx, s) = ∧v∈N [βS∗(r, b, v) ∨ βS(v, x, s)]
= ∧v∈N [βS∗(v, b, r) ∨ βS(s, x, r)]
= ∧v∈N [βS∗(v, b, r) ∨ βS∗(s, x, r)]
= ∧v∈N [βS∗(s, x, r) ∨ βS∗(r, b, v)]
= βS∗(s, xb, r) = βS∗(s, bx, r) = βS∗(s, a, r)
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and

γS∗(r, a, s) = γS∗(r, bx, s) = ∧v∈N [γS∗(r, b, v) ∨ γS(v, x, s)]
= ∧v∈N [γS∗(v, b, r) ∨ γS(s, x, r)]
= ∧v∈N [γS∗(v, b, r) ∨ γS∗(s, x, r)]
= ∧v∈N [γS∗(s, x, r) ∨ γS∗(r, b, v)]
= γS∗(s, xb, r) = γS∗(s, bx, r) = γS∗(s, a, r).

This shows that the result is true for |b| = k. 
�

Proposition 4.4 If M = (N ,U, S) is an INFSSM, then

αS∗(r, ab, s) = αS∗(r, ba, s), βS∗(r, ab, s) = βS∗(r, ba, s)

and

γS∗(r, ab, s) = γS∗(r, ba, s)

for all r, s ∈ N and a, b ∈ U∗.

Proof Let r, s ∈ N and a, b ∈ U∗. We prove the result by induction on |b| = k. If k = 0,
then b = ζ, hence

αS∗(r, ab, s) = αS∗(r, aζ, s) = αS∗(r, a, s) = αS∗(r, ζa, s) = αS∗(r, ba, s),

βS∗(r, ab, s) = βS∗(r, aζ, s) = βS∗(r, a, s) = βS∗(r, ζa, s) = βS∗(r, ba, s)

and

γS∗(r, ab, s) = γS∗(r, aζ, s) = γS∗(r, a, s) = γS∗(r, ζa, s) = γS∗(r, ba, s).

Therefore the result is true for k = 0. Suppose that the result is true for |c| = k − 1. That is
for all c ∈ U∗ with |c| = k − 1, k > 0. Let d ∈ U be such that b = cd. Then

αS∗(r, ab, s) = αS∗(r, acd, s) = ∨v∈N [αS∗(r, ac, v) ∧ αS(v, d, s)]
= ∨v∈N [αS∗(r, ca, v) ∧ αS(v, d, s)]
= ∨v∈N [αS∗(v, ca, r) ∧ αS(s, d, v)]
= ∨v∈N [αS(s, d, v) ∧ αS∗(v, ca, r)]
= αS∗(s, dca, r) = ∨v∈N [αS∗(s, dc, v) ∧ αS∗(v, a, r)]
= ∨v∈N [αS∗(s, cd, v) ∧ αS∗(v, a, r)] = αS∗(s, cda, r)

= αS∗(r, cda, s) = αS∗(r, ba, s),

βS∗(r, ab, s) = βS∗(r, acd, s) = ∧v∈N [βS∗(r, ac, v) ∨ βS(v, d, s)]
= ∧v∈N [βS∗(r, ca, v) ∨ βS(v, d, s)]
= ∧v∈N [βS∗(v, ca, r) ∨ βS(s, d, v)]
= ∧v∈N [βS(s, d, v) ∨ βS∗(v, ca, r)]
= βS∗(s, dca, r) = ∧v∈N [βS∗(s, dc, v) ∨ βS∗(v, a, r)]
= ∧v∈N [βS∗(s, cd, v) ∨ βS∗(v, a, r)] = βS∗(s, cda, r)

= βS∗(r, cda, s) = βS∗(r, ba, s)
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and

γS∗(r, ab, s) = γS∗(r, acd, s) = ∧v∈N [γS∗(r, ac, v) ∨ γS(v, d, s)]
= ∧v∈N [γS∗(r, ca, v) ∨ γS(v, d, s)]
= ∧v∈N [γS∗(v, ca, r) ∨ γS(s, d, v)]
= ∧v∈N [γS(s, d, v) ∨ γS∗(v, ca, r)]
= γS∗(s, dca, r) = ∧v∈N [γS∗(s, dc, v) ∨ γS∗(v, a, r)]
= ∧v∈N [γS∗(s, cd, v) ∨ γS∗(v, a, r)] = γS∗(s, cda, r)

= γS∗(r, cda, s) = γS∗(r, ba, s).

