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Abstract. In this research article, we introduce certain notions of
interval-valued neutrosophic graph structures. We ektieahe
concepts of interval-valued neutrosophic graph strustuvith
examples. Moreover, we discuss the concepp-a@omplement

of an interval-valued neutrosophic graph structure. Rnate
present some related properties, includingomplement, totally-
self complementary and totally-strong-self complementiinterval-
valued neutrosophic graph structures.

AMS (MOS) Subject Classification Codes: 35529, 40S70, 25U09
Key Words: Graph structure, Interval-valued neutrosophic graphcsire, -

complement.

1. INTRODUCTION

Zadeh [33] introduced interval-valued fuzzy set theoryahhis an extension of
fuzzy set theory [32]. Membership degrees in an intervée@ fuzzy set are
intervals rather than numbers and uncertainty is reflectetehgth of interval

membership degree. Zhan et al. [35, 36] applied the conddptesval-valued

fuzzy sets to algebraic structures. For representing veggseand uncertainty
Atanassov [10] proposed an extension of fuzzy sets by addimgyv component,
called intuitionistic fuzzy sets. The concept of intuitistic fuzzy sets is more
meaningful and inventive due to the presence of degree tif,tmdeterminacy
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and falsity membership. The intuitionistic fuzzy sets hen@e describing possi-
bilities as compared to fuzzy sets. The hesitation marganahtuitionistic fuzzy
set is its uncertainty by default and sum of truth-memberdiegree and falsity-
membership degree does not exceeds unity. In many phenoméke informa-
tion fusion, uncertainty and indeterminacy is doubtlegsigntified. Smarandache
[24, 25] proposed the idea of neutrosophic sets, he mingieahtponent logic,
non-standard analysis, and philosophy. “Itis a branch dbpbphy which studies
the origin, nature and scope of neutralities as well as th&bractions with differ-
ent ideational spectra”. For convenient and advantagesageuof neutrosophic
sets in science and engineering, Wang et al. [29] proposeddtion of single-
valued neutrosophic(SVNS)sets, whose three independemanents have val-
ues in standard unit intervél, 1]. Neutrosophic set theory being a generalization
of fuzzy set theory and intuitionistic fuzzy set theory, ism@ practical, advanta-
geous and applicable in various fields, including medicaddosis, control theory,
topology, decision-making problems and in many more réalgroblems. Wang
et al. [30] proposed the notion of interval-valued neutpiso sets, which is more
precise and flexible than the single-valued neutrosophgc g interval-valued
neutrosophic set is a generalization of the notion of sivgleed neutrosophic
set, in which three independent components, /) are intervals which are sub-
sets of standard unit intervl, 1].

On the basis of Zadeh’s fuzzy relations [35] Kaufmann pregofizzy graph
[18]. Rosenfeld [22] discussed fuzzy analogue of variowphtheoretic ideas.
Later on, Bhattacharya [11] gave some remarks on fuzzy gregid some op-
erations on fuzzy graphs were introduced by Mordeson and P&3j. Morde-
son and Nair presented a valuable contribution on fuzzyhgas well as fuzzy
hypergraphs in [20]. Mathew and Sunitha [26, 27] discusses and strong cy-
cles in fuzzy graphs. On the other hand, Dinesh and Ramalaiisfi4] defined
fuzzy graph structures and discussed its properties. AkmadhAkmal [7] pro-
posed the notion of bipolar fuzzy graph structures. Akraml.efl, 2, 3, 4] have
introduced several concepts on interval-valued fuzzy lggand interval-valued
neutrosophic graphs. Akram and Shahzadi [8] introducedti®n of neutro-
sophic soft graphs with applications. Recently, Akram aagiN[5, 6] considered
interval-valued neutrosophic graphs. In this researdbleytve introduce certain
notions of interval-valued neutrosophic graph structulé® elaborate the con-
cepts of interval-valued neutrosophic graph structurels examples. Moreover,
we discuss the concept gfcomplement of an interval-valued neutrosophic graph
structure.

2. INTERVAL-VALUED NEUTROSOPHICGRAPH STRUCTURES

Sampathkumar [23] introduced the graph structure whichdereeralization of
undirected graph and is quite useful in studying some strast including, graphs,
signed graphs, labelled graphs and edge colored graphs.

Definition 2.1. [23] A graph structureG = (U, Ry, ..., R:) consists of a non-
empty setU together with relation®;, R,, ..., Ry onU which are mutually dis-
joint such that eacli®;, 1 < j < ¢, is symmetric and irreflexive.
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One can represent a graph structGre= (U, Ry, ..., R;) in the plane just like a
graph where each edge is labelledigs1 < j <.

Example 2.2.LetU = {Tl, 72,73,74, 7“5}. LetR; = {(’I“l, 7“2), (7“3, ’1“4)7 (7“1, 7“4)},
Ry ={(r1,73), (r1,75)}, R3 ={(r2, r3), (r4,75) } be mutually disjoint, symmetric
and irreflexive relations on sét. ThusG = (U, Ry, Rs, R3) is a graph structure
and is represented in plane as a graph where each edge isdsheR;, R, or
Rs.

T

T2

r3 Rl T4

FIGURE 1. Graph structuré&’ = (U, Ry, Rz, R3)

Definition 2.3. [30, 31] Theinterval-valued neutrosophic sébn setl is defined
by
I={(r,[t=(r),t* ()], i (r), i ()], [f~(r), fH(r)]) : 7 € UL,

wheret~, t*,i7, 4%, f~, andf* are functions front to [0, 1] such that:
t=(r) <tt(r), i (r) <it(r)andf(r) < fT(r) forallr € U.

