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ARTICLE INFO ABSTRACT

Keywords: By considering target values for attributes in addition to beneficial and non-beneficial attributes, a traditional
Multiple attribute decision making MADM technique is converted to a comprehensive form. In many machine selection problems, some attributes
VIKOR

have given target values. The target value regarding a machine attribute can be reported as a range of data.
Some target-based decision-making methods have recently been developed; however, a research gap exists in
the area. For example, fuzzy axiomatic design approach presents a target-based decision-making supported on
common area of membership functions of alternative ratings and target values of attributes. However, it has
detects on finding a complete ranking because of probable infinite values of assessment index. Two target-based
VIKOR models with interval data exist in the literature; however, the target values of attributes or ratings of
alternatives on attributes are crisp numbers in the models and their formulations may have some limitations.
The present paper tries to fill the gap by developing the VIKOR method with both interval target values of
attributes and interval ratings of alternatives on attributes. Moreover, we attempt to utilize the power of interval
computations to minimize degeneration of uncertain information. In this regard, we employ interval arithmetic
and introduce a new normalization technique based on interval distance of interval numbers. We use a
preference matrix to determine extremum and rank interval numbers. Two machine selection problems
concerning punching equipment and continuous fluid bed tea dryer are solved employing the proposed method.
Preference-degree-based ranking lists are formed by calculating the relative degrees of preference for the
arranged assessment values of the candidate machines. The resultant rankings for the problems are compared
with the results of fuzzy axiomatic design approach and the interval target-based MULTIMOORA method and
its subordinate parts.

Target-based attributes
Interval distance
Preference degree
Machine selection

1. Introduction

The selection of suitable machine is a crucial decision that leads to a
streamlined production environment. Engineers often encounter a pool
of candidate machines for selection. A useful alternative may be
ignored if machines are only chosen based on experience. A multiple
attribute decision making (MADM) method can make a framework for
the process of machine selection. Several often conflicting attributes
must be considered in the selection process of the best machine. In the
traditional MADM methods, only beneficial and non-beneficial attri-
butes exist. For example, cost and machine dimensions often are non-
beneficial in most machine selection problems. However, other attri-
butes like safety and user friendliness must be maximized. A number of
machine selection problems are more complex. That is, given target
values are desired for some attributes. These target values can be crisp
numbers or represented as interval, gray, fuzzy, or rough sets. For
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instance, a given target value may be considered for cost and speed of
machines. The target values may be variable as a range of data in some
practical cases (Cakir, 2016; Kulak, 2005). The application of target-
based MADM techniques is not only restricted to machine selection. In
many material selection problems, the chosen materials for a product
should be compatible with other materials available in the system.
Therefore, given target values are considered for material properties to
ensure compatibility between materials (Farag, 2013). For example, a
target value for the thermal expansion coefficient is important in the
selection process of electrical insulating materials (Jahan et al., 2012).
Density and elastic modulus can also be regarded as target-based
attributes to have a compatible design. These two material properties
are especially important to select suitable biomaterials for implants and
prostheses (Bahraminasab et al., 2014; Hafezalkotob and
Hafezalkotob, 2015; Jahan and Edwards, 2013b). Generally, the
target-based MADM approaches can be regarded as comprehensive
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forms of the traditional MADM methods. Because in target-based
decision-making, all kinds of attributes (beneficial, non-beneficial, and
target-based attributes) are considered.

Target-based MADM techniques can be generally divided into two
categories on the basis of “distance” between alternatives ratings and
target values of attributes or “common area” of membership functions
of alternatives ratings and target values of attributes. In the first
category, a normalization technique is used based on distance between
alternatives ratings and target values of attributes. These approaches
are named as MADM methods with target-based attributes in the
literature. The majority of the studies in this category have focused on
the field of material selection process. The fuzzy axiomatic design
(FAD) method and its extensions comprise the second category. In this
group, information content is obtained based on Suh entropy. In this
context, alternatives ratings and target values of attributes are called
system and design ranges, respectively. In FAD approach, the common
area is the intersection of the areas under membership functions of
system and design ranges. Recently, the risk-based fuzzy axiomatic
design (RFAD) approach has been developed to solve some real-world
decision-making problems (Goren and Kulak, 2014; Kulak et al., 2015;
Hafezalkotob and Hafezalkotob, 2016b). The RFAD approach has the
ability to model the problems in which the alternatives ratings have
some risks regarding their attributes.

The compromise ranking method also named as vlse kriterijumska
optimizacija kompromisno resenje (VIKOR) — in Serbian is based on
an aggregating function (L, — metric). The VIKOR method uses L; and
Ly, (Opricovic and Tzeng, 2004). Crisp target-based extensions of the
method have been previously discussed in several studies
(Bahraminasab and Jahan, 2011; Bahraminasab et al., 2014;
Cavallini et al., 2013; Jahan, 2012; Jahan and Edwards, 2013b;
Jahan et al., 2011; Liu et al., 2014). Only two interval target-based
VIKOR models exist in the literature that are not comprehensive
(Jahan and Edwards, 2013a; Zeng et al., 2013). In this paper, we
develop the VIKOR approach for target-based decision making with
interval data to choose appropriate machines. The ratings are normal-
ized based on the concept of interval distance of interval numbers.
Moreover, the concept of the preference degree of interval numbers is
used for performing comparison as well as finding extremum and
ranking. Thus, we try to reduce degenerating interval numbers by
employing all capacities of interval computations.

The remainder of the paper has been arranged as follows. A
classified literature survey and description of the research gap are
presented in Section 2. We introduce the crisp target-based VIKOR
method in Section 3. The principles and computations of interval
numbers are explained in Section 4. The developed interval target-
based VIKOR method and its algorithm are described in Section 5. We
discuss two practical machine selection problems in different industrial
areas in Section 6. Concluding remarks and some directions for future
research are mentioned in Section 7.

2. literature review
2.1. Survey on applications of MADM techniques in machine selection

Various MADM methods have been previously employed for the
process of machine selection. Wang et al. (2000) evaluated appropriate
machines in a flexible manufacturing cell utilizing a novel fuzzy MADM
method. Kulak (2005) employed a decision support system and the
FAD approach to choose material handling equipment. Kulak et al.
(2005) employed the FAD technique for a punching machine selection
problem. Aghdaie et al. (2013) consolidated step-wise weight assess-
ment ratio analysis (SWARA) and complex proportional assessment
with gray relations (COPRAS-G) to rank candidate alternatives of
machine tools. Chakraborty and Zavadskas (2014) employed the
weighted aggregated sum product assessment (WASPAS) to tackle
several manufacturing decision-making problems including electro-
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plating machines and industrial robots. Ada et al. (2014) utilized an
integrated model based on the technique for order preference by
similarity to ideal solution (TOPSIS) and goal programming approach
under fuzzy environment in a machine selection problem. Chakraborty
et al. (2015) applied the WASPAS technique to select machines in a
flexible manufacturing cell. Nguyen et al. (2015) created a hybrid
model based on the fuzzy analytic hierarchy process (FAHP) and the
fuzzy COPRAS (F-COPRAS) to evaluate a machine tool selection
problem. Ozfirat (2015) exploited the FANP method to choose suitable
tunneling machine. Kumru and Kumru (2015) also employed the FANP
technique to decide on the appropriate 3D coordinate-measuring
machine. Khandekar and Chakraborty (2015) utilized the principles
of the FAD approach to rank material handling equipment. Ertujrul
and Oztas (2015) applied the multi-objective optimization on the basis
of ratio analysis (MOORA) technique to choose sewing machine.
Ozceylan et al. (2016) applied a hybrid model based on the fuzzy
analytic network process (FANP) and the preference ranking organiza-
tion method for enrichment evaluations (PROMETHEE) to select a
CNC router machine. Cakir (2016) used an combinatory approach
supported on the fuzzy simple multi-attribute rating technique
(SMART) and the weighted fuzzy axiomatic design (WFAD) method
to find the best continuous fluid bed tea dryer. Wu et al. (2016)
developed a multi-criteria group decision-making approach supported
on the VIKOR technique to discover a suitable CNC machine tool.