This shows that the result is true for |b| = k. 
�
Definition 4.5 Let MS = (N1,U1, S) and MT = (N2,U2, T ) be two INFSMs. A pair
(ϕ, ψ) of mappings ϕ : N1 → N2 and ψ : U1 → U2 is called homomorphism, written as
(ϕ, ψ) : MS → MT ,if it satisfies:

αS(r, a, s) ≤ αT (ϕ(r), ψ(a), ϕ(s)), βS(r, a, s) ≥ βT (ϕ(r), ψ(a), ϕ(s))

and

γS(r, a, s) ≥ γT (ϕ(r), ψ(a), ϕ(s))

for all r, s ∈ N1 and a ∈ U1.

Example 4.6 Let MS = (N1,U1, S) and MT = (N2,U2, T ) be two INFSMs. Where N1 =
{s1, s2, s3}, U1 = {x, y}, N2 = {n1, n2} and U2 = {x, y}, S and T are defined below:

αS(s1, x, s1) = [0.1, 0.2], βS(s1, x, s1) = [0.6, 0.7], γS(s1, x, s1) = [0.8, 0.9],
αS(s1, x, s2) = [0.15, 0.25], βS(s1, x, s2) = [0.55, 0.65], γS(s1, x, s1) = [0.75, 0.85],
αS(s1, y, s2) = [0.2, 0.3], βS(s1, y, s2) = [0.5, 0.6], γS(s1, y, s2) = [0.7, 0.8],
αS(s2, x, s1) = [0.25, 0.35], βS(s2, x, s1) = [0.4, 0.5], γS(s2, x, s1) = [0.65, 0.75],
αS(s2, y, s3) = [0.3, 0.4], βS(s2, y, s3) = [0.35, 0.45], γS(s2, y, s3) = [0.6, 0.7],
αS(s3, x, s3) = [0.5, 0.6], βS(s3, x, s3) = [0.3, 0.35], γS(s3, x, s3) = [0.55, 0.65],
αS(s3, y, s2) = [0.35, 0.45], βS(s3, y, s2) = [0.3, 0.4], γS(s3, y, s2) = [0.5, 0.6].
The transition daigram is given below:
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Define a mappings ϕ : N1 → N2 and ψ : U1 → U2, by ϕ(s1) = ϕ(s2) = n1, ϕ(s3) =
n2, ψ(x) = x and ψ(y) = y.

The homomorphic image of MS

αT (n1, x, n1) = [0.5, 0.6], βT (n1, x, n1) = [0.3, 0.4], γT (n1, x, n1) = [0.5, 0.6],
αT (n1, y, n1) = [0.55, 0.65], βT (n1, y, n1) = [0.29, 0.39], γT (n1, y, n1) = [0.4, 0.45],
αT (n1, y, n2) = [0.6, 0.7], βT (n1, y, n2) = [0.21, 0.2], γT (n1, y, n2) = [0.35, 0.42],
αT (n2, x, n2) = [0.65, 0.75], βT (n2, x, n2) = [0.2, 0.25], γT (n2, x, n2) = [0.3, 0.35],
αT (n2, x, n1) = [0.7, 0.8], βT (n2, x, n1) = [0.15, 0.2], γT (n2, x, n1) = [0.25, 0.3],
αT (n2, y, n1) = [0.75, 0.85], βT (n2, y, n1) = [0.1, 0.15], γT (n2, y, n1) = [0.1, 0.2].
The

Definition 4.7 LetMS = (N1,U1, S) andMT = (N2,U2, T ) be two INFSMs.Apair (ϕ, ψ)

of mappings ϕ : N1 → N2 and ψ : U1 → U2 is called a strong homomorphism, written as
(ϕ, ψ) : MS → MT , if it satisfies:

