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1. INTRODUCTION

In 1983, Atanassove [1] proposed the notion of intuitionistic fuzzy set as the
generalization of fuzzy sets by introduced by Zadeh [21] considering the degree of
membership and non-membership (See [2, 3, 4, 5, 6], in order to refer to the details of
intuitionistic fuzzy sets). In 1996, Coker [10] introduced the concept of an intuition-
istic set (called an intuitionistic crisp set by Salama et al.[18]) as the generalzation
of an ordinary set and the specialization of an intuitionistic fuzzy set. After that
time, many researchers [7, 8, 11, 12, 13, 17, 19] applied the notion to topology and
Selvanayaki and Ilango [20] studied homeomorphisms in intuitionistic topological
spaces. In particular, Bayhan and Coker [9] dealt with pairwise separation axioms
in intuitionistic topological spaces and some relationships between categories Dbl-
Top and Bitop. Furthermore, Lee and Chu [16] introduced the category ITop and
investigated some relationships between ITop and Top. Recently, Kim et al. [15]
investigate the category ISet composed of intuitionistic sets and morphisms between
them in the sense of a topological universe.

In this paper, first of all, we list some concepts and results introduced by [10, 15].
Second, we give some examples (See Examples 3.2, 3.2,3.10,3.13 and 3.15) related
to intuitionistic topologies and intuitionistic bases, and obtain two properties of
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an intuitionistic base and an intuitionistic subbase. And we define intuitionistic
intervals in R. Finally, we define some types of intuitionistic closures and interiors,
and obtain their some properties.

2. PRELIMINARIES

In this section, we list the concepts of an intuitionistic set, an intuitionistic point,
an intuitionistic vanishing point and operations of intuitionistic sets. Also we list
some results obtained by [10, 15].

Definition 2.1 ([10]). Let X be a non-empty set. Then A is called an intuitionistic
set (in short, IS) of X, if it is an object having the form

A= (Ar, AF),

such that Ay N Ap = ¢, where Ap [resp. Ap] is called the set of members [resp.
nonmembers| of A.

In fact, Ar [resp. Ap] is a subset of X agreeing or approving [resp. refusing or
opposing] for a certain opinion, view, suggestion or policy.

The intuitionistic empty set [resp. the intuitionistic whole set] of X, denoted by
¢r1 [resp. X], is defined by ¢ = (¢, X) [resp. X1 = (X, ¢)].

In general, Ar U Ap # X.

We will denote the set of all ISs of X as I.5(X).

It is obvious that A = (A4, ¢) € IS(X) for each ordinary subset A of X. Then we
can consider an IS of X as the generalization of an ordinary subset of X. Further-
more, it is clear that A = (Ap, Ar, Ap) is an neutrosophic crisp set in X, for each
A € IS(X). Thus we can consider a neutrosophic crisp set in X as the generalization
of an IS of X.

Remark 2.2. Let X be a set and let A € I5(X) such that A U Ap = X. We
define the mappings p, v : X — [0,1] as follows: for each z € X,

(@) = xar (@), v(@) = xa, (7).

Then we can easily see that (u,r) is an intuitionistic fuzzy set in X introduced by
Atanassov [1]. Thus by identifying A with (u, ), we can consider the intuitionistic
set A in X as an an intuitionistic fuzzy set in X. However, if Ap U Ap # X,
then (u,v) is not an intuitionistic fuzzy set in X, since p(x) + v(z) = 0, for each
x ¢ ArNApg.

Definition 2.3 ([10]). Let A, B € I5(X) and let (A;),;cs C IS(X).
(i) We say that A is contained in B, denoted by A C B, if Ar C Br and Ar D Bp.
(ii) We say that A equals to B, denoted by A= B, if A C B and B C A.
(iii) The complement of A denoted by A€, is an IS of X defined as:
A¢ = (Ap, Arp).
(iv) The union of A and B, denoted by AU B, is an IS of X defined as:

AUB:(ATUBT7AFQBF).
2
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(v) The union of (A4;);es, denoted by | ; (in short, (JA;), is an IS of X

]EJ
defined as:
U4 =WJ 47 () 4r)
jeJ jeJ jeJ

(vi) The intersection of A and B, denoted by AN B, is an IS of X defined as:
ANB= (ATQBT7AFUBF).