2.2. Survey on the target-based MADM methods

Some researchers have studied target-based MADM techniques on
the basis of distance between alternatives ratings and target values of
attributes. Zhou et al. (2006) developed a target-based norm to
construct a composite environmental index to compare various
MADM methods. Jahan et al. (2011) presented a target-based
VIKOR approach to choose the best material for a rigid pin related to
hip prosthesis. Bahraminasab and Jahan (2011) used the target-based
VIKOR to select an appropriate material for the femoral component of
knee replacement. Jahan et al. (2012) developed a target-based
normalization technique for TOPSIS model. Jahan (2012) compared
the results of a goal programming model and the target-based VIKOR
for a material selection problem of hip implant. Zeng et al. (2013)
proposed a normalization formula based on the distance to target
values to extend the VIKOR method for application in healthcare
management. Jahan and Edwards (2013a) extended the VIKOR
approach with both target values of attributes and interval ratings.
Jahan and Edwards (2013b) developed the target-based TOPSIS and
VIKOR methods utilizing the integrated weights of attributes. Liu et al.
(2014) consolidated the target-based VIKOR and DEMATEL-based
ANP methods to choose bush material for the design of a split journal
bearing. Hafezalkotob and Hafezalkotob (2015) employed an exponen-
tial norm and the integrated weights of attributes to derive a target-
based modified MOORA (MULTIMOORA) model for biomaterial
selection. Jahan and Edwards (2015) reviewed the applications of
target-based norms in decision making models. Aghajani Mir et al.
(2016) employed the target-based TOPSIS and VIKOR techniques to
evaluate municipal solid waste management methods. Hafezalkotob
and Hafezalkotob (2016a) tackled two biomaterial selection problems
employing the interval target-based MULTIMOORA technique.

Many researchers have developed target-based MADM techniques
on the basis of common area of membership functions of alternatives
ratings and target values of attributes. The FAD approach and its
extensions constitute this group. Kulak and Kahraman (2005) devel-
oped the FAD method. Kulak et al. (2005) added weights of attributes
to the FAD model. Kahraman and Ceb1 (2009) improved the FAD
method to solve decision-making problems with hierarchical struc-
tures. Their developed method is called hierarchical fuzzy axiomatic
design (HFAD) approach. Kulak et al. (2015) employed the FAD
method considering risk factors, i.e., the RFAD, to tackle a decision-
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making problem regarding the selection of medical imaging devices.
Some applications of the FAD approach are surveyed in the study of
Kulak et al. (2010).

2.3. Survey on the interval MADM methods

A number of MADM approaches have been extended using interval
numbers. Pan et al. (2000) employed the linear additive utility function
and composite utility variance to generate an interval MADM method.
Jahanshahloo et al. (2006) suggested an extension of TOPSIS to tackle
decision making problems with interval numbers. Jahanshahloo et al.
(2009) formulated an interval TOPSIS model based on interval
efficiency. Sayadi et al. (2009) extended the VIKOR technique con-
sidering interval data. Fa-Dong et al. (2010) proposed a new interval
MADM method by considering loss aversion. Yue (2011) derived an
interval TOPSIS model for group decision making. Sayadi and Makui
(2012) presented a novel interval-based model of elimination and
choice expressing the reality (ELECTRE). Dymova et al. (2013)
introduced a direct interval extension of TOPSIS method based on
the concept of the distance between midpoints of intervals. Kracka and
Zavadskas (2013) derived an interval MULTIMOORA method for an
effective selection of structural panels. Dou et al. (2014) developed the
VIKOR and TOPSIS algorithms with interval numbers based on
reciprocal judgment matrix. Stanujkic et al. (2014) developed the ratio
system part of the MOORA method with interval information to choose
a grinding circuit. Hafezalkotob et al. (2016) introduced an extended
MULTIMOORA approach with interval data by using interval arith-
metic and defining a preference matrix.

2.4. Survey on developments and applications of the VIKOR method

The VIKOR method was suggested as a tool to implement within
MADM by Opricovic (1998). This approach has been utilized in a wide
range of applications such as contractor selection (Vahdani et al.,
2013), decision making in healthcare management (Zeng et al., 2013),
decision-making on bank investment plans (Hajiagha et al., 2014),
project selection (Ghorabaee et al., 2015; Shouzhen and Su, 2015),
personnel selection (Liu et al., 2015), evaluating flood vulnerability
(Lee et al., 2015), material selection (Anojkumar et al., 2015; Yazdani
and Payam, 2015), evaluating the operating performance of semicon-
ductor companies (Hsu, 2015), choosing a tunnel security door
(Vucijak et al.,, 2015), location selection (Bausys and Zavadskas,
2015), evaluating eco-industrial thermal power plants (Li and Zhao,
2016), and evaluating the efficiency of bank branches (Tavana et al.,
2016). Based on the concept of neutrosophic (Bausys and Zavadskas,
2015), fuzzy (Vahdani et al.,, 2013), interval (Sayadi et al., 2009),
linguistic (Liu et al., 2013), and stochastic (Tavana et al., 2016) data, a
number of extensions have been generated for the VIKOR method.
Some researchers have discussed the extensions and applications of the
VIKOR approach (Yazdani and Graeml, 2014; Gul et al., 2016; Mardani
et al., 2016).

2.5. Research gap

Two group of researchers have analyzed the target-based VIKOR
models with interval data; however, the target values of attributes or
ratings of alternatives on attributes are crisp numbers in the models
and their methodology may have some defects. The first study was
conducted by Jahan and Edwards (2013a). In their work, a target-
based VIKOR method with interval ratings of alternatives on attributes
and crisp target values of attributes was suggested. The target-based
norm in their method is supported on Euclidian distance. The second
study was undertaken by Zeng et al. (2013). In their study, a target-
based VIKOR method with crisp ratings of alternatives on attributes
and interval target values of attributes was developed. The interval
target values in their model have a normalized distribution function. In
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the present paper, we introduce a comprehensive interval target-based
VIKOR method. Our novelties comparing these two related studies are
as follows:

We consider the interval target values of attributes along with
interval ratings of alternatives on attributes.

We propose a novel interval target-based norm based on the idea of
“interval distance” of interval numbers. For this purpose, we define a
new formula for interval distance.

We employ a preference matrix to find extremum and ranking of
interval numbers.

We generate preference-degree-based ranking lists by computing
the relative preference degrees for the arranged assessment values of
the alternatives.