αT (ϕ(r), ψ(a), ϕ(s)) = ∨{αS(r, a, v)|v ∈ N1, ϕ(v) = ϕ(s)},
βT (ϕ(r), ψ(a), ϕ(s)) = ∧{βS(r, a, v)|v ∈ N1, ϕ(v) = ϕ(s)}

and

γT (ϕ(r), ψ(a), ϕ(s)) = ∧{γS(r, a, v)|v ∈ N1, ϕ(v) = ϕ(s)}
for all r, s ∈ N1 and a ∈ U1. If U1 = U2 and ψ is the identity map, then we simply write
ϕ : MS → MT and say that ϕ is a homomorphism or strong homomorphism accordingly. If
(ϕ, ψ) is a strong homorphism with ϕ is one-one, then

αT (ϕ(r), ψ(a), ϕ(s)) = αS(r, a, s), βT (ϕ(r), ψ(a), ϕ(s)) = βS(r, a, s)

and

γT (ϕ(r), ψ(a), ϕ(s)) = γS(r, a, s)

for all r, s ∈ N1 and a ∈ U1.

Theorem 4.8 Let MS = (N1,U1, S) and MT = (N2,U2, T ) be two INFSMs. Let
(ϕ, ψ) : MS → MT be an onto strong homomorphism. If MS is a commutative, then so
is MT .
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Proof Let r2, s2 ∈ N2. Then there are r1, s1 ∈ N1 such that ϕ(r1) = r2 and ϕ(s1) = s2. Let
x2, y2 ∈ U2. Then there exists x1, y1 ∈ U1 such that ψ(x1) = x2 and ψ(y1) = y2. Since MS

is commutative, we have

αT ∗(r2, x2y2, s2) = αT ∗(ϕ(r1), ψ(x1)ψ(y1), ϕ(s1))

= αT ∗(ϕ(r1), ψ(x1, y1), ϕ(s1))

= ∨{αS∗(r1, x1y1, v1)|v1 ∈ N1, ϕ(v1) = ϕ(s1)}
= ∨{αS∗(r1, y1x1, v1)|v1 ∈ N1, ϕ(v1) = ϕ(s1)}
= αT ∗(ϕ(r1), ψ(y1x1), ϕ(s1))

= αT ∗(r2, y2x2, s2),

βT ∗(r2, x2y2, s2) = βT ∗(ϕ(r1), ψ(x1)ψ(y1), ϕ(s1))

= βT ∗(ϕ(r1), ψ(x1, y1), ϕ(s1))

= ∧{βS∗(r1, x1y1, v1)|v1 ∈ N1, ϕ(v1) = ϕ(s1)}
= ∧{βS∗(r1, y1x1, v1)|v1 ∈ N1, ϕ(v1) = ϕ(s1)}
= βT ∗(ϕ(r1), ψ(y1x1), ϕ(s1))

= βT ∗(ϕ(r1), ψ(y1)ψ(x1), ϕ(s1))

= βT ∗(r2, y2x2, s2)

and

γT ∗(r2, x2y2, s2) = γT ∗(ϕ(r1), ψ(x1)ψ(y1), ϕ(s1))

= γT ∗(ϕ(r1), ψ(x1, y1), ϕ(s1))

= ∧{γS∗(r1, x1y1, v1)|v1 ∈ N1, ϕ(v1) = ϕ(s1)}
= ∧{γS∗(r1, y1x1, v1)|v1 ∈ N1, ϕ(v1) = ϕ(s1)}
= γT ∗(ϕ(r1), ψ(y1x1), ϕ(s1))

= γT ∗(ϕ(r1), ψ(y1)ψ(x1), ϕ(s1))

= γT ∗(r2, y2x2, s2).

Hence MT is a commutative INFSM. This completes the proof. 
�
Proposition 4.9 Let MS = (N1,U1, S) and MT = (N2,U2, T ) be two INFSMs. Let
(ϕ, ψ) : MS → MT be a strong homomorphism. Then

(∀u, v ∈ N1)(∀a ∈ U1)(αT (ϕ(u), ψ(a), ϕ(v)) > [0, 0]
⇒ (∃w ∈ N1)(αS(u, a, v) > [0, 0], ϕ(w) = ϕ(v)),

(∀u, v ∈ N1)(∀a ∈ U1)(βT (ϕ(u), ψ(a), ϕ(v)) < [1, 1]
⇒ (∃w ∈ N1)(βS(u, a, v) < [1, 1], ϕ(w) = ϕ(v)),

and

(∀u, v ∈ N1)(∀a ∈ U1)(γT (ϕ(u), ψ(a), ϕ(v)) < [1, 1]
⇒ (∃w ∈ N1)(γS(u, a, v) < [1, 1], ϕ(w) = ϕ(v)).