(vii) The intersection of (A;);cs, denoted by
of X defined as:

jesAj (in short, (A4;), is an IS

A= () Air. U A4r).
JjeJ jeJ jeJ

(viii) A — B = AN Be.

(IX) []A = (AT,ATC), <>A= (AFC,AF).

Example 2.4. Let X = {a,b,¢c,d,e, f} and let A = ({b,¢, f},{b,d}) € I5(X).
Then A¢ = (Ap, Ar). Thus
AU AC = (ATUAF,AF ﬂAT)
= ({a, ¢, f}U{b, d}, {b,d} N {a,c, f})
= {a’b’c7d7f}7¢)
# X1
and
ANAc = (ATOAF,AFUAT)
= ({a, = f} n {b, d}7 {b7 d} U {a7 Cy f})
(¢,{a,b,¢.d, f})
# o1
Result 2.5 ([15], Proposition 3.6). Let A, B,C € IS(X). Then
(1) (Idempotent laws): AUA=A, ANA=A,
(2) (Commutative laws): AUB=BUA, ANB=BNA,
(3) (Associative laws): AU(BUC)=(AUB)UC, AnN(BNnC)=(AnNnB)NC,
(4) (Distributive laws): AU(BNC)=(AUB)N(AUC),
AN(BUC)=(ANnB)U(ANCQC),
(5) (Absorption laws): AU(ANB)=A, AN(AUB) = A4,
(6) (DeMorgan s laws): (AUB)¢ = A°NB° (ANB)°= A°U B¢,
(7) (A°)° =
(8) (8a) AU¢I A, ANgr = ¢r,
(Sb)AUX]—XI,AﬂX] A,
(8c) X1° = ¢r1, ¢1° = X1,
(8d) in general, AU A® # X1, AN A®# ¢r.

Result 2.6 ([15], Proposition 3.7). Let A € IS(X) and let (A;)jes C IS(X). Then
(L)([10], Corollary 2.7) (1 A4;)° = U A5, (UA;)° =45
(2) An(UA4;) =UAN4;), AU(N4;) =AU 4;).

Definition 2.7 ([10]). Let X be a non-empty set, a € X and let A € IS(X).
(i) The form ({a},{a}®) [resp. (¢,{a}°)]is called an intuitionistic point [resp.
vanishing point] of X and denoted by a; [resp. arv].
3
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(ii) We say that ay [resp. ary] is contained in A, denoted by a; € A [resp.
ary € A}, if a € Ap [resp. a ¢ AFp].

We will denote the set of all intuitionistic points or intuitionistic vanishing points
in X as IP(X).

Result 2.8 ([10], Proposition 3.4). Let (A;)jes C IS(X) and let p € X.

(1) pr € NA; [resp. prv € (A,] if and only if pr € A; [resp. prv € Aj], for
each j € J.

(2) pr € UA, [resp. prv € UA,] if and only if there exists j € J such that
pr € A; [resp. prv € A;.
Result 2.9 ([10], Proposition 3.5). Let A, B € I1S(X). Then

(1) AC B if and only if pr € A= pr € B [resp. prv € A= pyy € B], for each
peX.

(2) A= B if and only if pr € A<= p; € B [resp. prv € A< pry € BJ, for each
pe X.

Result 2.10 ([10], Proposition 3.6). Let A € IS(X). Then

A:(U a[)U( U ajv).

ar€A ary €A

For each A € 1S(X), let A; = UaIGA ar and let Ajy = aneA ary. Then by
the above Result, A = A; U Ary. In fact, Ay = (Ar, A7¢) and A;y = (¢, AF).

Remark 2.11. Let A € I5(X) such that Ar U Ap = X, then Ajy C A; and thus
A=ArUAy = Aj.
We will denote the family of all ISs A in X such that Ap UAp = X as 5. (X),
ie.,
I1S.(X)={Ae€lIS(X): ArUAr = X}.
In this case, it is obvious that AN A = ¢; and AU A° = X and thus
(IS.(X),C,é1,X1)

is a Boolean algebra. In fact, there is a one-to-one correspondence between P(X) and
15,.(X), where P(X) denotes the power set of X. Moreover, for any A, B € I15,(X),
A=A;=[]A=<>Aand AUB,ANB,A—- B e I5.(X).