3. The crisp target-based VIKOR method

An MADM problem can be expressed by a decision matrix X. The
rating of the decision matrix, i.e., x;, denotes the response of
alternativeA; to attribute g;, i =1, 2,...,m andj =1, 2,...,n. Relative
weight, i.e., w;, can be considered for each attribute. Weights of
attributes satisfy 3"_, w; = 1. The beneficial and non-beneficial attri-
butes are only considered in the traditional MADM methods. However,
the necessity of reaching a given target value of an attribute in some
practical cases demands modeling the target-based MADM approaches
(Jahan et al., 2011). A typical cri(;p target-basgd MADM problem can

1 j a,
Tz[tl TR TR, :|
X11 Xy Xin | 4
be represented as follows:
=| X X; X | A
_Xml ij Xmn | Am
W= [wl w; w, ]

The target (also named as goal or the most favorable) value, i.e., #;,
for an attribute generally is the maximum or the minimum of the
ratings of alternatives on that attribute or may be defined as a given
value. The target values of attributes are formulated as:

max x;, ifjel,
i

t:

= miinx,:/-, ifj € J,

8 ifje K, (&)
in which I, J, and K are associated with beneficial, non-beneficial, and
target-based attributes, respectively. g represents the goal value for
each target-based attribute considered by decision-makers. The opti-
mal alternative and rankings can be found by taking the following
steps:

Step 1. The crisp target-based normalization

The decision matrix has to be normalized to obtain comparable and
dimensionless values. Various norms have been developed for crisp
target-based MADM. Jahan and Edwards (2015) have reviewed and
compared the norms. A crisp target-based ascending norm can be
defined as (Liu et al., 2014):

i — ¢l

maxqmaxx;, fj¢ — minqminx;, f;
i i 3)

The normalization technique is supported on the concept of
“Euclidean distance” of a rating from its associated target value. Eq.

fij =
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(3) is an ascending norm because the value of the norm raises with the
increase of distance from the target value. Based on Eq. (3), smaller
normalized rating conveys less distance to target values. Norm f; also
applies to the traditional MADM methods in which only beneficial and
non-beneficial attributes are considered.

Step 2. Determine the crisp average group utility and the crisp
maximal regret

The crisp average group utility S; and the crisp maximal regret R;
are calculated as follows (Liu et al., 2014):

Si= X, ).

R, = max (wjf,.j-).
j

G

)

Step 3. Calculate the assessment index of the crisp target-based
VIKOR method

The assessment index of the crisp target-based VIKOR method, i.e.,
Q;, can be specified for each alternative as (Jahan et al., 2011):

Ri - R* seo— _ ot
Feret if §7 = 8§,
5i— s+ e
0= et if R~ = RY,
N Ri —R* .
st + R__R+(1 v), otherwise, ©)

in which $* = min §;, §~ = max §;, R* = min R;, and R~ = max R;. v is
defined as the imlportance coefficient for the strategy of “the nllajority of
attributes” (or “the maximum group utility”), while 1 — v is the
importance coefficient of “the individual regret”. The value of v is in
the range of 0—1 and these strategies can be compromised by v = 0.5.
Step 4. Find the optimal alternative and generate the ranking list
The optimal alternative based on the crisp target-based VIKOR
method is determined by minimizing the assessment values, i.e., Q;:

Afvikor = {Ail min Qi},

i ™
in which “T-VIKOR” stands for "target-based VIKOR”. The assessment
values are organized in ascending order to generate the ranking list of
the crisp target-based VIKOR method.

4. Interval numbers

Uncertainty of data can be mathematically represented by various
forms like interval, fuzzy, gray, linguistic, or stochastic numbers.
Interval numbers are suitable for utilization in MADM models in
uncertain environment because many quantities in real-world applica-
tions are reported as a range of information. Thus, they can inherently
be regarded as interval data. Sections 4.1-4.4 present the required
mathematics for deriving the proposed method.

4.1. Mathematical preliminaries of intervals

Basic definitions regarding interval mathematics are as follows
(Trindade et al., 2010):

D1 (Interval). Let y and yY € R be such that y- <yV. The set
v={y€ R| y* <y <yY} is named “a real interval” and also
represented as y = [y%, yU]. The set of all real intervals is shown
by IR.

D2 (Inclusion order). Let ¥ and Z
and yY < zV.

D3 (Kulisch—Miranker order). Let y and 7 € [IR.y
and yV < zV. Thus, v = z, if y¢ = zF and yV = V.
D4 (Positive, negative, and non—negative). An interval, y, is positive if
vyt > 0, negative if yV < 0, and non-negative if y* > 0.

D5 (Midpoint of an interval). Let § € [IR.The midpoint of y is de-
fined as:

€ IR.y C 7 if only if yL > z*

< z,ifyt <7t
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=yL+yU

) — vM
pm () =y 2

8)

4.2. Interval arithmetic algebra

A stream of studies have discussed interval arithmetic and its
applications (Alefeld and Herzberger, 1983; Hickey et al., 2001;
Kearfott and Kreinovich, 1996). Based on Moore interval arithmetic,
if y = [y%, yY]and 7 = [z£, zY] are two non-negative real intervals and k
is a non-negative real number, then (Moore, 1979):

v+z7=DF+75 YW+ Y, 9
y—z=DQt-27Y, Yy -7, (10)
vz = Dbt yUll, an
y/z = [yE/zY, yUIzE]with zFandzV # 0, (12)
kv = [kyE, kyYl. 13)

4.3. Distance between intervals

Trindade et al. (2010) introduced the idea of “interval distance”
between interval numbersy = {y € R| y! <y <Y} and
z={ze Rl zt<z<V} as:
d(y,z)=[inf(ly—zl:y €y andz €7), sup(ly —zl: y €7 andz € 7)]

14

The interval distance, i.e., Eq. (14), can have multiple modes
(Trindade et al., 2010):

- Ify < zandynz=g,then:

dy, 0 =1G"-y), &=yl (15)
- Ify < zand y nz # @, then:

dy.0 =10, @ -yHl (16)
- Ify C z, then

d,2) =10, max{OY -zH, Y-y}l a7

All modes of the interval distance can be integrated into the
following equation:

[min {Iy* — 2V, ¥ — 24}, max {iy* — 2, b — 241,
ifynz=0,
[0, max{ly* - 2Yl, y¥ - M},
ifynNnz#a@.
(18)

However, Eq. (18) is a general formula for interval distance and
may contain some defects in practice. For example, the formula is not
sensitive to the degree of intersection and also inclusion of two interval
numbers. To correct the defects, we improve Eq. (18) as follows:
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Ml ifynz

[min {|ly* = 2"l p¥ = 24}, DM -z

d*.2) =
) {[0, b =2,
(19)

In Section 5, we use d* for derivation of the proposed method. We
clarify the difference between d and d* through discussing some
examples in the section.

Different formulas have been developed for measuring the distance
between real interval numbers as “a crisp value” (Dymova et al., 2013;
Khezerloo et al., 2011; Moore et al., 2009). However, we believe that a
more inclusive form for “the crisp distance” of two interval numbers
can be defined by finding the midpoint of *(7, z), i.e., Eq. (19), as:

d*(¥,2) = pm@* (@, 2))
min {[y~ — Y| Y =2} + pM =M
3 ,

M - zM|
,

2 (20

Eq. (20) can be more robust than the traditional metrics for crisp
distance of interval numbers. The reason lies in the fact that d*(y, z),
i.e., Eq. (20), enjoys two conditional parts whereas all traditional
metrics generate the crisp distance of two intervals as one formula
without paying attention to the relation (being intersected or not being
intersected) of the interval numbers.