Moreover,

(∀z ∈ N1)(ϕ(z) = ϕ(u) ⇒ αS(u, a, w)

≥ αS(z, a, r), βS(u, a, w) ≤ βS(z, a, r) and γS(u, a, w) ≤ γS(z, a, r).
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Proof Let u, v, z ∈ N1 and a ∈ U1. Assume that αT (ϕ(u), ψ(a), ϕ(v)) > [0, 0],
(βT (ϕ(u), ψ(a), ϕ(v)) < [1, 1] and (γT (ϕ(u), ψ(a), ϕ(v)) < [1, 1]. Then

∨{αS(u, a, v1)|v1 ∈ N1, ϕ(v1) = ϕ(v)} > [0, 0],
∧{βS(u, a, v1)|v1 ∈ N1, ϕ(v1) = ϕ(v)} < [1, 1]

and

∧{βS(u, a, v1)|v1 ∈ N1, ϕ(v1) = ϕ(v)} < [1, 1].
Since N1 is finite, it follows that there exists w ∈ N1 such that ϕ(w) = ϕ(v),

αS(u, a, w) = ∨{αS(u, a, v1)|v1 ∈ N1, ϕ(v1) = ϕ(w)} > [0, 0],
βS(u, a, v) = ∧{βS(u, a, v1)|v1 ∈ N1, ϕ(v1) = ϕ(w)} < [1, 1]

and

γS(u, a, v) = ∧{γS(u, a, v1)|v1 ∈ N1, ϕ(v1) = ϕ(w)} < [1, 1].
Now suppose that ϕ(z) = ϕ(u) for every z ∈ N1. Then

αS(u, a, w) = αT (ϕ(u), ψ(a), ϕ(v)) = αT (ϕ(z), ψ(a), ϕ(v))

= ∨{αS(z, a, v1)|v1 ∈ N1, ϕ(v1) = ϕ(v)} ≥ αS(z, a, v),

βS(u, a, w) = βT (ϕ(u), ψ(a), ϕ(v)) = βT (ϕ(z), ψ(a), ϕ(v))

= ∧{βS(z, a, v1)|v1 ∈ N1, ϕ(v1) = ϕ(v)} ≤ βS(z, a, v)

and

γS(u, a, w) = γT (ϕ(u), ψ(a), ϕ(v)) = γT (ϕ(z), ψ(a), ϕ(v))

= ∧{γS(z, a, v1)|v1 ∈ N1, ϕ(v1) = ϕ(v)} ≤ γS(z, a, v)

which is the required proof. 
�
Lemma 4.10 Let MS = (N1,U1, S) and MT = (N2,U2, T ) be two INFSMs. Let
(ϕ, ψ) : MS → MT be a homomorphism. Define a mapping ψ∗ : U∗

1 → U∗
2 by ψ∗(ζ ) = ζ

and ψ∗(xy) = ψ∗(x)ψ∗(y) for all x ∈ U∗
1 and y ∈ U1. Then ψ∗(ab) = ψ∗(a)ψ∗(b) for

all a, b ∈ U∗
1 .

Proof Let a, b ∈ U∗
1 . We prove the result by induction on |b| = k. If k = 0, then b = ζ.

Therefore ab = aζ = a. Hence

ψ∗(ab) = ψ∗(a) = ψ∗(a)ζ = ψ∗(a)ψ∗(ζ ) = ψ∗(a)ψ∗(b)

which shows that the result is true for k = 0. Let us assume that the result is true for each
c ∈ U∗

1 such that |c| = k − 1. That is

ψ∗(ab) = ψ∗(a)ψ∗(b).

Let b = cd, where c ∈ U∗
1 and d ∈ U1 be such that |c| = k − 1, k > 0. Then

ψ∗(ab) = ψ∗(acd) = ψ∗(ac)ψ(d) = ψ∗(a)ψ∗(c)ψ(d) = ψ∗(a)ψ∗(cd) = ψ∗(a)ψ∗(b).