Definition 2.4. Gy, = (I, 1, I, ..., I) is called arinterval-valued neutrosophic
graph structure(IVNGS)f graph structur&: = (U, Ry, Ra, . . ., Ry) if

=0, [t () () [ (), a7 ()] [ (), S (r)]) s r € U}

andl; = {((r,), [t; (r,s),t] (r,5)], [i} (r,8),3) (r, 8)|, [f; (ry ), £ (r,8)]) = (ry8) €
R; } are interval-valued neutrosophic(IVN) sets Grand R;, respectively, such
that:

(1) t; (r;s) <min{t=(r),t=(s)}, ] (r,s) <min{t*(r),t%(s)},

(2) i (r,;s) < min{i~(r),i~(s)}, i;‘(r,s) < min{i*(r),i*(s)},

(3) f; (r,s) <min{f~(r), f(s)}, [ (r,s) <min{f*(r), f(s)},
wheret;, t1,i;, i), f;, andf;" are functions fronR; to [0, 1] such that
lg(r,s) < t;r(r,s), i (r,;s) < i;(r,s) andf; (r,s) < f;‘(r, s) for all (r,s) €

j.
In this paper we will use's in place of ordered paifr, s) which represents an
edge between verticesands.
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72([0.2,0.3],[0.4,0.5], (0.3, 0.4])

1

1,(0.2,0.3],[0.4,0.5], [0.2,0.3))

73(0.3,0.4], [o.;;, 0.7],[0.3,0.4])

FIGURE 2. Interval-valued neutrosophic graph structure

Example 2.5. Consider the graph structu@ = (U, Ry, R2) such thatU =
{7“1, r2,T3, 7“4}, R1 = {T1T3, 172, 7“37“4}, R2 = {7“17“47 7“27“3}. By defining interval-
valued neutrosophic sefs I; andl; onU, R, andRs, respectively, we draw an
IVNGS as shown in Fig. 2.

Definition 2.6. Let Gy, = (I,11,Is,...,I;) be an IVNGS of graph structure(GS)
G=(U,Ry,Ry,...,R). If Hy, =(I' I}, 15, ..., I!) is an IVNGS ofG such that

Then IL@ is called aninterval-valued neutrosophic(IVN) subgraph-structofe
IVNGS G, .

Example 2.7. Consider an IVNGSH,, = (I, I}, I) of graph structures =
(U, Ry, R2) as illustrated in Fig. 3. Through direct calculations, isiown that
H;, is an IVN subgraph-structure of IVNGS;,, shown in Fig. 2.
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72([0.2,0.3],[0.4,0.5], [0.3,0.4])

71([0.2,0.3],[0.5,0.6], [0.4, 0.5])

14([0.2,0.3], [0.4,0.5],[0.2,0.3))

r3([0.3,0.4], [o.é, 0.7],[0.3,0.4))

FIGURE 4. IVN induced subgraph-structure

72([0.1,0.2],[0.3,0.4], [0.2,0.3])

&)

S 7

= 9

- /%0

= L

S “4,(0.2,0.3) "4
S 9
=

<

’
2

3([0.2,0.3], [023, 0.6],[0.2,0.3))
FIGURE 3. Interval-valued neutrosophic subgraph-structure

Definition 2.8. An IVNGS H;, = (I',I],I,,...,I!) is called anlVN induced
subgraph-structuref IVNGS G;, by Q C U if
() =t~ (r), i (r) =i~ (r), [ (r) = f~(r),
7 (r) =7 (r), i (r) = i (r), fF(r) = (1),
(1) = G 05), 47 (r9) = 5 () S5 (79) = (1)o7 ) = 15 ),
i;t(rs) =i (rs), f;"(rs) = fj (rs), forallr,s € Q,j =1,2,... ¢
Example 2.9. An IVNGS H;, = (I', I}, I}) of graph structure&s = (U, Ry, Rs)

shown in Fig. 4 is an IVN induced subgraph-structure of IVNGS = (I, I, I,)
represented in Fig. 2.

Definition 2.10. An IVNGS H;, = (I',I},I},...,I}) is calledIVN spanning
subgraph-structuref IVNGS G, = (I, I, 1o, ..., I;) if I' = I and

/— — - — — _

t; (rs) < t; (rs), i; (rs) < i; (rs), f (rs) < f; (rs),
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FIGURE 5. IVN spanning subgraph-structure

I+ + I+ + r+ + o
i (rs) < tj(rs), ij" (rs) <ij(rs), f;7(rs) < fi(rs),j=1,2,... .t

Example 2.11. An IVNGS H;, = (I', I}, I},) shown in Fig. 5 is an IVN spanning
subgraph-structure of IVNGE,;, = (I, I, I) represented in Fig. 2.

Definition 2.12. Let G, = (I,11,15,...,I;) bean IVNGS. Then edges € I; is
called anlVN I;-edgeor in short an/;-edgeif
t; (rs) > 0ori;(rs) >00rf; (rs) >0ort;(rs) >0ori;(rs) >0or
f;r(rs) >0
or all of conditions are satisfied. Hence suppori pfs defined as;
supp(l;) =
{rselj t;(rs) >0 U{rsel;:i;(rs) >0y U{rs € I;: f; (rs) >0} U
{rsel;: tj(rs) >0}U{rsel;: ij‘(rs) >0}U{rsel;: f;‘(rs) > 0},

7=12,...,t.
Definition 2.13. An I;-pathin an IVNGSG, = (I, 1), I», . . ., I) is a sequence
r1,72, ..., Of distinct vertices (except = r1) in U such that;_;r; is an IVN

I;-edgeforallj = 2,3,...,t.
Definition 2.14. An IVNGS G,, = (I,Ii,Is,...,I;) is I;-strongfor any j €
{1,2,...,t}if
t;(rs) = m.in{t_(r),t_(s)}, i (rs) = mifl{i‘(r),i‘@) ,
fi (rs) =min{f~(r), f~ ()}, t] (rs) = min{t* (r),t7(s)},
if (rs) = min{it(r),it(s)}, f; (rs) = min{f*(r), f*(s)},
for all rs € supp(I;). If Gy, is I;-strong for allj € {1,2,...,t}, thenG;, is
called astrong IVNGS
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r2([0.3,0.4],[0.6,0.7], [0.3,0.4]) r1([0.4,0.5),[0.6,0.7], [0.4,0.5])

&
&
-

4
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7

15([0.2,0.3],[0.6,0.7], [0.3, 0.4j)‘?/0 )

’o-g/)
75([0.2,0.3],[0.7,0.8], [0.3,0.4])

)06]
,/o_d>

76([0.1,0.2], [0.5,0.6], [0.4, 0.5))

FIGURE 6. Strong IVNGS

Example 2.15. Consider an IVNGS+;, = (I, I1, I, I3) as shown in Fig6. G,
is a strong IVNGS, since it i$;, I andi3 strong.

