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Abstract

The notion of AntiGroups is formally presented in this paper. A particular class of AntiGroups of type-AG[4] is
studied with several examples and basic properties presented. In AntiGroups of type-AG[4], the existence of an
inverse is taking to be totally false for all the elements while the closure law, the existence of identity element,
the axioms of associativity and commutativity are taking to be either partially true, partially indeterminate or
partially false for some elements. It is shown that some algebraic properties of the classical groups do not hold
in the class of AntiGroups of type-AG[4]. Specifically, it is shown that intersection of two AntiSubgroups is not
necessarily an AntiSubgroup and the union of two AntiSubgroups may be an AntiSubgroup. Also, it is shown
that distinct left(right) cosets of AntiSubgroups of AntiGroups of type-AG[4] do not partition the AntiGroups;
and that Lagranges’ theorem and fundamental theorem of homomorphisms of the classical groups do not hold
in the class of AntiGroups of type-AG[4].

Keywords: NeutroGroup, AntiGroup, AntiSubgroup, AntiQuotientGroup, AntiGroupHomomorphism.

1 Introduction

Neutrosophic logic (NL) introduced by Smarandache in 1995 is an alternative to the existing classical log-
ics and the generalization of fuzzy logic (FL) of Zadeh [1#] and intuitionistic fuzzy logic (IFL) of Atanassov
[¥]. Neutrosophic logic is a non-classical logic that can be used as a mathematical tool to model situations
characterized by uncertainty, vagueness, ambiguity, imprecision, undefined, unknown, incompleteness, in-
consistency, redundancy, contradiction etc. In neutrosophic logic [1V], each proposition is estimated to have
percentage of truth in a subset 7', the percentage of indeterminacy in a subset I, and the percentage of fal-
sity in a subset F' where (7, I, F) are standard or non-standard subsets of the non-standard interval |0, 1],
where nips = inf 7'+ inf I + inf F >~ 0, and ngy, = supT’ + sup I + sup F' < 3T, Statically, (7,1, F)
are subsets but dynamically, they a functions/operators depending on many known or unknown parameters.
In NL, if < A > is an idea, or proposition, theory, law, axiom, event, concept, entity etc., there correspond
< Non-A >=< Anti-A > which is the opposite of < A > and < Neut-A > which stands for what is neither
< A > nor < Anti-A >, that is neutrality in between the two extremes. Consequently in NL, it is possible
to have the triad (< A >, < Neut-A >, < Anti-A >). The non-restriction in NL allows for paraconsis-
tent, dialetheist, and incomplete information to be characterized. This special and unique feature of NL has
made it applicable in solving problems involving uncertainty, vagueness, ambiguity, imprecision, undefined,
unknown, incompleteness, inconsistency, redundancy, contradiction etc. arising from science, social science,
engineering, technology, computer science, artificial intelligence, ICT, robotics etc.