Therefore the result is true for |b| = k. 
�
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Theorem 4.11 Let MS = (N1,U1, S) and MT = (N2,U2, T ) be two INFSMs. Let
(ϕ, ψ) : MS → MT be a homomorphism. Then

αS∗(r, a, s) ≤ αT ∗(ϕ(r), ψ∗(a), ϕ(s)), βS∗(r, a, s) ≥ βT ∗(ϕ(r), ψ∗(a), ϕ(s))

and

γS∗(r, a, s) ≥ γT ∗(ϕ(r), ψ∗(a), ϕ(s))

for all r, s ∈ N1 and a ∈ U∗
1 .

Proof Let r, s ∈ N1 and a ∈ U∗
1 . We prove the result by induction on |a| = k. If k = 0, then

a = ζ and so ψ∗(a) = ψ∗(ζ ) = ζ. If r = s, then

αS∗(r, a, s) = αS∗(r, ζ, s) = [1, 1] = αT ∗(ϕ(r), ζ, ϕ(s)) = αT ∗(ϕ(r), ψ∗(a), ϕ(s)),

βS∗(r, a, s) = βS∗(r, ζ, s) = [0, 0] = βT ∗(ϕ(r), ζ, ϕ(s)) = βT ∗(ϕ(r), ψ∗(a), ϕ(s))

and

γS∗(r, a, s) = γS∗(r, ζ, s) = [0, 0] = γT ∗(ϕ(r), ζ, ϕ(s)) = γT ∗(ϕ(r), ψ∗(a), ϕ(s)).

If r 
= s, then

αS∗(r, a, s) = αS∗(r, ζ, s) = [0, 0] ≤ αT ∗(ϕ(r), ψ∗(a), ϕ(s)),

βS∗(r, a, s) = βS∗(r, ζ, s) = [1, 1] ≥ βT ∗(ϕ(r), ψ∗(a), ϕ(s))

and

γS∗(r, a, s) = γS∗(r, ζ, s) = [1, 1] ≥ γT ∗(ϕ(r), ψ∗(a), ϕ(s)).

Therefore the result is true for k = 0. Let us assume that the result is true for all b ∈ U∗
1 such

that |b| = k − 1, k > 0. Let a = bc,where b ∈ U∗
1 , c ∈ U1 and |b| = k − 1. Then

αS∗(r, a, s) = αS∗(r, bc, s) = ∨v∈N1 [ αS∗(r, b, v) ∧ αS∗(v, c, s)]
≤ ∨v∈N1 [αT ∗(ϕ(r), ψ∗(b), ϕ(v)) ∧ αT ∗(ϕ(v), ψ(c), ϕ(s))]
≤ ∨v◦∈N1 [αT ∗(ϕ(r), ψ∗(b), v◦) ∧ αT ∗(v◦, ψ(c), ϕ(s))]
= αT ∗(ϕ(r), ψ∗(b)ψ(c), ϕ(s))

= αT ∗(ϕ(r), ψ∗(bc), ϕ(s))

= αT ∗(ϕ(r), ψ∗(a), ϕ(s)),

βS∗(r, a, s) = βS∗(r, bc, s) = ∧v∈N1 [ βS∗(r, b, v) ∨ βS∗(v, c, s)]
≥ ∧v∈N1 [βT ∗(ϕ(r), ψ∗(b), ϕ(v)) ∨ βT ∗(ϕ(v), ψ(c), ϕ(s))]
≥ ∧v◦∈N1 [βT ∗(ϕ(r), ψ∗(b), v◦) ∨ βT ∗(v◦, ψ(c), ϕ(s))]
= βT ∗(ϕ(r), ψ∗(b)ψ(c), ϕ(s))

= βT ∗(ϕ(r), ψ∗(bc), ϕ(s))

= βT ∗(ϕ(r), ψ∗(a), ϕ(s))
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and

γS∗(r, a, s) = γS∗(r, bc, s) = ∧v∈N1 [ γS∗(r, b, v) ∨ γS∗(v, c, s)]
≥ ∧v∈N1 [γT ∗(ϕ(r), ψ∗(b), ϕ(v)) ∨ γT ∗(ϕ(v), ψ(c), ϕ(s))]
≥ ∧v◦∈N1 [γT ∗(ϕ(r), ψ∗(b), v◦) ∨ γT ∗(v◦, ψ(c), ϕ(s))]
= γT ∗(ϕ(r), ψ∗(b)ψ(c), ϕ(s))