Definition 2.16. An IVNGS G, = (I,11,Is,...,1;) is called complete IVNGS,
if

(1) Gy, is a strong IVNGS.

(2) Supp(l;) # 0, forallj =1,2,... ¢t

(3) Forallr,s € U, rsis anl; — edge for some j.

Example 2.17. Let Gy, = (I, 11, I, I3) be an IVNGS of graph structur@ =
(U, Ry, Ro, R3) and it is shown in Fig.7. Wherd] = {ry,ra,73,74,75,76},
Ry = {rire,r172, 7274, 7275, T2T6,

rars}, Ry = {rqrs,rsre,r1ira}, Ry = {rirs,rsrs, rars, rirs, rare}. By direct
calculations, we can show that, is a strong IVNGS. Moreovegupp(1;) # 0,
supp(l2) # 0, supp(I3) # 0 and each pair;r, of nodes inU, is either an
I,— edge orl,—edge orls— edge. Hences,, is a complete IVNGS, that is,
I I, I3—complete IVNGS.

Definition 2.18. Let Gy, = (I, 1,1, ...,I;) be an IVNGS. Theruth strength
[t~.Pr,, tT.P;,], indeterminacy strengthi—.P;,, i*.P;,] and falsity strength
Lf~.Pr,, f+.P1j] ofanI;-path,P;, =71,79,...,r, are defined as:

[t~.Pp,, t"'.PIj] = 7\ [tfj (re—17x)]1, /"\ [t}rj (re—178)1l,
k=2 k=2
[7-Pryy iPY= LA [ (el A i (el

k=2
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FIGURE 7. Complete IVNGS

D (03,041, [0.4,0.5],[0.3,0.4])

FIGURE 8. IVNGS G}, = (I, 11, I5)

=Py FEP=LA U7 reaml A [ earol

Example 2.19. Consider an IVNGSZ,, = (I,1,I,) of Graph structures =
(U, Ry, R2) as shown in Fig8. For Ix-pathPr, = ry, 75, 73,76, [t . Pr,, t1.Pp,]
=[0.2,0.3],f~.P;,, it.P,]=[0.1,0.2]and f~.P;,, fT.P;,]1=[0.3,0.4].

Definition 2.20. Let Gy, = (1,11, I, ..., I;) be an IVNGS. Then
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o I;-Truth strength of connectednebstween two nodesands is defined
by:
[t (rs), t+°°(rs) = \/ {t;i(rs)} \/ {t“(rs)}] such that
[t7i(rs), 5 (rs)] = [(¢, - ”ot,(”)(m) (t7 Vot Wy (rs)] for i > 2
and B72(rs), t2(rs)] = (17} 0 £7)(rs), (¢ o 1Y) (rs)]
= [Vt (ry) Atz (ys), v<tt.1 (ry) A t?j(ys))]
Y

y
e I;- Indeterminacy strength of connectednésdween two nodesands

is defined by:
[i7,(rs), z}roo (rs)] =1 \/ {zﬂ(rs)} \/ {z“(rs)}] such that

[z';_f(rs) “(rs)]= [(‘“ Yo ‘“))( )(+“ DoirM)(rs)lfori > 2
and i *(r ) zf”(rs)]=[(z;1021_f)(7"s) (“ozf“)(rs)]
=1V (o) A7 ws), VG () it (ys))

Yy
e [;- Falsity strength of connectednes®tween two nodes ands is de-
fined by:

[f7, > (rs), £, (rs)] _[\/{f[ i(rs)}, \/{f”(rs)}] such that

[f7(rs), (rs)]—[(ff - Vo fr “>><rs> (FH0D 0 1) (rs)] for
zzaand[fl_m s), f13(rs )]-[(f, o fr >< ) (f1 o Fi)(rs)]
=[\y/(f1_‘7.1(7"y)Af1j( ys)), \y/( Yry) A FF A (ys))].

Definition 2.21. An IVNGS G,,, = (I, I, Is,...,I;)is called ani;-cycleif (supp(I),
supp(I1),supp(l2), ..., supp(ly)) is anl; — cycle.

Definition 2.22. An IVNGS Gy, = (I,11,1,,...,I;) is an IVN fuzzy I;-cycle
(for somej) ifG';, is anI;-cycle and no uniqué;-edgers exists inG';, such that:

[t7,(rs), t7,(rs)] = [min{t} (uv) : wv € I; = supp(I;)},
mm{t+ (uv) wv € I; = supp(I;)}] or
[i7, (rs), ZI (rs)] = [min{i, (uv) w € I; = supp(I;)},
min{i} (w) suv € I = supp( I;)}or

L7 (rs), £7 (rs)) = [min{ £ (uo) : wo € I; = supp(I;)},
min{f}:(uv) cuv € I; = supp(I;)}].

Example 2.23. Consider an IVNGSZ;,, = (I,1;, 1) of graph structures =
(U, R1, Ry) as shown in Fig9.



122 M. Akram and M. Sitara

74(0-2,0.3),[0.2,0.3], [0.4,0.3])

r3([0.10.2], [0.4, 0.5], [0.5, 0.6])
71(]0.3,0.4], [0.4,0.5],[0.5,0.6])

15(10.1,0.2], [0.4,0.5], [0.5, 0.6])

FIGURE 9. Interval-valued neutrosophic fuzZy-cycle

This IVNGS G;, is anlr-cycle, thatis;;y — r4 — ro — r3 — 1 and no unique
I»,-edgers exists inG;, satisfying following condition:

(t7, (rs), t;; (rs)] = [min{t;z (uv) : uwv € Is = supp(l2)},

min{t} (w) : wv € I = supp(I2)}] or

[ig, (rs), z}'; (rs)] = [min{ip (uv) : uv € Iz = supp(l2)},

min{i}; (uv) : uv € Iy = supp(Iz)}] or

[fr(rs), fr(rs)] = [min{ f7, (uv) : wv € Ir = supp(I2)},

min{f}} (w) : wv € I = supp(I2)}].