4.4. Interval comparison, extremum, and ranking

Comparison of intervals has been analyzed in a number of studies
(Levin, 2004; Sevastianov, 2007; Wang et al., 2005a, 2005b). For
intervals y = [y, yY] and 7 = [z%, V], the preference degree of y over z,
denoted byP (y > z), can be defined as follows (Wang et al., 2005a):

PG> 2) = max {0, yV — zL} — max{O,yL—zU}.

Y-yl 4V — L 21

The following principles exist concerning the preference degree
(Wang et al., 2005a):

PZz>y)=1-PF>2).lfy=zthenP(y >z)=PE>y)=05.
If P(y >Z7) > P(Z>¥), then y is said to be superior to 7 to the

P(7>7)
degree of P(y >Z), vrepresented by ¥ 0>> Z; If

P(y >7z)=P(Z >y)=0.5, then y is said to be indifferent to z,

indicated by y~z; If P(Z >y) > Py > z), then y is said to be

. . P(z>y)
inferior to 7 to the degree of P(z > y), denoted by y <>y zZ.
- If <z and ynz=¢g, then PG >2z)=0. If y <z and

FNZ#@,then0 <P >7)<05.
Ify > zandynz=g,thenP3 >2z)=1.Ify > Zzandy Nz # &,
then 05 <Py >7) <1

To find extremum (i.e., maximization or minimization) and rank a
set of intervals {¥,, 7.....¥%} (6 = the number of intervals), preference
degree matrix and preference matrix are defined as follows (Rezaei,
2016):

In Table 1, P(y, > j)is the relative preference degree calculated
based on Eq. (21):

max {0, y;/ = yi} = max{0, y; -y}

B

PG, > )=
a7 Y o= Y =

(22)
in which a and g are the indices denoting the row and column of the
preference degree matrix, respectively. If two degenerate interval
numbers (crisp numbers) exist successively in the set of intervals,
ie,yk=y" or y/}L = y/gl, a tiny increment (e.g., 1 x 107°) is added to the
upper boundaries to avoid the zero denominator of Eq. (22).

Py in Table 2 is the relative preference for the set of interval numbers
expressed as:
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Table 1
Relative preference degrees.

Relative preference degree

7 b3 % W
| P> Py > %) P> 3p) PG>y
» Py, >y Py > %) PGr >3 Py, > 5)
)ih 1:’(\_’(.>}_'1) ;’(y_;,>)_’2) 1:"()_2;>}_'/;) ;’(}_'u>>_'5)
f’o I:J(\_’a>}_'1) 1:’(7'5>}_'2) 1:-"()‘;;>y‘/,) I:J(Y_J>}_'5)

Table 2

Preference matrix for finding the extremum and ranking list of a set of intervals.

Relative preference Aggregate Extremum Ranking
preference
Bion ] s

n Pu Pn P P15 AP(y) - rank (7))

Y2 Pu Pn Py Py AP(y)) - rank (7,)

Y FBa Fe Fap Fs AP Extremum  rank (5,) = 1
5 Pt P2 Fsp Pss AP () - rank (35)

1, if P(3, > yb) > 0.5,
Fy = .

PTV0. Py >3 <05, 23)

To obtain extremum and ranking of the set of interval numbers
{¥. ¥.....¥}, the relative preferences of each row of the preference
matrix are added to produce the aggregate preference:

4
AP() = ) Py

p=1 24)

in which 0 <AP(@) < (6 - 1).

The extremum, i.e., the maximum or minimum, of the set of
intervals {y, %, ...,3,....5;} as well as the rank of yin the set can be
obtained using the values of aggregate preferences as follows:

max 3, = max AP (),

a a (25)
min y, = min AP (3,), (26)
rank (3,) = rank (AP (3,)). 27)

5. The proposed interval target-based VIKOR method

In this section, the interval target-based VIKOR method is derived
based on the crisp model described in Section 3 and the interval
mathematics discussed in Section 4. A typical MADM problem with
interval target values of attributes and interval ratings can be repre-
sented as follows:

al cee a] e n

T:[tl t]- t”:l
X11 Xyj Xin | 4

X=X, Xij Xin | A
_Xml mj mn_Am
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The interval rating, i.e., X; = [x;, x/], indicates the response of
alternativeA; to attribute a;, with interval target value 7;, i = 1, 2,...,m
and j = 1, 2,...,n. A crisp weight w; is assigned for each attribute by the

decision makers such that Z?:I w; = 1. The interval target values of

attributes 7; = [¢f, t/

7, 1] can be defined as:

max X, ifjel,
1

f:

;= m[in X ifj e,

g/, if J €K, (29)
in which 7, J, and K denote the sets of beneficial, non-beneficial, and
target-based attributes, respectively. g shows the interval goal value
considered for each target-based attribute assigned by decision-ma-
kers. The maximum and minimum of ratings on each attribute are
calculated utilizing Egs. (25) and (26), respectively. By following the
subsequent steps, the best alternative and the ranking list are obtained:

Step 1. The interval target-based normalization

We improve the target-based norm, i.e., Eq. (3), as follows:

f: - mgllj(lj |th,—| tjl.
xR (30)
Eq. (30) that is the normalized distance of a rating from the target
value can be used as modified norm for target-based MADM problems.
The modified norm, i.e., Eq. (30), can be developed for application
in the interval target-based MADM problems using the concept of
interval distances of interval numbers. Based on the interval distances
d and d*, i.e., Egs. (18) and (19), two interval target-based norms are
generated as follows:

o d (X, 1)
i T )
ml_ax d (X, ) 31
— d* &y, 1)
T (5 )
m?xd s 1) (32)

in which d(&;, &) = pm(d &, 7)) and d*(7, z) = pm(d* (7, 7)). The
crisp distance d and d* are utilized in the denominator of Egs. (31)
and (32) to avoid zero. However, the values of f: are more robust than

f: To show the difference between 4 and d*, we consider some
examples as illustrated in Table 3.

The first two examples of Table 3 are the cases of intersection and
the last three examples are the cases of inclusion. The first two
examples shows that 4*(x, ) unlike d (x, 7) is sensitive to the degree
of intersection. In these two cases, d (%, ) equals to [0, 7] while d* (%, 7)
equals to [0, 3] and [0, 1], respectively. The last three examples indicate
three different interval ratings all included in an identical interval
target value. In the all three cases, d (%, ) equals to [0, 5] whereas
d*(x, ) is variable.

In target-based decision-making under uncertain environment, the
degree of intersection of interval rating ¥ and interval target value 7 is
important that shows the degree of satisfying the favorable values.
Thus, the insensitivity of d (¥, 7) to the degree of intersection causes
some limitations for its real-world applications. In this regard, we
employ f:, i.e,, Eq. (32), for computing measures of Step 2. Also, we
utilize d*, i.e., Eq. (19), to drive the assessment index of Step 3. We
discuss the differences between the values of f;and ff for the first
practical case in Subsection 6.1.

Step 2. Determine the interval average group utility and the
interval maximal regret

The interval average group utility §; is the sum of the products of
normalized interval ratings of alternative A; and the associated weights
on all attributes:
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(33)

(34

Step 3. Calculate the assessment index of the interval target-based
VIKOR method

The assessment index of the interval target-based VIKOR method,
i.e., 0;, can be determined for each alternative utilizing Egs. (18) and
(20):

a*(Ri,R*) T _ ot
FRR iS5 =57
~ a*8.5 - _ P+
0= TS5 iftR™ = R™,
a*(Si,8%) d*RiRY) 4 :
G §+)v+ d*(E:Eﬂ(l v), otherwise, (35)

in which §* = min§;, §~ = max §, R* = minR;, and R~ = max R;. These
maximum and minimum values can be calculated applying Egs. (25)
and (26), respectively.