The indeterminacy factor I in NL is fundamental in the formulation and establishment of any neutrosophic
algebraic structure. Given any classical algebraic structure (X, %), a structure X (I) =< X UTI > generated by
X and I under the binary operation * of X is called a neutrosophic algebraic structure with its name derived
from the name of X. For instance, if X is a group, then X (I) is called a neutrosophic group. Since I, the
inverse of I does not exist, finding =1, the inverse of any neutrosophic element 2 € X (I) becomes difficult
and impossible. Consequently, algebraic manipulations of the elements of X (I) become restrictive. The
recent introduction of the concepts of NeutroStructures and AntiStructures have lessened the restrictiveness of
the algebraic manipulations of the elements of neutrosophic algebraic structures imposed by the neutrosophic
element /.
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In any classical algebraic structure (X, *), the of composition of the elements with respect to the binary
operation * is well defined for all the elements of X thatis, x xy € X Vz,y € X. All the axioms like
associativity, commutativity, distributivity, monotonicity etc. defined on X with respect to * are totally true for
all the elements of X. The compositions of elements of X this way are restrictive and do not reflect the reality.
They do not give rooms for compositions that are either partially defined, partially undefined (indeterminate),
and partially outerdefined or totally outerdefined with respect to *. However in the domain of knowledge,
science and reality, the law of composition and axioms defined on X may either be only partially defined (par-
tially true), or partially undefined (partially false), or totally undefined (totally false) with respect to the binary
operation *. In 2019, Smarandache [1%] addressed the problem of allowing the law of composition on X to be
either partially defined and partially undefined or totally undefined by introducing the notions of NetroDefined
and AntiDefined laws, as well as the notions of NeutroAxiom and AntiAxiom inspired by NL he introduced in
1995. The work of Smarandache in ['Y] has given birth to the new fields of research called NeutroStructures
and AntiStructures. For any classical algebraic law or axiom defined on X, there correspond neutrosophic
triads (< Law >, < NeutroLaw >, < AntiLaw >) and (< Axiom >, < NeutroAxiom >, < AntiAxiom >)
respectively. In [®], Smarandache studied NeutroAlgebras and AntiAlgebras and in [®], he studied Partial
Algebras, Universal Algebras, Effect Algebras and Boole’s Partial Algebras and he showed that NeutroAlge-
bras are generalization of Partial Algebras. In [7], Rezaei and Smarandache studied Neutro-BE-algebras and
Anti-BE-algebras and they showed that any classical algebra S with n operations (laws and axioms) where
n > 1 will have (2" — 1) NeutroAlgebras and (3" — 2") AntiAlgebras. In [4], Agboola et al. studied Neu-
troAlgebras and AntiAlgebras viz-a-viz the classical number systems N, Z, @, R and C and in [], Agboola
studied NeutroGroups by considering three NeutroAxioms (NeutroAssociativity, existence of NeutroNeutral
element and existence of Neutrolnverse element). In addition, he studied NeutroSubgroups, NeutroCyclic-
Groups, NeutroQuotientGroups and NeutroGroupHomomorphisms. He showed that generally, Lagrange’s
theorem and fundamental homomorphism theorem of the classical groups do not hold in the class of Neu-
troGroups studied. In [*], Agboola introduced and studied NeutroRings by considering three NeutroAxioms
(NeutroAbelianGroup (additive), NeutroSemigroup (multiplicative) and NeutroDistributivity (multiplication
over addition)). He presented Several results and examples on NeutroRings, NeutroSubgrings, Neutroldeals,
NeutroQuotientRings and NeutroRingHomomorphisms. He showed that that the fundamental homomorphism
of the classical rings holds in the class of NeutroRings considered. Motivated and inspired by the work of
Rezaei and Smarandache in [Z], Agboola in [1] revisited the NeutroGroups by studying a particular class of
NeutroGroups and presented their basic and elementary properties. In the present paper however, the concept
of AntiGroups is formally presented. A particular class of AntiGroups is studied with presentation of several
examples and basic properties. It is shown that some algebraic properties of the classical groups do not hold
in the class of AntiGroups studied. Specifically, it is shown that intersection of two AntiSubgroups is not
necessarily an AntiSubgroup and the union of two AntiSubgroups may be an AntiSubgroup. Also, it is shown
that Lagranges’ theorem and fundamental theorem of homomorphisms of the classical groups do not hold in
the class of AntiGroups studied in this paper.

2 Preliminaries

In this section, we will give some definitions and results that will be used later in the paper.
Definition 2.1. [¥]
(1) A classical operation is an operation well defined for all the set’s elements.

(i) A NeutroOperation is an operation partially well defined, partially indeterminate, and partially outer
defined on the given set.

(iii) An AntiOperation is an operation that is outer defined for all set’s elements.

(iv) A classical law/axiom defined on a nonempty set is a law/axiom that is totally true (i.e. true for all set’s
elements).

(v) A NeutroLaw/NeutroAxiom (or Neutrosophic Law/Neutrosophic Axiom) defined on a nonempty set is a
law/axiom that is true for some set’s elements [degree of truth (T)], indeterminate for other set’s elements
[degree of indeterminacy (I)], or false for the other set’s elements [degree of falsehood (F)], where
T,1,F €0,1], with (T, I, F) # (1,0,0) that represents the classical axiom, and (T, I, F') # (0,0,1)
that represents the AntiAxiom.
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(vi) An AntiLaw/AntiAxiom defined on a nonempty set is a law/axiom that is false for all set’s elements.

(vii) A NeutroAlgebra is an algebra that has at least one NeutroOperation or one NeutroAxiom (axiom that
is true for some elements, indeterminate for other elements, and false for other elements), and no Anti-
Operation or AntiAxiom.

(viii)) An AntiAlgebra is an algebra endowed with at least one AntiOperation or at least one AntiAxiom.