Definition 2.24. Let Gy, = (I, 11, I, ..., I;) be an IVNGS and:*’ be a vertex of

G If (I', 1}, 15, ... T}) is an IVN subgraph-structure 6f;,, induced byU \ {r}
such that for alku # r,v # r

tp(r) =ip(r) =
)

th(r) =ip(r) =

(uv), t7 (uv)], [Z;J, (wv), Z;Z, (wv)] = i}, (wv), ZZ (uv)],
Lfy (), £ (o)) = 7 ), £ ()
for all edges-u, uv € G‘iv, then. vertex is anlVN fuzzyl; cut-vertexif
@) 7.7 (wv) > ¢, (uv), tz_oo(uv) > t;f,_oo (wv), [t} (uv), t}rjoo(uv)] N
[ (uv), £ (uv)] = 0 J
(2 il_jéo(uv) > iJI_,“X’(uv), izoo(uv) > i (uv), [, (w), z}:‘x’(uv)] N
[zI_J,‘X’ (uv), Z}-;éo (wv)] = 0 ] |
(3) () > [ (un), f () > £ (un), [ (o), £ ()] 0
Ly (), £ ()] =0
for someu,'v eU\ {%}. Note that vertex is an
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o IVNfuzzyl;—t cut-vertexif t; > (uv) > t,% (uv), t}rioo (wv) > t5°(w),
[t (wv), £ (uo)]N [t (), £ (w0)] = |
o IVN fuzzyl;—i cut-vertexif i > (uv) >i;,° (wv), i > (uv) > 7, (wv),
J J
[i7,> (uv), z}rjoo (uv)]N [Z;;OO (uv), z;r;oo(uv)] =0
e IVNfuzzyl;—f cut-vertexif f; > (uv) > f,* (uv), I‘:Do(uv) > %0 (w),

£, (wo), £ o)) L (o), f> (uwv)] = 0

Example 2.25. Consider an IVNGS3;, = (I, 1, I,) of graph structurey =
(U, R1, R2) as represented in Fig0.

& s
k) w
< » =
< S
s & D=
= r2([0.4,0.5],[0.7,0.8], [0.5, 0.6 L T
s 2] ], [ ], [ 1) sgs 5
S 12([0.3,0.4],[06,0.7, [0.4,05)) . O /IS 2
= S /of—~ =
RSN SYAS )
TS e =
= NS + o
+ = : =3 o
S © - =

£ 3 -
< g =N
= ©
= S
—~ g
=1
[=] .
~ @
= S
= [
=}
N ©
S S
o )
N S

K

FIGURE 10. IVNGSG,, = (I, 11, 1)

H,, = (I',I], I) is an IVN subgraph-structure of IVNGS,,,, which is obtained
by deleting vertex, and shown in Figl11.
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‘U

z
7y

75([0.4,0, 5], [0.5,0.6], [0.6,0.7])

=

(=}

n

=)

:([0.1,0.2], [0.4,0.5], [0.2,0.3]) =
A =}

o

=)

=y

(=}

"6 1,((0.2,0.3],[0.3,0.4], [0.4,0.5]) €

r3((0°%,0.6], 0.7,

‘[g°0F7°0] ‘[0 €70 94
>0

)Q&@5

(Iro
0@@?

FIGURE 11. IVNGSH,, = (I', I}, 1})

The vertex is an IVN fuzzyl; — i cut-vertex. Since
i, (rars) = 0.3, iy, (rar5) = 0.5, izoo(mrg)) = 0.4, i}rloo(r4r5) = 0.6.
Cllearlyi;lo"(mrg;) =0.5>0.3 =i;{°° (rars),i].®(rar5)=0.6>0.4 =i;2°°(r47“5),
[i7,>° (rars), i}'loo(r4r5)] N [il_{oo(r4r5), i}'{oo(r4r5)] =[0.5, 0.6]N [0.3, 0.4] =0.
Definition 2.26. Let G, = (I,1,I5,...,1;) bean IVNGS ands be an{j—edge.
If (I',I1,1,,...,1I]) is an IVN fuzzy spanning subgraph-structure(®f,, such
that
t;; (rs) = z;;(rs) = f;; (rs) =0, t}r; (rs) = ZZ (rs) = f;g(rs) =0,
[t7 (wz), ty, (wa)] = [t (wa), t] (we)], [ig, (w), i) (wa)] =]
! S
Lf; (w), 17 (wa)] = L7 (wa), 17 (we)]
for all edgeswx # rs; then edges is an IVN fuzzyI;-bridge if
@) 7,7 (wv) > ¢, (uv), t;rjoo(uv) > t;f,_oo (wv), [t7,> (uv), t}rjoo (uv)]N
[£77° (uv), 4 (uv)] = 0 J
(2 zl_jéo (uv) > ZJI_,OO (uv), i}':,oo(uv) > i (uv), [}, (w), i};oo (wv)]N
[ZI_J,OO (uv), z}'jojo (uv)] =0 ]
(3) f7, () > [ (u0), f(wo) > 77 (wo), [ (o), 7> (@0l
L (o), £, (wo)] = 0
for someu,'v € U. Note that edges is an
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FIGURE 12. IVNGSG, = (I, 11, I5)

o IVN fuzzyl; —t bridge, if t; > (uv) > tl, (uv), t7°°(uv) > 17, (uv),
[t7,> (uv), t;rjoo(uv)]ﬂ [tlj,_oo (uv), t+°°( v)]=0

e IVN fuzzyl; — i bridge, if i}, (uv) > zl, (uv), i Joo(uv) > zl, *° (uv),
[i7,” (w), z}'oo(uv)]ﬂ[zl, (uv) ZI/ (uv)] =0

e IVN fuzzyl;— f bridge, if fI  (uw) >f1/ (uv), f7°°(uv) > f1,°° (wv),

J

[f7,% (wo), £ (o)l [, (), £, (wo)] = 0

Example 2.27. Consider an IVNGS3;, = (I, 1, I,) of graph structures =
(U, Ry, Ry) as shown in Fig. 12H;, = (I', I}, I}) is an IVN spanning subgraph-
structure of IVNGSG;,, obtained by deleting af -edger,rs and shown in Fig.
13. The edge,rs is an IVN fuzzyl; — bridge since

I

° tl_{ (rors) = 0.2, t7.(r2rs5) = 0.7, t}'{oo(rgw) = 0.3, t}"loo(rgr5) =
0.8. t7(r2rs) = 0.7> 0.2 :tI_{DO(TQT'{,), t}rloo(rgr5) =08>0.3=
tZOO(T'QTLr)), [t (rars), t;rloo(rgr5)] N [tlzoo(ryg), t;zoo(rgﬁ)]: [0.7,
0.8]N[0.2, 0.3] =0.