Example 2.12. Let X = {a,b,c,d,e} and let A = ({a,b},{c,d}). Then clearly,
ar,br € A. Thus
ar Ubr = ({a,b},{c,d,e}) # A.
On the other hand,
A = UafeA ar = ({a} U{b},{b,¢c,d, e} N{a,c,d,e}) = ({a,b},{c,d,e})
= (A7, Ar")
and
Ay = aneA ary = (¢,{b,c,d,e} N{a,c,d,e} N{a,b,c,d}) = (¢, {c,d})

= (¢, Ar).
4
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3. INTUITIONISTIC TOPOLOGICAL SPACES

Coker [11] introduced an intuitionistic topological space, an intuitionistic base, an
intuitionistic continuity and an intuitionistic compact space and studied their some
properties. In this section, we give additional examples of intuitionistic topologies
and obtain two properties related to an intuitionistic base and an intuitionistic sub-
base. And we define intuitionistic intervals in R.

Definition 3.1 ([11]). Let X be a non-empty set and let 7 C IC(X). Then 7 is
called an intuitionistic topology (in short IT) on X, it satisfies the following axioms:

(i) ¢r, X1 € T,

(il) AN B e, for any A, B € T,

(iii) U;es 45 € 7, for each (4;)jes C 7.

In this case, the pair (X, 7) is called an intuitionistic topological space (in short,
ITS) and each member O of 7 is called an intuitionistic open set (in short, I0S) in
X. An IS F of X is called an intuitionistic closed set (in short, ICS) in X, if F'° € 7.

It is obvious that {¢r, X1} is the smallest IT on X and will be called the intuition-
istic indiscreet topology and denoted by 77. Also IS(X) is the greatest IT on X
and will be called the intuitionistic discreet topology and denoted by 77 1. The pair
(X,71,0) [resp. (X,771)] will be called the intuitionistic indiscreet [resp. discreet]
space.

We will denote the set of all ITs on X as IT(X). For an ITS X, we will denote
the set of all IOSs [resp. ICSs] on X as IO(X) [resp. IC(X)].

Example 3.2. (1) ([11], Example 3.2) For any ordinary topological space (X, 7,),
let 7= {(A, A°): A € 7,}. Then clearly, (X, 7) is an ITS.

(2) Let X = {a, b} Then 711 = {¢], ar, b[, (a, ¢), (a, (b), arv, ij, X[}.

(3) ([11], Example 3.4) Let (X, 7) be an ordinary topological space such that 7 is
not indiscrete, where 7 = {¢, X} U{G, : j € J}. Then there exist two ITs on X as
follows: 7' = {¢r, X1} U{(G},¢) : j € J} and 7° = {¢1, X1} U{(¢,GS) : j € J}.

(4) Let X be a set and let A € I5(X). Then A is said to be finite, if A7 is finite.
Consider the family 7 = {U € IS(X) : U = ¢; or U°® is finite}. Then we can easily
show that 7 is an IT on X.

In this case, 7 will be called an intuitionistic cofinite topology on X and denoted
by ICof(X).

(5) Let X be a set and let A € IS(X). Then A is said to be countable, if Ar
is countable. Consider the family 7 = {U € IS(X) : U = ¢ or U° is countable}.
Then we can easily show that 7 is an IT on X.

In this case, 7 will be called an intuitionistic cocountable topology on X and
denoted by ICoc(X).

Result 3.3 ([11], Proposition 3.5). Let (X,7) be an ITS. Then the following two
ITs on X can be defined by:

o1={[lU:Uerhmna={<>U:Ue€r}.
Furthermore, the following two ordinary topologies on X can be defined by (See

[5])-
n={Ur:Uer}, n={Up:U €1}
)
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Remark 3.4. (1) Let (X, 7) be an ITS such that 7 C I5,(X). Then it is obvious
that 7 = 70,1 = T70,2-

(2) For an IT 7 on a set X, we will denote two ITs 791 and 79 2 defined in Result
3.3 as 791 = [ |7 and 192 =< > T, respectively.

(3) For an IT 7 on a set X, let 71 and 72 be ordinary topologies on X defined in Re-
sult 3.3. Then (X, 71, 72) is a bitopological space by Kelly [14] (Also see Proposition
3.1 1in [9]).