Theorem 2.2. [2] Let U be a nonempty finite or infinite universe of discourse and let S be a finite or infinite
subset of U. If n classical operations (laws and axioms) are defined on S where n > 1, then there will be
(2™ — 1) NeutroAlgebras and (3" — 2™) AntiAlgebras.

Definition 2.3. [Classical group][©]
Let G be a nonempty set and let * : G x G — G be a binary operation on G. The couple (G, *) is called a
classical group if the following conditions hold:

(Gl) zxy € GVz,y € G [closure law].
(G2) zx(y*z) = (r*y)*zV,y,z € G [axiom of associativity].
(G3) There exists e € G such that z * e = e x x = x Va € G [axiom of existence of neutral element].

(G4) There exists y € G such that x x y = y x x = e Vo € G [axiom of existence of inverse element] where
e is the neutral element of G.

If in addition Vz,y € G, we have
(G5) x*y =y =z, then (G, %) is called an abelian group.
Definition 2.4. [AntiSophication of the law and axioms of the classical group][l]
(AG1) For all the duplets (z,y) € G, z xy ¢ G [AntiClosureLaw].
(AG2) For all the triplets (z,y, 2) € G, zx(y*2) # (x*y)*2z [AntiAxiom of associativity (AntiAssociativity)].

(AG3) There does not exist an element e € (G such that z x ¢ = e x x = x Vo € GG [AntiAxiom of existence of
neutral element (AntiNeutralElement)].

(AG4) There does not exist u € G such that x * u = u * x = e Vo € G [AntiAxiom of existence of inverse
element (AntilnverseElement)] where e is an AntiNeutralElement in G.

(AGS) For all the duplets (z,y) € G, x *y # y * = [AntiAxiom of commutativity (AntiCommutativity)].

Definition 2.5. [AntiGroup][!]
An AntiGroup AG is an alternative to the classical group G that has at least one AntiLaw or at least one of
{AG1, AG2, AG3, AG4}.

Definition 2.6. [AntiAbelianGroup][1]
An AntiAbelianGroup AG is an alternative to the classical abelian group G that has at least one AntiLaw or at
least one of { AG1, AG2, AG3, AG4} and AG5.

Theorem 2.7. [!] Let (G, %) be a finite or infinite classical group. Then there are 65 types of AntiGroups.

Theorem 2.8. /L] Let (G, *) be a finite or infinite classical abelian group. Then there are 211 types of
AntiAbelianGroups.

Definition 2.9. Let (AG, *) be an AntiGroup. AG is said to be finite of order n if the cardinality of AG is n
that is o(AG) = n. Otherwise, AG is called an infinite AntiGroup and we write 0( AG) = oco.

Since there are many types of AntiGroups, in what follows, AntiGroups will be classified and named type-
AGI,] according to which of AG1— AGS5 is(are) satisfied. If only AG1 is satisfied, the AntiGroup will be called
of type-AG[1], type-AG[3,4] if only AG3 and AG4 are satisfied and so on. AntiGroups of type-AG[1,2,3,4]
or of type-AG[1,2,3,4,5] will be called trivial AntiGroups or trivial AntiAbelianGroups respectively.

Example 2.10. Let AG = Q7 be the set of all irrational positive numbers and consider algebraic structure
(AG,.) where "”.” is the ordinary multiplication of real numbers. Then (AG, .) is an infinite trivial AntiGroup.
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Example 2.11. Let AG = N.

(i) Let * be a binary operation on AG defined Vx,y € AG by
TxY =+ Y+ Y.
Then (AG, ) is a finite AntiGroup of type-AG[3.4].
(i1) Let * be a binary operation on AG defined Vz,y € AG by
rzxy=x+y+1.

Then (AG, %) is a finite AntiGroup of type-AG[3.,4].

3 A Study of Finite AntiGroups of Type-AG[4]

In this section, we are going to study a particular class of AntiGroups (AG), ) where G4 is totally false for
all the elements of AG while G1, G2, G3 and G5 are either partially true, partially indeterminate or partially
false for some elements of AG.

Definition 3.1. Let (AG, %) and (AH, o) be AntiGroups of type-AG[4]. The direct product of AG and AH
denoted by AG x AH is defined by

AG x AH = {(g,h) : g € AG,h € AH}.