Step 4. Find the optimal alternative and generate the ranking list

The optimal alternative based on the interval target-based VIKOR
method is determined by minimizing the assessment values, i.e., Q;,
through Eq. (26):
AITF—VIKOR = {A miin 0i}, (36)
in which “IT-VIKOR” is an abbreviation for “interval target-based
VIKOR”. The assessment values are organized in ascending order
utilizing Eq. (27) to generate the ranking list of the proposed method:

rank (Q;) = rank (AP (Q))). (37)

Afterwards, the rankings can be developed to a preference-degree-
based ranking list by computing the relative preference degrees for the
arranged assessment values using Eq. (21). Derivation of the proposed
method is summarized as a solution algorithm (Fig. 1).

6. Two case studies on machine selection

In addition to beneficial and non-beneficial attributes, target values
for attributes are commonly considered in machine selection problem.
To show the importance of target-based decision making in machine
selection process and application of the proposed approach, we
examine two real-world examples.

6.1. Example 1: punching machine

The modern punching machines have been computerized and
operate with high-speed. Recent advances in technologies regarding
punching machines indicate the importance of selection of appropriate
alternative. In this example, we discuss a problem regarding choosing
the appropriate punching machine to produce electronic parts. This
practical case has previously been addressed employing the FAD
approach (Kulak et al., 2005). Six candidate punching machines
(m=6) along with nine attributes (n=9) have been considered for the
practical case as listed in Table 4 (Kulak et al., 2005). The units,
weights, and target values of the attributes are also shown in Table 4.
Table 5 shows the interval decision matrix for the problem. The arrays
of Table 5 are the interval ratings of the candidate machines on their
attributes.

The interval ratings are normalized using Egs. (31) and (32) to
generate dimensionless values of Tables 6 and 7. Table 8 shows Suh
information contents calculated in the FAD approach for this punching
machine selection problem by Kulak et al. (2005). The values of Tables
7 and 8 show a same pattern whereas the values of Table 6 are not
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Examples for showing the differences between the interval distance suggested by Trindade et al. (2010) and the proposed interval distance, i.e., d and ™.

X i [xL, xU] versus [t£, 1Y) d(x, 1) d*x, 1)
1,3 2,8 0,7 0,3
[1,3] [2, 8] £ M tU [0, 7] [0, 3]
o l Py
o = o
10------ace feeeee-- 3
xk xM xU
[1,7] [2, 8] £l M tU [0, 7] [0, 1]
1
2@ = ® 8
B T ‘-t|- --------------------------- e7
XL xM xU
3,6 2,8 0,5 0, 0.5
[3, 6] [2, 8] { M tU [0, 5] [ ]
o : 0
4.5
3 @-ccccecocenen  EECETTTTTTLLE 06
Xk xM xV
[3,7] [2,8] [0, 5] [0, 0]
tL tM tv
c : o
3 @-ccccccccocneaosl 2 | SEETILIILIILEEIED o7
XL xM xU
[2, 8] [2,8] [0, 5] [0, 0]
tL tM tv
2e :5 o
5
2@ -oooooccciooooooooooooot fmommmeem oo eee e3
XL xM XU
corresponding to those of Tables 7 and 8. The issue can be better e d ([0, 108], [70, 110]) _ [0, 110] _ [0. 2]
realized considering the differences between d and d* as described in 7= max d (%7, [70, 110]) T 55 T
Section 5 as well as the concept of Suh information content. To clarify !
the similarities and differences between the values of Tables 6-8, we f; _ 40,97, [70, 110)) _ [0, 110] _ [0, 21,
examine some examples (/; represents the information content of m?"d (7, [70, 1101) 55
x;regarding 7;):
_ . . . . 7+ _ d*([0, 108], [70, 110]) _ [0.36] _ 0 |,
] .Comp}ltatlon of f,, and f5, as well as comparison with /9 (the fi7 = max d* (%, [10, 110]) 245 = [0, 1.47],
inclusion case) i
Tk
jT; _ d”([0,97], [70, 110]) _ [0, 41.5] — [0, 1.69],

ok d (%o, o) d ([16, 20], [16, 20]) _ [0, 4]
Jio = = - = = [0, 1],
max d (X9, f9) ~ max d (X, [16, 20]) 4
Tk = - Tk
7= d” (X, o)  _ d7([16, 20], [16, 20]) _ [0, 0] _ (0. 0.

max d* (%o, iy)  max d* (%o, [16,20)) 1.5

Lo = 0, (Kulak et al., 2005).

e Computation of f;, f;, ff;, and f; , as well as comparison with 1,
and I,; (the intersection case)
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max d* (%7, [70, 110]) 245

L7 = 1.507, (Kulak et al., 2005), L, = 1.845, (Kulak et al., 2005).
These comparisons show that the normalized ratings using f: are
more robust than those obtained employing f: Besides, the normal-

ized ratings using f; indicate a similar routine comparing Suh infor-
mation contents; however, infinity does not appears in the normalized
decision matrix obtained using f:, i.e., Table 7, in contrast with the
information contents matrix, i.e., Table 8. That is, when x; and #; are
not intersected, Suh information content equals to infinity whereas f:
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Eq. (28)
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Construct an interval decision matrix from ratings of candidate alternatives on the attributes

Eq. (29)

Y

Obtain the interval target values of the attributes

A 4

Calculate the relative

weights of attributes

Eq. (32)

A

Generate the normalized interval decision matrix

Eq. (33) and (34)

A 4

Generate the interval average group utility and the interval maximal regret

Eq. (35)

A 4

Generate the assessment index of the interval target-based VIKOR method

Eq. (36) and (37)

A

Find the optimal alternative and generate the rankings

Y

Determine the preference-degree-based rankings for the interval target-based VIKOR method

Fig. 1. The algorithm of the proposed IT-VIKOR method.

Table 4
Alternatives and attributes for selection of appropriate punching machine (Example 1).

Candidate machines Attributes

(alternatives)

Machine Machine Attribute name Unit Weight Target

name ID* value

Punch-A M1 Fixed costs per hour €/h 0.8 [10, 14]
(FO)

Punch-B M2 Variable costs per €/h 0.8 [2, 4]
hour (VC)

Punch-C M3 Equivalent costs of €/h 0.8 [2, 4]
standard tools per
hour (ST)

Punch-D M4 Length of sheet size mm 0.2 [1200,
w 2540]

Punch-E M5 Thickness of sheet mm 0.2 [3, 8]
metal (T)

Punch-F M6 Number of strokes for - 0.2 [190,
25 mm pitch size 445]
sheet metal (NS)

Simultaneous axis m/min 0.2 [70, 110]
speed (XY)

Tool rotation speed rpm 0.2 [50, 180]
(SR)

Sufficiency of service - 0.2 [16, 20]
(SS)

@ Machine ID: Machine identification number.

equals to its peak number [0, 2].