The following is the immediate result of Definition 3.1.

Proposition 3.5. Let X be an ITS. Then

(1) ¢17XI € IC(X)a

(2) AUB € IC(X), for any A, B € IC(X),

(3) Njes Aj € IC(X), for each (Aj)jes C IC(X).
Definition 3.6 ([11]). Let 71,7 € IT(X). Then we say that 7; is contained in 7o
or 71 is coarser than 75 or 79 is finer than 7, if 7 C 79, i.e., G € 73, for each G € 7.

It is clear that 770 C 7 C 77,1.

Result 3.7 ([11], Proposition 3.8). Let (1;)jes C IT(X). Then ()

In fact, ijJTj is the coarsest IT on X containing each ;.

ey € IT(X).

Proposition 3.8. Let 7,7y € IT(X). We define 7 Ay and 7V v as follows:
TAy={W:Werand W €~}
and
TVy={W :W=UUV,U €7 and V € ~}.
Then
(1) 7 Ay is an IT on X which is the finest IT coarser than both T and v,
(2) TV yis an IT on X which is the coarsest IT finer than T and ~y.

Proof. (1) It is easily to verify that 7 Ay € IT(X). Let  be any I'T which is coarser
than both 7 and v and let W € . Then W € 7 and W € v. Thus W € T Av. So 7
is coarser than 7 A 7.

(2) Similarly, we prove that 7V v € IT(X) and that it is the coarsest IT finer
than 7 and ~. O

Definition 3.9 ([11]). Let (X, 7) be an ITS.

(i) A subfamily 8 of 7 is called an intutionistic base (in short, IB) for 7, if for
each A € 7, A = ¢; or there exists 3 C 8 such that A = Uﬂ'.

(ii) A subfamily o of 7 is called an intutionistic subbase (in short, ISB) for 7, if
the family 8 = {(o : o is a finite subset of o} is a base for .

In this case, the IT 7 is said to be generated by o. In fact, 7 = {¢;} U {U g

5 c B}

Example 3.10. (1) ([11], Example 3.10) Let o = {((a,b), (—00,a]) : a,b € R} be
the family of ISs in R. Then o generates an IT 7 on R, which is called the “usual
left intuitionistic topology” on R. In fact, the IB 3 for 7 can be written in the form
B ={R;}Uoc and 7 consists of the following ISs in R:
¢, Ry
6
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(U(aj’ bj)v (_007 C])v
where a;,b;,c € R, {a; : j € J} is bounded from below, ¢ < inf{a; : j € J};
(Ulag, b)), 9),
where a;,b; € R, {a; : j € J} is not bounded from below.
Similarly, one can define the “usual right intuitionistic topology” on R using an
analogue construction.
(2) ([11], Example 3.11) Consider the family o of ISs in R

0= {((avb)a (_0070’1] U [bl,OO)) L a, b7a17b1 € Ra ai S a;bl S b}

Then o generates an IT 7 on R, which is called the “usual intuitionistic topology”
on R. In fact, the IB 8 for 7 can be written in the form 8 = {R;} U o and the
elements of 7 can be easily written down as in the above example.

(3) Consider the family oo 1) of ISs in R

op0,1] = {([a, ], (=00,a) U (b,00)) :a,b e Rand 0 < a < b < 1}.

Then og 1) generates an IT 7 ;) on R, which is called the “usual unit closed interval
intuitionistic topology” on R. In fact, the IB Sjg1j for 7)o 1 can be written in the
form fjo,1) = {R} Uopp,1) and the elements of 7 can be easily written down as in the
above example.

In this case, ([0,1],7)9,)) is called the “intuitionistic usual unit closed interval”
and will be denoted by [0, 1], where [0,1]; = ([0, 1], (=00, 0) U (1, 00)).

(4) Let X be a non-empty set and let 8 ={pr : p€ X}U{prv : p € X}. Then 8
is an IB for the intuitionistic discrete topology ™ on X.

(5) Let X = {a,b,c} and let 8 = {({a,b},{c}), ({b,c},{a}), X1}. Assume that
£ is an base for an IT 7 on X. Then by the definition of base, 8 C 7. Thus
({a.b}. {c}). ({b.c}. {a}) € 7. So ({a.b}. {e}) N ({b.c}. fa}) = ({{b}. {a.c}) € 7. But
for any 8 C 8, ({{b},{a,c}) # B . Hence § is not an IB for an IT on X.