Proposition 3.2. Ler (AG, x) and (AH, o) be AntiGroups of type-AG[4] and let ® be a binary operation on
AG x AH defined by

(9:h) @ (z,y) = (gxx,hoy) V(g,h), (x,y) € AG x AH.
Then (AG x AH,®) is an AntiGroup of type-AG[4].

Proof. The proof follows from the definition of AntiGroups of type-AG[4] and the definition of direct product
of AntiGroups of type-AG[4]. O

Proposition 3.3. Let (AG, %) be an AntiGroup of type-AG[4] and let g, x,y € AG. Then
(i) gxxz=gxy #= z=y.
(i) zxg=y*g #= =y
Proof. Since g~! does not exist and * is NeutroAssociative, the required results follow. O
Proposition 3.4. Let (AG, x) be an AntiGroup of type-AG[4], x,y € AG and let m,n € N. Then
(i) o™t £ 2™ % 1,
(i) 2= # (271"
(iii) ™ x x~™" £ N, where N, is a NeutroNeutralElement in AG.
(iv) o™ % g™ # g™t
(v) (a™)" # ™"
(vi) (z*xy)™ # ™ xy™.
Proof. Since ! does not exist and * is NeutroAssociative, the required results follow. O

Corollary 3.5. An AntiGroup (AG, ) of type-AG[4] cannot be generated by an element x € AG and hence
cannot by cyclic.

Definition 3.6. Let (AG, *) be an AntiGroup of type-AG[4]. A nonempty subset AH of AG is called an
AntiSubgroup of AG if (AH, «) is also an AntiGroup of the same type as AG. Otherwise, if (AH, *) is an
AntiGroup of a type different from the type of AG, then AH is called a QuasiAntiSubgroup of AG.
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Definition 3.7. Let (AG, %) be an AntiGroup of type-AG[4] and let AH and AK be AntiSubgroups of AG.
The set A x B is defined by

AxB={x€ AG:x=hxk forsome hec AH ke AK}.
Proposition 3.8. Let AH, AK and AL be AntiSubgroups of an AntiGroup (AG, x) of type-AG[4]. Then
(i) AH x AH # AH.
(ii) AH « AK # AK x AH.
(iii) AH x (AK % AL) # (AH « AK) * AL
Proof. Obvious. O
Definition 3.9. Let (AG, %) be an AntiGroup of type-AG[4] and let a € AG be a fixed element.
(i) An AntiCenter of AG denoted by AZ(AG) is a set defined by

AZ(AG)={xz € AG:xxg#g*x Vg€ AG}.

(i1) An AntiCentralizer of a € AG denoted by AC,, is a set defined by

AC, ={g€ AG : g*xa # ax*g}.

Example 3.10. LetU = {a,b,c,d, e, f} be a universe of discourse and let AG = {a, b, ¢, e} be a subset of U.

(i) Let x be a binary operation defined on AG as shown in the Cayley table below.

DO [ *
ISHRSESH ESH Is
Sal RS RS RSN RS
QR[] O
O[]

It is evident from the table that G1, G2, G3, G5 are either partially true or partially false with respect to
* but G4 is totally false for all the elements of AG. Hence (AG, ) is a finite AntiGroup of type-AG[4].

(ii) Let * be a binary operation defined on AG as shown in the Cayley table below.

QIO
SRR IR Es)

Q||| *
SEESHESRESTES)
(Sl RSH AN ESH IS

It is evident from the table that G1, G2, G3, G5 are either partially true, partially indeterminate or par-
tially false with respect to * but G4 is totally false for all the elements of AG. Hence (AG, ) is a finite
AntiGroup of type-AG[4].

Example 3.11. Let (AG, %) be the AntiGroup of Example i) and let AH; = {a,b,e} and AHy =
{b, ¢, e} be two subsets of AG. Let * be defined on AH; and AH> as shown in the Cayley tables below:

x|lalble x| blcl|e
aldlale bldle|c
Ay blald]|c| Ay : clalfle
elal|b|f elblc|f

It can easily be seen from the tables that AH; is an AntiSubgroup of AG while AHj is a QuasiAntiSubgroup
of AG. It is noted that Lagranges’ theorem does not hold. It is also noted that:

AHUAHy, = {a,b,c,e} = AG,
NHlﬂNHg == {b,@},
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from which it is deduced that N H; UN Hs is an AntiSubgroup of AG but AH; N AHj is a QuasiAntiSubgroup
of AG as it is evident in the Cayley table below:

x| b|e
NHlﬂNHQI bld]cl|
elb|f

AZ(AG) = {a,b, c,e} = AG is an AntiSubgroup of AG. Also, AC, = ACy, = AC, = AC. = {a,b,c,e} =
AG are AntiSubgroups of AG.