Tables 9 and 10 exhibit the measures, assessment indices, and
ranking lists of the unweighted and weighted IT-VIKOR solutions,
respectively. The interval average group utility S;, the interval maximal
regret R;, and the assessment index Q; are respectively determined
using Egs. (33)—(35). v coefficient in Eq. (35) is assumed to be 0.5. The
best machine based on of the unweighted and weighted IT-VIKOR

models employing Eq. (36) are Ajk ieigd = M3, i.e., Punch-C, and

Al Geighied — M2, ie., Punch-B, respectively. The ranks can be

calculated employing Eq. (37). The associated preference-degree-based
(PD) ranking lists of the candidate punching machines are obtained for
the proposed unweighted and weighted models based on Eq. (21) as
follows:

— PD rankings based on the unweighted IT-VIKOR method:
100%  73%_  58%_  64%_ _59%
M3 > Ml > M2 > M4 > M5 > M6.

— PD rankings based on the weighted IT-VIKOR method:
100%  54%  68%.  61%_  51%
M2 > Ml > M3 > M6 > M5 > M4.

Table 11 shows the results of the present paper (i.e., the assessment
values and rankings based on the unweighted and weighted IT-VIKOR
methods) and the study of Kulak et al. (2005) (i.e., the assessment
values and rankings based on the unweighted and weighted FAD
methods) for this machine selection problem. Based on Table 11,
except the proposed weighted IT-VIKOR, the rest of methods show an
identical option as optimal machine that is M3, i.e., Punch-C. In the
assessment values of the FAD approach, infinite values exist due to the
formulation of the method. However, the proposed IT-VIKOR method
assigns a finite assessment value for every alternative.

To verify the outcomes of Example 1, we calculated machine
rankings using the interval target-based extensions of the
MULTIMOORA method and its subordinates, i.e., the ratio system,
reference point approach, and full multiplicative form. The algorithm
of these extensions is similar to the proposed IT-VIKOR method and
has been developed by Hafezalkotob and Hafezalkotob (2016a). They
employed the IT-MULTIMOORA approach for selection of biomater-
ials. Table 12 lists the rankings of the proposed IT-VIKOR and the
other MADM methods in two categories named as unweighted and
weighted models. M3, i.e., Punch-C, is the best option based on all
methods of the unweighted category; whereas, M3, i.e., Punch-C, is also
the best alternative in the weighted category except for the FAD
approach (Kulak et al., 2005). We employed Spearman rank correlation
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Table 5

Interval decision matrix for Example 1.
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Machine ID FC vC ST L T NS XY SR SS
M1 [8, 12] [2, 3] [2, 4] [0, 1270] [0, 6.4] [0, 420] [0, 108] [0, 180] [16, 20]
M2 [10, 14] [3, 5] [2, 4] [0, 2070] [0, 6.4] [0, 220] [0, 971 [0, 60] [16, 20]
M3 [12, 16] [3, 5] [2, 4] [0, 2540] [0, 6.4] [0, 445] [0, 108] [0, 180] [16, 20]
M4 [14, 16] [4, 6] [2, 4] [0, 2535] [0, 8.0] [0, 445] [0, 108] [0, 60] [16, 20]
M5 [10, 14] [3, 5] [4, 6] [0, 2500] [0, 6.4] [0, 400] [0, 110] [0, 60] [12, 18]
M6 [8, 12] [2, 4] [3, 5] [0, 1270] [0, 6.4] [0, 200] [0, 82] [0, 60] [12, 18]

Table 6 ;

Normalized interval decision matrix using f”k for Example 1.
Machine ID FC VvC ST L T NS XY SR SS
M1 [0, 2] [0, 1] [0, 1] [0, 2] [0, 2] [0, 2] [0, 2] [0, 2] [0, 1]
M2 [0, 1.33] [0, 1.50] [0, 1] [0, 2] [0, 2] [0, 2] [0, 2] [0, 2] [0, 1]
M3 [0, 2] [0, 1.50] [0, 1] [0, 2] [0, 2] [0, 2] [0, 2] [0, 2] [0, 1]
M4 [0, 2] [0, 2] [0, 1] [0, 2] [0, 2] [0, 2] [0, 2] [0, 2] [0, 1]
M5 [0, 1.33] [0, 1.50] [0, 2] [0, 2] [0, 2] [0, 2] [0, 2] [0, 2] [0, 2]
M6 [0, 2] [0, 1] [0, 1.50] [0, 2] [0, 2] [0, 2] [0, 2] [0, 2] [0, 2]

Table 7

Normalized interval decision matrix using fu* for Example 1.
Machine ID FC vC ST L T NS XY SR SS
M1 [0, 1.33] [0, 0.50] [0, 0] [0, 2] [0, 2] [0, 0.99] [0, 1.47] [0, 0.59] [0, 0]
M2 [0, 0] [0, 1] [0, 0] [0, 1.35] [0, 2] [0, 1.91] [0, 1.69] [0, 2] [0, 0]
M3 [0, 1.33] [0, 1] [0, 0] [0, 0.97] [0, 2] [0, 0.87] [0, 1.47] [0, 0.59] [0, 0]
M4 [0, 2] [0, 2] [0, 0] [0, 0.98] [0, 1.30] [0, 0.87] [0, 1.47] [0, 2] [0, 0]
M5 [0, 0] [0, 1] [0, 2] [0, 1.00] [0, 2] [0, 1.08] [0, 1.43] [0, 2] [0, 2]
M6 [0, 1.33] [0, 0] [0, 1] [0, 2] [0, 2] [0, 2] [0, 2] [0, 2] [0, 2]

Table 8

Suh information contents obtained in the FAD approach for Example 1 (Kulak et al., 2005).
Machine ID FC vC ST L T NS XY SR SS
M1 2.000 1.000 0.000 4.181 0.912 0.869 1.507 0.470 0.000
M2 0.000 2.000 0.000 1.250 0.912 2.874 1.845 2.585 0.000
M3 2.000 2.000 0.000 0.923 0.912 0.803 1.507 0.470 0.000
M4 © o 0.000 0.925 0.678 0.803 1.507 2.585 0.000
M5 0.000 2.000 © 0.943 0.912 0.930 1.459 2.585 3.391
Mo 2.000 0.000 2.000 4.181 0.912 4.322 2.773 2.585 3.391

Table 9 coefficient to show connection between the rankings. This coefficient

Measures, assessment indices, and rankings of the unweighted IT-VIKOR model for
Example 1.

Machine ID S R 0 rank (Q))

M1 [0, 8.879] [0, 21 [0, 0.211] 2

M2 [0, 9.954] [0, 21 [0, 0.564] 3

M3 [0, 8.236] [0, 21 [0, 01 1

M4 [0, 10.623] [0, 21 [0, 0.783] 4

M5 [0, 12.513] [0, 21 [0, 1.403] 5

M6 [0, 14.333] [0, 21 [0, 2] 6
Table 10

Measures, assessment indices, and rankings of the weighted IT-VIKOR model for

Example 1.

Machine ID Si R; 0; rank (Qp)
M1 [0, 2.876] [0, 1.067] [0, 0.481] 2
M2 [0, 2.591] [0, 0.800] [0,0] 1
M3 [0, 3.047] [0, 1.067] [0, 0.569] 3
M4 [0, 4.525] [0, 1.600] [0,2] 6
M5 [0, 4.303] [0, 1.600] [0, 1.885] 5
M6 [0, 4.267] [0, 1.067] [0, 1.200] 4
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introduced by Spearman (1904) is a real number between -1 and 1.
The value 1 denotes exact correspondence of compared ranks whereas
the value —1 represents complete opposition. The Spearman coefficient
between the rankings obtained using the unweighted and weighted IT-
VIKOR models is 0.54. Fig. 2 shows the correlation between the
rankings of the proposed methods and the other techniques given in
Table 12. Generally, because of similar algorithm, the IT-
MULTIMOORA method and its subordinate parts are more correlated
with IT-VIKOR model comparing the FAD approach (Kulak et al.,
2005).