From (1), (2) and (3) in Example 3.10, we can define intutionistic intervals as
following.

Definition 3.11. Let a,b € R such that a < b. Then
(i) (the closed interval) [a,b]; = ([a,b], (—o0,a) U (b, 00)),
(ii) (the open interval) (a,b); = ((a,b), (—o0, a] U [b, 00)),
(iii) (the half open interval or the half closed interval)
(av bh - ((CL, b]’ (_007 a] U (b7 OO))7 [a7 b)I = ([a’ b)? (—OO, CL) U [bv OO))’
(iv) (the half intuitionistic real line)
(—OO, ah = ((—OO, a]v (a‘7 OO))v (—OO, a)
[a, 00) = ([a7 00), (—00,a)), (a, OO)I = ((a7 0), (—00, a])v
(v) (the intuitionistic real line) (—oo,00); = ((—00, 20), ¢) = Ry.

~
Il
—
n
3
S
B
8
=

Proposition 3.12. Let X be a non-empty set and let § C IS(X). Then (8 is an IB
for an IT 7 on X if and only if it satisfies the followings:

(1) Xy =U8s,

(2) if By, Bs € B and pr € By N By [resp. pry € B1N By, then there exists B € 8
such that pr € B C By N By [resp. pry € B C By N Bay).

Proof. The proof is the same as one in ordinary topological spaces. O
7
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Example 3.13. Let X = {a,b,c} andlet 8 = {({a}, {b,c}), ({a,b},{c}), ({a,c},{b})}.
Then clearly, 3 satisfies two conditions of Proposition 3.12. Thus 3 is an IB for an

IT 7 on X. Furthermore, 7 = {¢1, ({a}, {b,c}), ({a,b},{c}), {a,c}, {b}), X1}.

Proposition 3.14. Let X be a non-empty set and let o C 1S(X) such that X; =
(Jo. Then there exists a unique IT 7 on X such that o is an ISB for T.

Proof. Let ={B e IS(X):B=J S, and S; € o}. Let T ={U € IS(X): U =
¢r or there is a subcollection B/ of B such that U = Uﬁ/}. Then we can show that
7 is the unique IT on X such that o is an ISB for 7. O

In Proposition 3.14, 7 is called the IT on X generated by o.

Example 3.15. Let X = {a,b,¢,d, e} and let 0 = {({a}, {b, ¢, d, e}), ({a, b, c},{d,e}),
({b,¢c,e},{a,d}), ({c,d},{a,b,e})}. Then clearly,
Jor ={a}u{a,b,c U{bce}U{c,d} =X
and
ﬂap ={b,¢c,d,e} N{d,e} N{a,d} N{a,b,e} = ¢.

Thus |Jo = X;. Let 8 be the collection of all finite intersections of members of o.
Then 5 = {({a}, {b, ¢, d, e}), ({b, ¢}, {a, d, e}), ({¢}, {a, b, d, €}), ({a, b, ¢}, {d; e}),

.({b, ¢, e}, {a,d}), ({c,d},{a,b,e})}. Thus the generated intutionistic topology 7 by o
7 =A{¢r,({a}, {b ¢, d,e}), ({¢},{a,b,d, e}), ({a, ¢}, {b, d, e}), ({b, c}, {a, d, e}),
({e, e}, {a,b,d}), ({a,b, ¢}, {d, e}), ({a, ¢, e}, {b, d}), ({b, ¢, d}, {a, e}),

({b,¢,e} {a,d}), ({a, b, ¢,d}, {e}), ({a,b, ¢, e}, {d}), ({b, ¢, d, e}, {a}), X1}

Proposition 3.16. Let (X, 7) be a ITS such that 7 C IS,.(X) and let A € I5.(X).

(1) If there is U € T such that a; € U C A, for each aj € A, then A € T.
(2) If there is U € T such that ajy € U C A, for each ary € A, then A € 7.