. z‘;°°(r2r5) = 0.3, i1, (rars) = 0.5, i, (rars) = 0.4, i1, (ra15) =
0.6. i;.°°(rer5) = 05> 0.3 :Z';{OO(TQT'{,), izoo(rgﬁ) =06>04-=
z;r{ (7“27“5),

[i7,7(r2rs), 07,2 (rars)] N [i,> (rars), i3, (rar5)]= [0.5, 0.6]N [0.3,

0.4]=
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FIGURE 13. IVNGSH,, = (I', I}, I)

. fl_{oo(’I"QT5) = 0.3, f;,>(rar5) = 0.5, ftoo(rg%) =04, f{1%(rers) =
0.7. fI_loo(T’QT'g,) =0.5>0.3 :fI_{OO(T'QT'g,), f}too(T’QT'g,) =0.7>04=
f;goo(mm): [f7,°°(rars), f17°°(rars)] N [ff{oo(rw%): f;goo(7‘27”5)] =
[0.5, 0.7]n [0.3, 0.4] =0.

Definition 2.28. AnIVNGS G, = (I, I1, I, . . ., I;) is anl-treeif (supp(I), supp(I1),
supp(Ia), ..., supp(l})) is anl; — tree. Alternatively,G;, is anl;-tree, if Gy,
has a subgraph induced bypp( ;) that forms a tree.

l?efinition 2.29. An IVNGS G, = (I,I,1s,... ,It)vis anlVN fuzzyl;-tree if
Gy, has an IVN fuzzy spanningvsubgraph-structﬂf@ 1,1, 1y, ... 1)
such that for all’;-edges s notin H;,,
H,, is anI”—tree and
1) t7 (rs) < tI_,, (rs), t}t (rs) < t}??o(rs), [t7, (rs), t}rj (rs)I N
[t (rs), t?i”(rs)] =0 |
) iy, (7“8) < zI,, 7 (rs), ZZ (rs) < i;?o(rs), [zfj(rs), z}rj(rs)] N
[ZI,, (rs), z}',, (rs)]=0 ’
(3) £;,(rs) < £ (rs), [7(rs) < F2(rs), Up(rs), £ (rs)] 0
L), £ (rs)] = 0 |
In particular,
o Gy, isanlVN fuzzyl; —ttreeif t; (rs) < tl_;?o(rs), tf (rs) < t;’,‘?" (rs),
[t7,(r8), £, (r)] O L (r9), £ ()] = 0
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QG °0]) v+
A 100)er

rl(\f;;,s, 0.4],[0.6,0.7], [0.5,0.6])

r2([0.4,0.5], [0.7,0.8], [0.5, 0.6])
FIGURE 14. G, = (I, 11, I5)

e (3, isanlVN fuzzyl; —itreeif il_ (rs) <iy~(rs), z}r (rs) < ZI,, o (rs),
[i7, (rs). 7, (rs)] O [ (rs), i (rs)] = 0
. J J j
e G, is anIVN fuzzyl; — f tree if fr(rs) < fp@(rs), fi(rs) <
J J J
FE (), U7 (), £ (rs)] O L2 (o), £ (uo)] = 0
Example 2.30. Consider an IVNGSZ;,, = (I,1;, 1) of graph structures =
(U, R1, R2) as shown in Fig. 14. This IVNGS i&-tree, notl;-tree. Butitis
IVN fuzzy I; — t tree, since it has an IVN fuzzy spanning subgraph-strudﬁ;ge
=(I",I{, 1}) as anl{-tree, which is obtained by deletidg-edgersrs from G,
and shown in Fig. 15. By direct calculations, we found that
t;{?o(TQT{S) = 03, t;r{?o(’l“gﬂa) = 0.5, t;l (7“27“5) = 0.1, t}rl (7“27”5) = 0.2,
tl_l (7”27“5) =0.1<0.3 :tl_fo(rg’l%), t}_l (7“27”5) =0.2< 0.5 :t},—{?o (’I“27”5),
[tl_{?o(’l“gﬂa) t}_/?o(rg’l“5)] N [t;l (7”27“5), t},—l (7”27“5)] = [03, 05]ﬂ [Ol, 02] =0.
Definition 2.31. An IVNGS G,,1 = (I1, I, L12, ..., I1;) of graph structurér;
= (Ul, Ri1, R0, ..., th) is isomorphic to IVNGS7;,0 = (IQ, Io1, 159, ... ,Igt)

of graph structur&ss = (Us, Ro1, Roo, ..., Ro), if there is a paif(f, ¢), where
f : Uy — U, is bijection andp is a permutation on s€fl, 2, ..., ¢} such that:

17,0 6 00 = 1, 0. E DD L, (00,5, () = i, () 5, )
L), FEEN= U, LU,

147,797, (=05, (T 1, (06

lir,, (rs), if,, (rs)] = Lir,_ (F(OF ()i, (Ff)]

Uz, (rs), £, e = Uiy (FEF)), F7 (P F ()],

)f(s)
)f(s)
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FIGURE 15. Hiv = (IN)I{/7IQ)

74([0.3,0.4],0.2,0.3], [0.5,0.6])

1,([0.3,0.4],0.2,0.3], [0.4,0.5])
72(]0.6,0.7],[0.5,0.6], [0.5, 0.6])

71([0.4,0.5],[0.3,0.4], [0.4, 0.5])

FIGURE 16. IVNGSG,,1 = (1,13, I5)

forallreUl,rseIU,je{1,2,...,75}.