6.2. Example 2: Continuous fluid bed tea dryer

The drying process in tea industry is an important step. Besides
dehydrating tea leaves, drying process prevents enzymic reaction and
oxidation. Selection of the suitable option from the set of available tea
dryers leads to high quality products (Cakir, 2016). In this practical
case, we evaluate a problem concerning selection of appropriate
continuous fluid bed tea dryer. This example has already been tackled
based on the FAD approach (Cakir, 2016). Five candidate tea dryers
(m=>5) and nine attributes (n=9) exist in the problem as shown in
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Comparison between assessment values and rankings of the proposed IT-VIKOR methods and the FAD approaches for Example 1.

Machine ID Results of the proposed methods Results of the FAD methods
Unweighted IT-VIKOR Weighted IT-VIKOR Unweighted FAD (Kulak et al., 2005) Weighted FAD (Kulak et al., 2005)
Ass.” value Ranking Ass. value Ranking Ass. value Ranking Ass. value Ranking
M1 [0, 0.211] 2 [0, 0.481] 2 10.939 2 6.307 2
M2 [0, 0.564] 3 [0, 0] 1 11.467 3 6.993 3
M3 [0, 0] 1 [0, 0.569] 3 8.615 1 6.226 1
M4 [0, 0.783] 4 [0, 2] 6 © 5 © 5
M5 [0, 1.403] 5 [0, 1.885] 5 © 5 o 5
M6 [0, 2] 6 [0, 1.200] 4 22.164 4 10.497 4
% Ass.: Assessment.
Table 12
Rankings of the proposed methodology and the other approaches for Example 1.
Unweighted models Weighted models
Machine ID  Proposed IT- ~ FAD (Kulak IT-RS* IT-RP* IT-MF* IT-MULTIMOORA Proposed IT-  FAD (Kulak IT-RS IT-RP IT-MF IT-MULTIMOORA
VIKOR et al., 2005) VIKOR et al., 2005)
M1 2 2 2 1 2 2 2 2 2 2 2 2
M2 3 3 3 1 3 3 1 3 1 1 1 1
M3 1 1 1 1 1 1 3 1 3 2 3 3
M4 4 5 4 1 4 4 6 5 4 5 6 6
M5 5 5 3 1 5 4 5 5 3 5 5 5
M6 6 4 6 1 6 6 4 4 6 2 4 4

2 IT-RS: Interval target-based ratio system, IT-RP: Interval target-based reference point approach, IT-MF: Interval target-based full multiplicative form.

® Unweighted models ® Weighted models

FAD (Kulak et al., 2005)

IT-RS

IT-RP

IT-MF

IT-MULTIMOORA

0.0

0.2

0.4 0.6 0.8

Spearman coefficient

Fig. 2. Correlation between the rankings of the proposed methods and the other
approaches for Example 1.

Table 13
Alternatives and attributes for selection of appropriate continuous fluid bed tea dryer
(Example 2).

Candidate machines Attributes

(alternatives)

Machine ID Attribute name Weight  Target value

M1 Capacity (CP) 0.162 [0.86, 1]

M2 Water evaporation 0.152 [0.80, 1]
capacity (WE)

M3 Fuel consumption (FC) 0.150 [0.80, 1]

M4 Reliability (RL) 0.114 [0.82, 1]

M5 Safety (SF) 0.055 [0.59, 1]
User Friendliness (UF) 0.109 [0.64, 1]
Maintenance and service 0.074 [0.64, 1]
(MS)
Price (PC) 0.153 [0, 0.21]
Space occupied (SO) 0.032 [0, 0.23]

Table 13. The units, weights, and target values of the attributes are also
provided in Table 13. Table 14 displays the interval ratings of the
candidate equipment on their attributes for the problem. The interval
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data regarding the target values of Table 13 and the interval ratings of
Table 14 are obtained based on a — cut of the original triangular fuzzy
numbers given in the study of Cakir (2016). Table 15 represents the
normalized decision matrix obtained based on f;

Tables 16 and 17 demonstrate the measures, assessment indices,
and rankings of the unweighted and weighted IT-VIKOR methods for
the practical case, respectively. v coefficient of Q; is assumed to be 0.5.
The optimal machine based on the unweighted and weighted IT-
VIKOR methods are Aj neghed = gk (veiehied — M4, The associated
PD ranking lists of the candidate tea dryers based on the proposed
unweighted and weighted methods are calculated as follows:

— PD rankings based on the unweighted IT-VIKOR method:
100% 2% 55% 1%
M4 > M3 > M1 > M2 > M5.

— PD rankings based on the weighted IT-VIKOR method:
53%  67% 0% 55%
M4 > M3 > M1 > M2 > M5.

Table 18 demonstrates the results of the present paper (i.e., the
assessment values and rankings based on the unweighted and weighted
IT-VIKOR methods) and the study of Cakir (2016) (i.e., the assessment
values and rankings based on the unweighted and weighted FAD
methods) for this machine selection problem. Table 19 shows the
rankings of the proposed IT-VIKOR and the other MADM methods in
two categories named as unweighted and weighted models. The
Spearman coefficient between the rankings obtained using the un-
weighted and weighted IT-VIKOR method is 1 that means identical
rankings. Fig. 3 shows correlation between our results and those of
Cakir (2016) as well as the rankings of the IT-MULTIMOORA method
and its subordinate parts through calculating Spearman rank correla-
tion coefficients. Based on Fig. 3, the IT-MULTIMOORA method has a
one—to-one correspondence with the IT-VIKOR method in the two
unweighted and weighted categories.

7. Conclusion

Target-based decision making is important in many real-world
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Table 14
Interval decision matrix for Example 2.
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Machine ID Cp WE FC RL SF UF MS PC SO
M1 [0.79, 0.92] [0.72, 0.86] [0.66, 0.80] [0.42, 0.57] [0.06, 0.21] [0.20, 0.35] [0.38, 0.53] [0.40, 0.60] [0.57, 0.81]
M2 [0.84, 0.96] [0.34, 0.49] [0.72, 0.86] [0.38, 0.53] [0.06, 0.21] [0.38, 0.53] [0.34, 0.48] [0.57, 0.81] [0.61, 0.83]
M3 [0.79, 0.92] [0.58, 0.73] [0.66, 0.80] [0.58, 0.73] [0.12, 0.27] [0.19, 0.34] [0.19, 0.34] [0.36, 0.57] [0.35, 0.56]
M4 [0.75, 0.89] [0.62, 0.77] [0.72, 0.86] [0.42, 0.57] [0.21, 0.36] [0.36, 0.51] [0.34, 0.48] [0.00, 0.19] [0.03, 0.21]
M5 [0.44, 0.59] [0.72, 0.86] [0.28, 0.43] [0.54, 0.69] [0.21, 0.36] [0.20, 0.35] [0.36, 0.51] [0.40, 0.60] [0.61, 0.83]
Table 15
Normalized interval decision matrix using /7: for Example 2.
Machine ID Cp WE FC RL SF UF MS PC SO
M1 [0, 0.22] [0, 0.28] [0, 0.38] [0.65, 1.09] [0.73, 1.27] [0.66, 1.26] [0.27, 0.86] [0.41, 0.84] [0.69, 1.17]
M2 [0, 0.08] [0.78, 1.22] [0, 0.25] [0.78, 1.22] [0.73, 1.27] [0.27, 0.86] [0.38, 0.96] [0.76, 1.24] [0.77, 1.23]
M3 [0, 0.22] [0.17, 0.60] [0, 0.38] [0.23, 0.67] [0.62, 1.17] [0.70, 1.30] [0.70, 1.30] [0.32, 0.76] [0.23, 0.69]
M4 [0, 0.33] [0.07, 0.50] [0, 0.25] [0.65, 1.09] [0.45, 0.99] [0.31, 0.90] [0.38, 0.96] [0, 0.02] [0, 0.01]
M5 [0.78, 1.22] [0, 0.28] [0.81, 1.19] [0.34, 0.78] [0.45, 0.99] [0.66, 1.26] [0.31, 0.90] [0.41, 0.84] [0.77, 1.23]
Table 16 of interval numbers. The employed interval distance is an improved