Proof. (1) By the hypothesis, there is U,, € 7 such that a; € U,, C A. Then
a €Uy, v CAr. Thus Ap = U, r- Since 7 C IS,(X) and A € I5.(X),

a€AT
Ap=A5= (U r= () Ua.r
a¢Ap aéAp
So A=U,,caUd;- Since Uy, €7, AET.
(2) The proof is similar to (1) O

Remark 3.17. If either the condition 7 C IS5,(X) or the condition A € I5,(X) is
drawn, then Proposition 3.16 does not hold, in general.

Example 3.18. (1) Let X = {a,b, ¢} and consider the IT 7 on X given by:
T = {¢1a Xfa Ala A27 A37 A47 A5a Aﬁa

where A; = ({CL, b}a {C})a Ag = ({ba C}’ {a})7 Az = ({av C}v {b})a
Ay = ({a}v {bv C})a A5 = ({b}7 {(L, C})v As = ({C}v {av b})
Let A = ({a},{c}). Then clearly, 7 C IS.(X) but A ¢ IS.(X). Moreover, a; €
A4CAanda1V€¢1CAbutA§éT.
8



J. Kim et al./Ann. Fuzzy Math. Inform. x (201ly), No. x, xx—xx

(2) ) Let X = {a,b,c} and consider the IT 7 on X given by:
T = {¢Ia XI7 Alv AQ, A3a A47 A57 A67 A7a AS; AQ,

where A1 = ({a}, {b}), 42 = ({b},{c}), A5 = ({c},{a}),

A4 = (d)a {ba C})7 A5 = (¢7 {av C})a A6 = (¢7 {a, b})v

A7 = ({b7 C}, ¢)7 AS = ({avc}v (b)a A9 = ({avb}v ¢)
Let A = ({a},{b,c}). Then clearly, 7 ¢ IS.(X) but A € IS.(X). Moreover,
CL]EA1CA, anda;v€A4CAanda1V€¢ICAbutA¢T.

4. INTUITIONISTIC NEIGHBORHOODS

Coker [12] introduced the notions of an intuitionistic neighborhood and intuition-
istic vanishing neighborhood, obtained some properties and gave some examples. In
this section, we give additional examples and properties. Moreover, we define some
types of intuitionistic closures and interiors, and obtain some properties.

Definition 4.1 ([12]). Let X be an ITS, p € X and let N € I.5(X). Then
(i) N is called a neighborhood of py, if there exists an IOS G in X such that

pr € GCN, ie., pe Gr C Ny and Gp D Np,
(ii) N is called a neighborhood of pry, if there exists an IOS G in X such that
prv € GCN, ie., Gr C Ny and p ¢ Gp D Np.

We will denote the set of all neighborhoods of p; [resp. prv] by N(p;r) [resp.
N(prv)].

Result 4.2 ([12], Proposition 3.2). Let X be an ITS and let p € X.

[IN1] If N € N(pz), then pr € N.

[IN2] If N € N(p;) and N C N, then M € N(py).

[IN3] If N,M € N(p;s), then NN M € N(pr).

[(IN4] If N € N(py), then there exists M € N(ps) such that N € N(qp), for each
qr € M.

Result 4.3 ([12], Proposition 3.3). Let X be an ITS and let p € X.

[(IN1] If N € N(prv), then pjy € N.

[IN2] If N € N(pry) and N C N, then M € N(prv).

[IN3] If N M € N(pjv), then NN M € N(p[v).

[IN4] If N € N(prv), then there exists M € N(prv) such that N € N(qrv), for
each qry € M.

Result 4.4 ([12], Proposition 3.4). Let (X,7) be an ITS. We define the families
71 ={G : G € N(py), for each p; € G}

and
v ={G: G € N(pyv), for each p;y € G}.
Then 11, 11v € IT(X).
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Remark 4.5. (1) From Result 4.4, we can easily see that for an IT 7 on a set X
and each U € T,
TI :TU{(UT,SU) : Sy C UF}U{(¢,S) : S C X}
and
v = 17U {(Su,Ur) : Sy D Ur and Sy NUp = ¢}.
(2) For an IT 7 on a set X, four ITs can be defined on X:

1010 ={[1U:U €11}, 1rvion ={[JU: U € 11v}
and
102 ={<>U:Uer}, ivoe={<>U:Uemny}

In fact, T1,0,1 = 70,1 and TIv,0,2 = T70,2-
(3) For an IT 7 on a set X, four ordinary topologies can be defined on X:

TI,1 Z{UT:UGT[}, TIV,1 Z{UTZUGTlv}

and
T[’QZ{U;:;:UGT]}, T[V72:{UEIU€7'H/}.