Example 2.32. Let G,y = (I, 11, I) and Gy, = (I', 1], I}) be two IVNGSs of
two GSsG; = (U, R1, Rs) andG, = (U’, R}, R}) as shown in Fig. 16 and Fig.
17, respectively.

Giv1 andG,» are isomorphic undeif, ¢), wheref : U — U’ is bijection and
¢ is permutation on sefl, 2} defined asy(1) = 2, ¢(2) = 1, such that:

[t (ro). ¢ (r)] = [t (F (ro))s £ (F (ra) ),
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51(]0.4,0.5],[0.3,0.4], [0.4,0.5])

15([0.3,0.4],[0.2,0.3], [0.4,0.5])
53(]0.3,0.4], 0.7, 0.8], [0.5, 0.6])

54([0.3,0.4],[0.2,0.3],[0.5,0.6])

FIGURE 17. IVNGSG 0 = (I', I}, I})

lig (ra), a7 (ra)] = Lig (f(ra), 7 (F (o)),
Lf7 (), 1 ()l = U p (F(ra)), f15 (F (o),
[t7, (rir) tF, (rer)1 = [t (Fra) ), £ () £,
1l =i, () (), z,()< (ri) £ (i)
Ly, (rir) 7 Grare)) = U (Fr) PO, £, () F ()]
forallr; € U, rir € I;, 5 € {1,2} andi, k € {1, 2, 3,4}.

[zl_7 (rire), i

sO(J)

Definition 2.33. An IVNGS G,,1 = (I, i1, Lha, - - ., I+) of graph structures,
= (Ul, R117 ng, ceey th) is identical to IVNGSG 2 = (IQ, 121, IQQ, ceey Igt) of
graph structuré&s = (Us, Ra1, Ra2, ..., Rat) if f: Uy — Us is a bijection, such

that
[t7, (r), 7, (] = [, (Fr) 7, (P, Lig, (), i, ()] = i, (F (), a7, (F ()],
7, (r), le( N=L1f,(f(r)), fzz( ()],
[t7,, (), t1, (ro)] = [tg,, (fF(r) (), 7, (F(r) f(5))],
lir,, (rs). i7,, (rs)] = Lig,, (f(r) f(5)), i, (F (1) f ()],
Lfr,, (rs), fri, (rs)] = U, (F(r) £ (), £, (F(r) f(5))),
forallr € Uy, rs € Unj, j € {1,2,...,t}.
Example 2.34.Let G,y = (I, 11, I) and Gy, = (I', I}, I}) be two IVNGSs of

the graph structure&y = (U, Ry, R2) and G, = (U’, R}, R}), respectively as
shown in Fig. 18 and Fig. 19, respectively.
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12([0.3,0.4],[0.3,0.4], (0.4, 0.5])
76([0.5,0.6],[0.5,0.6], (0.5, 0.6]) 73([0.6,0.7],[0.4,0.5],0.6,0.7])

72((0.4,0.5],[0.4,0.5], 0.5, 0.6])
75([0.6,0.7],[0.6,0.7], [0.5, 0.6])

75([0.5,0.6],[0.6,0.7],[0.6,0.7])  4([0.7,0.8],[0.5,0.6], [0.7,0.8))

FIGURE 18. IVNGSG,,1

53([0.7,0.8],[0.5,0.6], [0.7,0.8]) s56(]0.5,0.6],[0.6,0.7], [0.6,0.7])

55((0.6,0.7],10.6,0.7], [0.5, 0.6])
57([0.6,0.7],[0.6,0.7], (0.6, 0.7])

0.6],[0.5,0.6], 0.5, 0.6])

54([0.6,0.7],[0.4,0.5],[0.6,0.7])  ss([05,

FIGURE 19. IVNGSG,p2

IVNGS G, is identical toG,2 underf : U — U’ defined as :
f(r1) = s2, f(r2) = s1, f(r3) = sa, f(ra) = s3, f(r5) = 55, f(r6) = ss,

flr7) = sz, f(rs) = s¢. Moreover,
[t7 (ra), t7 (r)] = [t (F (i
[Z;(rz) Z;r(rz) [ZI’(f(rz
Lfr (73), f[ (7”7) —[fl_’(f(rz) )
[t7, (i) 5, (reri )] = [ (£ ) £ (7))
[if (rire), if (rar)] = [z1,<f<mf<rk)>.z
Lz (rire)s fr (rir)) = U (F(ra) £ (ri))s 1 (F (ri) £ (rie )],
forallr; e U, rmi € Ry, j € {1,2},4,k € {1,2,...,8}.
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Definition 2.35. Let Gy, = (I,I,I5,...,1;) be an IVNGS and> be a permuta-
tion on{I, I»,...,I;} and also on the sdfl,2,...,t}, that is,o(I;) = I iff
p(j)=lforallj. If rs € I; and

5 (r9) 7 (ro)l = 187 () A7 (5) = V£ (r),
G A E) = V(s L (s >z'go<rs>]:
7 () A7 () = V i m(rs) ) AT ) — V!
i), Jiz(
AT = N Ty 9 S0 AFFE) = V Ly 9]
j= 1,2,.. t, thenrs € I¥, whereu is selected, such that
(rs) = tre (rs), tp(rs) = tre(rs), [t (rs), t7: (rs)] N [0 (rs),
] @

rs)] =

ot
t

o(rs

)
¢ (rs)
)

o (1s

\ \/

12 (rs), ife(rs) > i ( s), lige(rs), ife(rs s N L (rs),

[ ]
~.

@
f;’ (rs), fp’ (rs) > fp’ (rs), [f]w (rs), fp’ (rs)] N[ fp’ (rs),

J

]
" (rs)
(rs)] =

forall j. Then IVNGS(I,I{, I3, ..., I7) is said to bep-complement of IVNGS
G, and denoted by:¥°.