Example 3.12. Let (AG, *) be the AntiGroup of Example ii) and let AH; = {e,a,b} and AHy =
{e, b, c} be two subsets of AG. Let  be defined on AH; and AHs as shown in the Cayley tables below:

AH, : A AH, :

0| oS
Q||

[SalESEESHRN

Q|| ®

(O *
ISEANESRES
ol | *
a0

It can easily be seen from the tables that AH; and AH, are AntiSubgroups of AG. It is noted that Lagranges’
theorem does not hold. It is also noted that:

AH,UAHy, = {e,a,b,c} = AG,
NHlﬂNHQ = {e,b},

from which it is deduced that NH; U N H; is an AntiSubgroup of AG and AH; N AH, is an AntiSubgroup
of AG as it is evident in the Cayley table below:

* | e

NH,NNHy: [[eld
bl b

~\DK¢§‘®‘

AZ(AG) = {a,b,c} is a QuasiAntiSubgroup of AG. Also, AC, = ACy = {a,b,c}, AC. = {b,c} are
QuasiAntiSubgroups of AG and AC, = {} = 0 is neither an AntiSubgroup nor a QuasiAntiSubgroup of AG.

Example 3.13. (i) Let AG = Z4 = {0,1,2,3} and let ® be a binary operation on AG as defined in the

Cayley table.
S5 0 1 2 3
0 |Oorl |1 2 3
1 1 2 3 Oor?2
2 2 3|0o0r3 1
3 3 ? 1 2

Then (AG, @) is a finite AntiGroup of type-AG[4] and AH = {0, 1,2} is an AntiSubgroup of AG.
(ii) Let AG = {1,2,3,4} C Zs and let ® be a binary operation on AG as defined in the Cayley table.

Sl |~ ®
=W DN | =
Q| | = DO DN
N | O] W W
O DN W | >

Then (AG, ®) is a finite AntiGroup of type-AG[4] and AH = {1, 2,3} is an AntiSubgroup of AG.
Definition 3.14. Let AH be an AntiSubgroup of the AntiGroup (AG, %) of type-AG[4] and let = € AG.
(i) x x AH the left coset of AH in AG is defined by

x+«AH ={xxh:he AH}.
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(i) AH x x the right coset of AH in AG is defined by

AHxx={hxxz:he AH}.

(iii) AH is called a normal AntiSubgroup if x * AH = AH % x for at least one x € AG.

(iv) The number of distinct left or right cosets of AH in AG is called the index of AH in AG and it is
denoted by [AG : AH].

(vi) The set of all distinct left cosets of AH in AG denoted by (AG/AH)y, is defined by

(AG/AH), ={x+ AH : x € AG}.

(vii) The set of all distinct right cosets of AH in AG denoted by (AG/AH)p is defined by

(AG/AH)p = {AH xx : x € AG}.

Suppose that AG/AH is the set of all distinct left cosets of AH in AG and suppose that ® is a binary operation
on AG/AH defined by

(t+«AH)® (y* AH) = (xxy)x AH Vax AH,y+x AH € AG/AH.

If the couple (AG/AH,®) is an AntiGroup of type-AG[4], then AG/AH is called an AntiQuotientGroup of
AG factored by AH.

Lemma 3.15. Let AH be an AntiSubgroup of the AntiGroup (AG, x) of type-AG[4] and let e € AG be a
NeutroNeutralElement. Then globally,
ex AH # AH.

Example 3.16. Let (AG, @) be an AntiGroup of Example (i)andlet AH = {0, 1, 2} be its AntiSubgroup.
The left and right cosets of AH in AG are:

0@ AH = {0,1,2} or {1,2} = AH &0,

1o AH = {1,2,3},= AH®1

26 AH = {0,2,3} or {2,3} = AH &2,

30 AH = {1,3,7}=AH &3,

AG/AH {0® AH, 13 AH,2® AH,3® AH}.