In fact, 711 =7 and Trv2 = To.
Example 4.6. Let X = {a,b,c} and let 7 be the IT on X given by:
T = {¢17 va Alv AQ; AS» A4}7

where A1 = ({a,b},{c}), A2 = ({b},{a}), A5 = ({a,b},¢), As= ({0}, {a,c}).
Then 77 = 7 U {({b},S4,) : Sa, C {a,c}} U{(s,S C X}
=7 U{As5, As, A7, As, Ag, A10, A1, A12, A1}

and

Trv =7 U{(Sa,,{a}) : Sa, D {b}, Sa, N{a} =} =7U{Au},
where A5 = ({b}7 {C})v AG = ({b}7 ¢)a A7 = (¢a {(1}), AS = (¢7 {b})7

A9 = (¢a {C})a AlO = (¢7 {aab})a All = (¢a {ba C})7 A12 = (¢a {a7c})7

Az = (¢,0), Ara = ({b,c},{a}).
Thus we have four ITs and ordinary topologies on X as follows:

11,01 = {01, X1, A1, As} =101,

Trv,o1 = {01, X1, A1, Ag, A1a},

11,02 = {01, X1, A1, A4, Ag, < > Ag, < > Ao, < > A}y

Trv0,2 = {61, X1, A1, Arg, As} = 702
and

11 = {¢7X7 {a’ b}’ {b}} = T1,

TIv, = {(ba X, {av b}’ {b}7 {b7 C}},

T2 = {6, X, {a, b}, {b, c}, {b}, {a, c}, {c}, {a}},

TIv,2 = {(j)v Xv {av b}v {bv C}a {b}} = T2.

Result 4.7 ([12], Proposition 3.5). Let (X,7) be an ITS. Then 7 C 11 and T C Tyv.
The following is the immediate result of Result 4.7.

Corollary 4.8. Let (X, 7) be an ITS and let IC; [resp. IC;, and IC,,,, ] be the set
of all ICSs w.r.t. T[resp. 71 and Trv]. Then

1C.(X) € IC,,(X) and IC,(X) C IC,,, (X).
10
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Example 4.9. Let X = {a,b,c,d} and consider the family of ISs
7 ={¢1, X1, A1, Az, A3, A4},

where
A1 = ({a, b}, {d}), A2 = ({c},{b,d}), A5 =(¢.{b,d}), As= ({a,b,c},{d}).
Then from Example 3.6 in [12], (X, 7) is an ITS, and two ITs 77 and 77 on X are

given, respectively as follows:
TI ZTU{Ai :1=25,6,---,23},

where
A5 = ({C}, {b})7 Ag = ({0}7 {d})7 A7 = ({a7b}7¢)7 Ag = ({a7b7 C}7¢)7
Ag = ({C},¢), Aro = ((ba {a})7 An = (¢7 {b})7 Ap = (¢v {C})’
Aiz = (¢,{d}), A= (¢,{a,b}), A5 =(8,{a,c}), A1 = (,{a,d}),
A17 = (¢a {b’ C})a A18 = (¢a {05 d})a A19 = (¢a {a” b’ C})v AQO = (¢7 {a7 b’ d})a
Ao = (¢7 {a,c, d})’ Agp = (¢a {b,C, d})7 A23 = (¢,¢)
and
Trv =7 U{ A2, Ass},

where
A24 = ({a’ C}7 {b7 d})7 A25 = ({a}7 {b’ d})
Thus IC(X) = {é1, X1, A1°, A2°, As®, As°},
I1C,(X) =IC(X)U{Ai°:i=5,6,---,23},
IC;,, (X) =IC(X)U{Axn", Ass°},
where
A= ({d}7 {a’ b})7 At = ({b7 d}’ {C})’ Az® = ({ba d}v ¢)7 Ay = ({d}7 {a’ b, C}),
A5C = ({b}’ {C}), AGC = ({d}v {C})v A7C = (¢7 {a’b})’ ASC = (¢’ {a’b’ C}),
Ag® = (¢, {c}, A1® = ({a},9), Au1” = ({b},9), A2 = ({c},9),
Algc = ({d}, qf)), A14C = ({a, b}, d)), A15C = ({a; C}a ¢)7 AlGC = ({avd}a ¢)>
A17c = ({ba C}, ¢)7 AlSC = ({Cv d}» ¢)7 A190 = ({a7 b, C}» ¢)v AQOC = ({a7 b’ d}’ ¢)’
Aglc = ({a, c, d}, (]5), A220 = ({b7 ) d}’ ¢)> A23c = ((ba ¢)>
Azq® = ({b,d},{a,c}), A5° = ({b,d},{a}).
So IC,(X) C ICTI(X) and IC,(X) C ICTIV(X)~