Measures, assessment indices, and rankings of the unweighted IT-VIKOR model for
Example 2.

Machine ID S R; Qi rank (Q;)

M1 [3.408, 7.370] [0.727, 1.273] [0, 1.612] 3

M2 [4.467, 8.328] [0.783, 1.217] [0, 1.931] 4

M3 [2.979, 7.085] [0.703, 1.297] [0, 1.499] 2

M4 [1.858, 5.052] [0.654, 1.091] [0, 0] 1

M5 [4.527, 8.702] [0.806, 1.194] [0, 2] 5
Table 17
Measures, assessment indices, and rankings of the weighted IT-VIKOR model for
Example 2.

Machine ID 3 R: 0Oi rank (Q;)

M1 [0.311, 0.729] [0.094, 0.157] [0, 0.728] 3

M2 [0.470, 0.875] [0.117, 0.189] [0, 1.667] 4

M3 [0.278, 0.720] [0.077, 0.141] [0, 0.356] 2

M4 [0.191, 0.551] [0.094, 0.157] [0, 0.315] 1

M5 [0.504, 0.958] [0.127, 0.197] [0, 2] 5

applications. The models based on such decision making process
greatly matter to engineers who deal with machine selection.
Decision-makers may consider given target values for some attributes
like speed and safety of a machine. The ratings of a machine on such
attributes, naturally may have some degrees of uncertainty. Thus,
systematic methodologies are required to simultaneously consider
target-based attributes and interval data for selection of the best
machines. In this paper, we developed the VIKOR method based on
interval target values of attributes and interval decision matrix. We
presented a novel normalization technique employing interval distance

Table 18

formula comparing the interval distance equation available in the
literature. A preference matrix was employed for finding extremum and
ranking interval numbers. We evaluated two problems concerning the
selection of appropriate punching equipment and continuous fluid bed
tea dryer. Preference-degree-based ranking lists were produced by
determining the relative degrees of preference for the arranged
assessment values of the candidate machines. The rankings of the
proposed IT-VIKOR method for the two practical cases were compared
with the outcomes of the FAD technique and the interval target-based
MULTIMOORA approach and its subordinate parts.

All previous interval MADM studies have degenerated interval
numbers in some sections of their models from low to high extents.
However, in the proposed method, we attempted to lessen degenera-
tion of interval numbers by utilizing the power of the interval
mathematics. We had to degenerate interval numbers in only one
application that is the denominator of ratios. Accordingly, we inevitably
used crisp distance instead of interval distance in the denominator of
the proposed normalization technique and the assessment index.

This paper is related to the studies of Jahan and Edwards (2013a)
and Zeng et al. (2013). In their target-based VIKOR methods, the
target values of attributes or ratings of alternatives on attributes are
crisp numbers. The target-based norm in the study of Jahan and
Edwards (2013a) is supported on Euclidian distance, but we used
interval distance. The interval target values in in the study of Zeng et al.
(2013) have normalized distribution function. However, we developed
the VIKOR method with interval target values of attributes and interval
ratings of alternatives on attributes. The other novelties of the
proposed method comparing the related studies were presented in
Research Gap, i.e., Section 2.5.

The FAD approach also models target-based decision-making. It is
based on common area of membership functions of alternative ratings

Comparison between assessment values and rankings of the proposed IT-VIKOR methods and the FAD approaches for Example 2.

Machine ID Results of the proposed methods Results of the FAD methods
Unweighted IT-VIKOR Weighted IT-VIKOR Unweighted FAD (Cakur, 2016) Weighted FAD (Cakir, 2016)
Ass. value Ranking Ass. value Ranking Ass. value Ranking Ass. value Ranking

M1 [0, 1.612] 3 [0, 0.728] 3 32.334 3 7.886 2

M2 [0, 1.931] 4 [0, 1.667] 4 © 4 © 4

M3 [0, 1.499] 2 [0, 0.356] 2 16.314 1 7.527 1

M4 [0, 0] 1 [0, 0.315] 1 20.805 2 8.939 3

M5 [0, 2] 5 [0, 2] 5 © 4 © 4
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Table 19
Rankings of the proposed methodology and the other approaches for Example 2.
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Unweighted models

Weighted models

Machine ID  Proposed IT- FAD (Calar, IT-RS IT-RP IT-MF IT-MULTIMOORA Proposed IT- FAD (Calar, IT-RS IT-RP IT-MF IT-MULTIMOORA
VIKOR 2016) VIKOR 2016)
M1 3 3 3 3 3 3 3 2 3 2 3 3
M2 4 4 4 4 4 4 4 4 4 4 4 4
M3 2 1 2 2 2 2 2 1 2 1 2 2
M4 1 2 1 1 1 1 1 3 1 2 1 1
M5 5 4 3 5 5 5 5 4 3 5 5 5
® Unweighted models u Weighted models London.

FAD (Gakir, 2016)

IT-RS

IT-RP

IT-MF

IT-MULTIMOORA

0.0

0.2

0.4 0.6 0.8 1.0

Spearman coefficient

Fig. 3. Correlation between the rankings of the proposed methods and the other
approaches for Example 2.

and target values of attributes. It has limitations to find a complete
ranking because of probable infinite values of its assessment index. In
other words, when the interval rating of an alternative on an attribute
and the interval target value of the attribute are not intersected, Suh
information content tends to infinity while the proposed distance-
based normalized interval rating equals to a finite value. Thus, the
proposed IT-VIKOR method generates finite normalized interval rat-
ings and assessment value for every alternative. Moreover, the FAD
approach cannot be used in applications in which the target values of
attributes or the ratings of alternatives on attributes are crisp. Whereas,
the suggested methodology can be utilized in cases in which the target
values of attributes or the ratings of alternatives on attributes are crisp
or interval. The FAD approach produces crisp assessment values;
however, the proposed IT-VIKOR method generates interval assess-
ment values.

As further studies on the field, the proposed method can be
developed with fuzzy sets. For the extension, fuzzy distance and
uncertain preference degree can be utilized. The development of the
proposed method based on stochastic data is also interesting. Besides,
different kinds of weighting systems can be considered for the
attributes of an uncertain target-based decision-making problem
including subjective, objective, and integrated weights.
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