.
| =6 :(5‘“@ oy

+N
v

./
I

<6

Example 2.36.LetI = {(r1, [0.4,0.5],]0.4,0.5],0.7,0.8]), (2, [0.6,0.7],[0.6,0.7],
0.4,0.5]), (r3,[0.8,0.9],0.5,0.6],[0.3,0.4))}, I; = {(r1r3,[0.4,0.5],[0.4,0.5],0.3,0.4])},
I = {(ra75,[0.6,0.7],[0.4,0.5],[0.3,0.4])}, Is = {(r172,[0.4,0.5],0.3,0.4], [0.4, 0.5])}
be IVN subsets o/ = {7“1,7”2,7”3}, R = {7”17”3}, Ry = {’I“Q’I“g}, Rs =

{r1r2}, respectively. ObviousGy, = (1,13, I, I3) is an IVNGS of GSG =

(U, R1, R2, R3) as shown in Fig. 20

r2([0.6,0.7], (0.6, 0.7], 0.4, 0.5]) r3([0.8,0.9], (0.5, 0.6], [0.3, 0.4])
12(]0.6,0.7], [0.4,0.5], [0.3,0.4])

71((0.4,0.5],[0.4,0.5],[0.7,0.8])
FIGURE 20. Gy, = (I, 11, I, I3)
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Simple calculations of edgesrs, rors, rirs € 11, Io, I3, respectively, show that
rirs € I, rors € If, rire € IS. S0,GE =(1, 17, IS, IY) is p-complement of
IVNGS G, as shown in Fig21.

72([0.6,0.7],[0.6,0.7], [0.4,0.5])

73([0.8,0.9], [0.5,0.6], [0.3,0.4])

1£([0.4,0.5],[0.4,0.5], [0.3,0.4])

FIGURE 21. G, = (I, IY, IS, IS)

Proposition 2.37. p-complement of an IVNGS;,, = (I,I,I,...,1;)isastrong
IVNGS. Moreover, ifp(j) = u, wherej,u € {1,2,...,t}, then allI,-edges in
IVNGS(I, I, I, . .., I;) becomel Y -edges in(I, If , I3, . .., I} ).

Proof. By definition of p.-complement,

[t;f(m)y t;},(rs)] =[t; (r) At; (s \/tw(” (rs), t5(r) At](s) \/tsa(lz) rs)|(2. 1)
1#3 1#]
[Z';;o(rs), i}rf(rs)] =[i; (r)Niy (s \/sz rs), if (r) Aif (s \/%(1) rs)|(2. 2)
| | 1# I#]
[fre (rs), f;gp(rs)] =T A FT() =\ Foayrs)s ST AST(s) = £l re)2.3)
| | 1#3 1#]

forj € {1,2,...,t}. For expression of truth membership value:
Ast; (r)At;(s) > 0,5 (r)Atf(s) >0 and;/j toiy(rs) =0, l¥j tz(m(rs) >
0. Sincet; (rs) < t; (r) Atr(s), t7(rs) < t7(r) At](s), forall I;. This
implies \/ ¢ (rs) < t;(r) Nt (s ) and \/ t+ (rs) <t (r) Atf(s). It
I#]
shows that (r) AT () =Vt (rs) > O, tI( )=V th,(rs) > 0. Hence
I#j I#5
tre (rs) >0 andtJr (rs) > 0, for all j. Furthermoretl‘f (r5) andt;}, (rs) obtain
maximum value wher\/ to, )(rs) and \/ t+(I )(rs) are zero. Obviously, when
o(I;) = I, andrs is an I,-edge then\/ t;(m(rs) and \/ t:(ll)(rs) acquire
1#] 1#]

zero value. Hence
[t7e (rs), t?f(rs)] = [t7 () At7 (s), tF () AEE ()], for (rs) € Lu, (1) = 1.(2. 4)
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For expression of indeterminacy membership value:

Asiy (r)Aip(s) > 0,if (r) Aif(s )>0and\/z 1)(rs) =0, \/z )(rs) =

0. Sinceiy (rs) < iy (r) Ay (s), ZZ_(T‘S) § Z}L( ) AT (s), for all I;. This

implies \/ i;(m(rs) < 47 (r) ANij(s)and \/ i:(ll)(rs) < if(r) Adf(s). It
1#j 1#j

shows that (r) A} (r) — \/ iy (rs) > 0,47 (1) — \/ i,y (rs) > 0. Hence

I“’( s) > 0andif, (rs) > 0 forallj Furthermorezlv (rs) andi, (rs) achieve
maximum value Wher\/ iy, (rs) and \/ ig(r,)(rs) are zero. Obwously, when
#J

o(I;) = I, andrs is anIu-edge ther;)é/j zw(ll)(rs) andl¥j zw(ll)(rs) get zero
value. Hence

[ie (rs), ife (rs)] = [i7 (1) A (s), i (r) Aif (s)], for (rs) € L, ¢(I;) = L(2. 5)
For expression of falsity membership value:

AS i (DAS7 (5) 2 O ST (IAST (3) 2 0and £, (r9) 2 0,V £ (rs) 2

0. Sincef; (rs) < fr (r) A f (s), f}r(rs) < ) A ff(s ) f raII I;. This
impliesl¥j f;(ll)(rs) < fr (r) A fr(s) and;/j @(I)(rs) < fE) A f(s). 1t

shows thalf; (r)Af; (r)— \/ o (rs) =0, ff (r)— \/ f3(rs) > 0. Hence

fﬁ, (rs) > Oandfﬁ, (rs) > 0 for all j. Furthermorefpo (rs) andfpo (rs) obtain

maximum value wher\/ fo, )(rs) and \/ (rs) are zero. Obwously, when

<p(1)
o(I;) = I, andrs is anIu edge ther;}é/j f¢(1l)(rs) andl¥j f;f(jl)(rs) acquire

zero value. Hence

[fre(rs)s fe ()] = [fr () A fr (), [ (r) A FE(S)) for (rs) € L, o(1;) = (2. 6)
From expressions (2.4), (2.5) and (2.6), it is clear that

t;(rs) = min{t~(r),t~(d)}, i (rs) = min{i~ (r),i (s)},

7 (rs) = min{f~ (=), f~(s)}, ] (rs) = min{t* (r), t* (s)},

i (rs) = min{i*(r),i* (s)}, £;7 (rs) = min{f*(r), f*(s)},
HenceG,, is a strongIVNGS and all I,-edges in IVNGS(I, 1,15, ..., 1)
becomdf—edges i If I3, ... IF). O

Definition 2.38. Let Gy, = (I, 11, I, ..., I;) be an IVNGS and> be a permuta-
tionon{1,2,...,t}. Then

(i) Gi. is self complementary IVNGS ifi;, is isomorphic toG'Y’.