= γT ∗(ϕ(r), ψ∗(bc), ϕ(s))

= γT ∗(ϕ(r), ψ∗(a), ϕ(s))

which is the required proof. 
�

Theorem 4.12 Let MS = (N1,U1, S) and MT = (N2,U2, T ) be two INFSMs. Let
(ϕ, ψ) : MS → MT be a strong homomorphism. If ϕ is one-one, then

αS∗(r, a, s) = αT ∗(ϕ(r), ψ∗(a), ϕ(s)), βS∗(r, a, s) = βT ∗(ϕ(r), ψ∗(a), ϕ(s))

and

γS∗(r, a, s) = γT ∗(ϕ(r), ψ∗(a), ϕ(s))

for all r, s ∈ N1 and a ∈ U∗
1 .

Proof Let us assume that ϕ is 1–1 and for r, s ∈ N1 and a ∈ U∗
1 . Let |a| = k. We prove the

result by induction on on |a| = k. If k = 0, then a = ζ and ψ∗(ζ ) = ζ. Since ϕ(r) = ϕ(s)
if and only if r = s, we get

αS∗(r, a, s) = αS∗(r, ζ, s) = [1, 1]

if and only if

αT ∗(ϕ(r), ψ∗(a), ϕ(s)) = αT ∗(ϕ(r), ψ∗(ζ ), ϕ(s)) = [1, 1],
βS∗(r, a, s) = βS∗(r, ζ, s) = [0, 0]

if and only if

βT ∗(ϕ(r), ψ∗(a), ϕ(s)) = βT ∗(ϕ(r), ψ∗(ζ ), ϕ(s)) = [0, 0],

and

γS∗(r, a, s) = γS∗(r, ζ, s) = [0, 0]

if and only if

γT ∗(ϕ(r), ψ∗(a), ϕ(s)) = γT ∗(ϕ(r), ψ∗(ζ ), ϕ(s)) = [0, 0].
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Let us assume that the result is true for all b ∈ U∗
1 such that |b| = k − 1, k > 0. Let a = bc,

where |b| = k − 1, k > 0 and b ∈ U∗
1 , c ∈ U1. Then

αT ∗(ϕ(r), ψ∗(a), ϕ(s)) = αT ∗(ϕ(r), ψ∗(bc), ϕ(s)) = αT ∗(ϕ(r), ψ∗(b)ψ(c), ϕ(s))

= ∨v∈N1 [αT ∗(ϕ(r), ψ∗(b), ϕ(v)) ∧ αT (ϕ(v), ψ(c), ϕ(s))]
= ∨v∈N1 [αS∗(r, b, v) ∧ αS(v, c, s)]
= αS∗(r, bc, s) = αS∗(r, a, s),

βT ∗(ϕ(r), ψ∗(a), ϕ(s)) = βT ∗(ϕ(r), ψ∗(bc), ϕ(s)) = βT ∗(ϕ(r), ψ∗(b)ψ(c), ϕ(s))

= ∧v∈N1 [βT ∗(ϕ(r), ψ∗(b), ϕ(v)) ∨ βT (ϕ(v), ψ(c), ϕ(s))]
= ∧v∈N1 [βS∗(r, b, v) ∨ βS(v, c, s)]
= βS∗(r, bc, s) = βS∗(r, a, s)

and

γT ∗(ϕ(r), ψ∗(a), ϕ(s)) = γT ∗(ϕ(r), ψ∗(bc), ϕ(s)) = γT ∗(ϕ(r), ψ∗(b)ψ(c), ϕ(s))

= ∧v∈N1 [γT ∗(ϕ(r), ψ∗(b), ϕ(v)) ∨ γT (ϕ(v), ψ(c), ϕ(s))]
= ∧v∈N1 [γS∗(r, b, v) ∨ γS(v, c, s)]
= γS∗(r, bc, s) = γS∗(r, a, s)

which is the required proof. 
�
Conclusion

Using interval neutrosophic set we introduced the concept of interval neutrosophic finite state
machine which is extension of fuzzy finite state machine and intuitionistic fuzzy finite state
machine and discussed some related results. We also introduce the concept of interval neu-
trosophic switchboard state machine, homomorphism and storng homomorphism in interval
neutrosophic finite state machine and discussed some related resuls. In future we work on
interval neutrosophic automata.
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