It is noted that AH is a normal AntiSubgroup of AG and distinct left and right cosets of AH do not partition
AG.
Now consider the Cayley table below.

P 06 AH 1o AH 26 AH 3¢ AH
06 AH | 0@ AHor 1@ AH | 1& AH 26 AH 36 AH
1o AH 1o AH 26 AH 3¢ AH 0GAHor2® AH
26 AH 26 AH 3G AH |00 AH or 3@ AH 1@ AH
36 AH 36 AH ? 1o AH 26 AH

It is evident from the table that (AG/AH, @) is an AntiGroup of type-AG[4].

Example 3.17. Let (AG, ®) be an AntiGroup of Example (i) and let AH = {1,2, 3} be its AntiSub-
group. The left cosets of AH in AG are:

1@ AH = {7,2,3}=AH®1,
20 AH = {0,2,4} = AH ®2,
3 AH = {3,4,7} = AH ®3,
4@ AH = {2,3,4} = AH @4,
AG/AH {1® AH,2® AH,3® AH,A® AH}.
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It is noted that AH is a normal AntiSubgroup of AG and distinct left and right cosets of AH do not partition
AG.
Now consider the Cayley table below.

® |I®AH |20 AH |3® AH |4 AH
10 AH | 7 |20 AH |30 AH |4® AH
20 AH | 20 AH |4A® AH | 0@ AH | 3@ AH
3RAH |30 AH | 7 |40 AH |2® AH
AR AH |40 AH |30 AH |2® AH | 0® AH

It is evident from the table that (AG/AH, ) is an AntiGroup of type-AG[4].

Proposition 3.18. Let AH be a normal AntiSubgroup of an AntiGroup (AG, x) of type-AG[4] and let AG/AH
be the set of distinct left cosets of AH in AG. Forx « AH,y « AH € AG/AH with x,y € AG, let ® be a
binary operation defined on AG/AH by

(xxAH)® (yx AH) = (xxy)« AH Vuz,y € AG.
Then, (AG/AH,®) is an AntiGroup of type-AG[4].

Proof. Suppose that AH is a normal AntiSubgroup of an AntiGroup (AG, *) of type-AG[4] and suppose that
the composition of elements in AG/AH is givenby (z * AH) ® (y*x AH) = (zxy)« AH Vuz,y € AG.
Then there exist some duplets (z,y), (u,v), (p,q) € AG such that x * y € AG (inner-defined) and [u * v =
indeterminate or p * ¢ ¢ AG (outer-defined/falsehood)]. Hence, @ satisfies the NeutroClosureLaw. Next,
there exist some triplets (x,y, z), (p, ¢, 7), (u,v,w) € AG such that z * (y x z) = (z * y) x z (inner-defined)

and [[p * (g * r)]or[(p * ¢) * r] = indeterminate or u * (v * w) # (u * v) * w (outer-defined/falsehood)].
This again shows that © satisfies the NeutroAssociativityAxiom. Also, there exists an element e € AG
such that x * e = e * x = x (inner-defined) and [[z * e]or[e * x] = indeterminate or x * e # = # ex x

(outer-defined/falsehood)] for at least one x € AG. This shows the existence of NeutroNeutralElement in
AG and hence there exists a NeutroNeutralElement e x AH € AG/AH. Again for all z € AG, there does
not exist u € AG such that z x 4 = u x x = e. This is an AntiAxiom of existence of inverse element
in AG and consequently, no element x x AH € AG/AH has an inverse. Lastly, there exist some duplets
(z,y), (u,v),(p,q) € AG such that x x y = y * z (inner-defined) and [[u * v]or[v * u] = indeterminate
or p x g # q * p (outer-defined/falsehood)]. This shows that ® satisfies the NeutroCommutativity Axiom.
Hence,(AG/AH, ®) is an AntiGroup of type-AG[4]. O

Definition 3.19. Let (AG, *) and (AH, o) be any two AntiGroups of type-AG[4]. The mapping ¢ : AG —
AH is called an AntiGroupHomomorphism if ¢ does not preserve the binary operations * and o that is for all
the duplet (x,y) € AG, we have

Oz *y) # o(x) ° d(y).
The kernel of ¢ denoted by Ker¢ is defined by
Ker¢ ={z: ¢(z) =eapy foratleastone eay € AH}

where e 45 is a NeutroNeutralElement in AH .
The image of ¢ denoted by I'm¢ is defined by

Im¢ ={y € AH : y = ¢(x) forsome = € AG}.