(i) G, is strong-self complementary IVNGS(f;, is identical toG¥°.
Definition 2.39. Let Gy, = (1,11, I, ..., I;) be an IVNGS. Then

(i) G, is totally-self complementary IVNGS if:;, is isomorphic toG?¢,
for all permutationsp on{1,2,...,t}.
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(i) C}'w is totally-strong-self complementary IVNGS @;,, is identical to
G7¢, for all permutations on {1, 2, ..., t}.

Example 2.40. An IVNGS G;,, = (I, 1, I, I3) shown in Fig. 22 is identical to

p—complement for all permutationson set{1, 2, 3}. Hence it is totally-strong-
self complementary IVNGS.

71((0.8,0.9],[0.4,0.5], (0.5, 0.6])

FIGURE 22. Totally-strong-self complementary IVNGS

Theorem 2.41.An IVNGS is totally-self complementary if and only if it id@8g
IVNGS.

Proof. Consider a strong IVNGS/;, and permutationp on {1,2, ..., §. By
proposition 2.37-complement of IVNGSG;, = (I,1,I5,...,1;) is a strong
IVNGS. Moreover, ifo~!(u) = j, wherej,u € {1,2,...,t}, then alll,-edges
iNIVNGS (I, I, Iz, . . ., I;) becomel f-edges in(1, I7, I, ..., I}), this leads

tr, (rs)=ty (r) Ntp (s)=tpe (rs), iy, (rs)=iy (r) A i (s)=ipe (rs),
Fr.(rs)=fr (r) A7 (5)=f 14 (rs), tf, (rs)=t7 (r) At (s)=t]s (rs),
)

r
Z;— (rs):i}'(r) A i}k(s)=i}} (7“8), f1+ (rs)=fl+(r) A ff(s)=f;§7 (rs

Therefore, undef : U — U (identity mapping)Gi, andG¥,
such that:

are isomorphic



Interval-Valued Neutrosophic Graph Structures

forallrs € I, foro=1(u) = j; j,u=1,2,...,t.

This holds for every permutatiop on {1,2,...,t}. HenceG,, is totally-self
complementary IVNGS. Conversely, I6%,, is isomorphic th;‘; for each permu-
tationp on{1,2,...,t}. Moreover, according to the definitions of isomorphism
of IVNGSs andp-complement of an IVNGS

tr,(rs) =t (f(r)f(s)) =ty (f(r)) Aty (f(s)) =1
t1. (rs) = t}} (F(r)f(s) =t (f(r) AtF(f(s)) =t
ir. (rs) = l_f i7 Nip(
if (rs) = ZZ«: (F(r)f(s)) =if (f(r) Aif(
fr.(rs) = fre (F(r) () = fr (Fr) A fr (F(s)) = fr () A fr (),
fErs) = FE(F(r) f(8) = £ (F(r) A FT(F(9)) = £ () A (5),

forallrs € I,,u =1,2,...,t. HenceG,, is a strong IVNGS. O

f
f

<.

Remark. Every self complementary IVNGS is totally-self complenaagt

Theorem 2.42.1f G = (U, Ry, Rs, ..., R;) is a totally-strong-self complemen-
tary graph structure and

I=([t; . tf),[i7.if). [f;, fi7]) isan IVN subsetdf wheret; iy, f; ,tF,if, fi
are constant functions, then every strong IVNG%/aofith IVN vertex sef is a
totally-strong-self complementary IVNGS.

Proof. Leta, a’ € [0,1],b, " € [0,1] andc, ¢ € [0,1] be six constants and

tr(r) =a,ir(r)=b f (r) =ct7(r) =d,if (r) =V, f (r) =¢,
forallr e U.

SinceG is a totally-strong-self complementary GS, so for everympgationy—!
on{l,2,...,t} thereis abijectiorf : U — U, such that for every, —edge(rs),
(f(nf(s)) [anI;-edge inG ] is anI,-edge inGS“’_lc. Thus for everyl,,-edge(rs),
(f(n)f(s)) [an I;-edge inG;, 1is anI¥-edge inGy, " ©.
Moreover,G,, is a strong IVNGS, so
tr(r)=a=t;(f(r), iy (r) =b="i; (f(r), f; (r) =
t7(r) =d =t7 (f(r), if (r) =V =17 (f(r)), f{ (r) =

forallr € U, and

ty, (rs) =t (r) Atr(s) =t (f(r) At (f(s) =t (f(r) f(s)),
ir, (rs) =iy (r) Nip (s) =i (f(r)) Nip (f(s)) = z;, (f(r)f(s)),
fr.(rs) = fr () nap (s) = fr (F) A fr (F()) = fre (£ () f(s)),
t1,(rs) =7 (r) Aty (s) = t7 () Aty (F(s)) =t (£ ()£ (5)),
i, (rs) =if (r) Aif (s) =i7 (f(r) Aif (f(s)) = z,t; (f(r)f(s)),
f1,rs) = FE) Aif(s) = [P A ST (F(9)) = 1R (F () £ (s)
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forallrs € I;,7 =1,2,...,t.

This showsG;, is a strong-self complementary IVNGS. This satisfies fotheac
permutationp andy~—' on set{1,2,...,t}, thusG;, is a totally-strong-self com-
plementary IVNGS. This completes the proof. O

Remark. Converse of theorem 2.42 may not true, for example a IVNG &tk
in Fig. 22 is totally-strong-self complementary IVNGS, stdlso strong IVNGS
with a totally-strong-self complementary underlying dregiructure but;, i,
fytf.if, f{ are not the constant functions.

3. CONCLUSIONS

Interval-valued fuzzy set theory has numerous applicatiorarious fields of sci-

ence and technology, including, fuzzy control, artificiadelligence, operations
research and decision-making. An interval-valued neofsb& graph constitutes
a generalization of the notion interval-valued fuzzy grajphthis research paper,
we have introduced the notion of interval-valued neutrbsograph structures
and discussed many relevant notions with appropriate ekeampVe have also
discussed some interesting properties of these notions.
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