If in addition ¢ is an AntiBijection, then ¢ is called an AntiGrouplsomorphism. AntiGroupEpimorphism,
AntiGroupMonomorphism, AntiGroupEndomorphism, and AntiGroupAutomorphism are defined similarly.

Example 3.20. (i) Let (AG, ®) be the AntiGroup of Example (i) and let ¢ : AG — AG be a mapping

defined by
oz) =202 Ve AG.
Then
$(0) = 2,
o) = 3,
#(2) = 0 or 3,
@) = 1,
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(ii)

from which we obtain that ¢(x @ y) # ¢(z) @y for all z,y € AG. Accordingly, ¢ is an AntiGroupHo-
momorphism. Im¢ = {1,2,3} which is an AntiSubgroup of AG. Ker¢ = {} = ().

Let (AG, ®) be the AntiGroup of Example(ii) and let ¢ : AG — AG be a mapping defined by
Y(x)=2®4 Ve AG.
Then
(1) = 4,
¥(2) = 3,
¥B) = 2,
¥(4) = 0,

from which we obtain that ¢ (z ® y) # (x) ® y forall 2,y € AG. Accordingly, ¢ is an AntiGroupHo-
momorphism. Im¢ = {0, 2, 3,4} which is not an AntiSubgroup of AG. Ker¢ = {} = 0.

Example 3.21. (i) Let (AG, ) be the AntiGroup of Example (i)andlet ¢ : AG x AG — AGbea

(ii)

projection defined by

o((z,y)) =z Va,y € AG.
Then ¢ is not an AntiGroupHomomorphism because ¢((a,b) ® (b,c)) = ¢((a,b)) * ¢((b,¢)) = a.
However, Im¢ = {a, b, c, e} = AG.

Let (AG, *) be the AntiGroup of Example (ii) and let ¢ : AG x AG — AG be a projection defined
by

U((z,y) =y Va,ye AG.
Then % is not an AntiGroupHomomorphism because ¢((a,b) ® (b,¢)) = ¥((a,b)) * ¥((b,c)) = c.
However, Imiy = {a,b,c,e} = AG.

Example 3.22. (i) Let (AG/AH,&D) be the AntiQuotientGroup of Example and let ¢ : AG —

(ii)

AG/AH be a mapping defined by
¢(r) =x® AH Yz e AG.

Then
6(0) = 0@ AH,
o(1) = 1@ AH,
o(2) = 2@ AH,
»(3) = 3@ AH,

from which we obtain
$(1®2) =¢(1) @ é(2) =3 AH.
This shows that ¢ is not an AntiGroupHomomorphism.
Let (AG/AH, Q) be the AntiQuotientGroup of Example and let ¢ : AG — AG/AH be a

mapping defined by
Y(x)=2x® AH Ve AG.

Then
(1) = 1® AH,
P(2) = 2® AH,
W(3) = 3® AH,
Yv(4) = 4® AH,

from which we obtain
P(2®4) =19(2) R v(4) =3® AH.

This shows that v is not an AntiGroupHomomorphism.

Remark 3.23. The fundamental theorem of homomorphisms of the classical groups cannot hold in the class
of AntiGroups of type-AG[4] as demonstrated in Examples [3.22](i) and (ii).
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4 Conclusion

The notion of AntiGroups was formally presented in this paper. A particular class of AntiGroups of type-
AG[4] was studied. In AntiGroups of type-AG[4], the existence of an inverse element was taking to be totally
false for all the elements while the closure law, the existence of identity element, the axioms of associativity
and commutativity were taking to be either partially true, partially indeterminate or partially false for some
elements. It was shown that some algebraic properties of the classical groups do not hold in the class of
AntiGroups of type-AG[4]. Specifically, it was shown that intersection of two AntiSubgroups is not necessarily
an AntiSubgroup and the union of two AntiSubgroups may be an AntiSubgroup. Also, it was shown that
distinct left(right)cosets of AntiSubgroups of AntiGroups of type-AG[4] do not partition the AntiGroups; and
that Lagranges’ theorem and fundamental theorem of homomorphisms of the classical groups do not hold in
the class of AntiGroups of type-AG[4]. More classes of AntiGroups will be studied in our future papers.
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