The following is the converse of Result 4.2.

Result 4.10 ([12], Proposition 3.8). Let X be a non-empty set. Suppose N* : X —
P(IS(X)) is the mapping satisfying the properties [IN1], [IN2], [IN3] and [IN4] in
Result 4.2, where N*(py € P(IS(X)). Then there exists an IT 71 on X such that
N*(pr) = IN(pr), for each p € X, where IN(p;) denotes the set of INs of p; in an
ITs (X, T[).

The following is the converse of Result 4.3.

Result 4.11 ([12], Proposition 3.7). Let X be a non-empty set. Suppose N* : X —
P(IS(X)) is the mapping satisfying the properties [IN1], [IN2], [IN3] and [IN4] in
Result 4.3, where N*(prv € P(IS(X)). Then there exists an IT 11y on X such that
N*(prv) = IN(prv), for each p € X, where IN (pry) denotes the set of INs of pry
in an ITS (X, 11v).

11
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Result 4.12 ([12], Proposition 3.9). Let (X, 1) be an ITS. Then 7 = 11 N 71y
The following is the immediate result of Result 4.12.

Corollary 4.13. Let (X, 7) be an ITS and let IC;]. Then
IC.(X)=1C.,(X)NIC,,, (X).

Example 4.14. In Example 4.9, we can easily check that
IC.(X)=1C.,(X)NIC;,, (X).

Definition 4.15. Let (X,7) be an ITS and let A € I5(X).
(i) ([11]) The intuitionistic closure of A w.r.t. 7, denoted by Icl(A), is an IS of
X defined as:
Icl(A) = ﬂ{K :K¢erand AC K}.
(ii) ([L1]) The intuitionistic interior of A w.r.t. 7, denoted by Iint(A), is an IS of
X defined as:
Iint(A) = J{G: G erand G C A}.
(iii) The intuitionistic closure of A w.r.t. 7y, denoted by cl.,(A), is an IS of X
defined as:
cr(A) = ﬂ{K :K¢errand AC K}.

(iv) The intuitionistic interior of A w.r.t. 77, denoted by int;(A), is an IS of X
defined as:
intr, (A) = {G: G € 71 and G C A}.

(v) The intuitionistic closure of A w.r.t. 77y, denoted by cl,,,, (4), is an IS of X
defined as:
clry (A) = ﬂ{K :K¢eryand AC K}

(vi) The intuitionistic interior of A w.r.t. 77y, denoted by int;y (A), is an IS of
X defined as:
intr,, (A= J{G: G €y and G C A}.

From Definition 4.16, we can easily see that
Iint(A) Cint,, (A), Iint(A) Cintry(A)

and
clr (A) C Icl(A), cryy (A) C Icl(A).
However, the reverse inclusions do not need to hold.

Example 4.16. In Example 4.9, let A = ({a,c},{d}), B = ({d},{a,c}). Then
Iint(A)=U{GeT:GC A} = Ay U A3 = Ay = ({c}, {b,d}),
int;,(A)=U{Ger:GcC A}

:A2UA3UA6UA13UA16UA18UA20UA21UAQQ

= ({c} {d}),
intr,, (A)=U{Gemv:GC A} =AUA3U Azg = ({a,b,c}, {b,d})

and
Icl(B) = ({F : FC € 7,B C F} = ASN A5 N X1 = ({b,d}, {c}),
e (B)=({F:F°€rmand BC F}
= AS N AS N AG N ASy N ASe N ASe N AS, N AS, N AS, N X
12
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= ({d}v {C})7
oy (B)=({K: K€y and BC K} = A5, N A5 N X7 = ({b,d}, {a,c}).
Thus we can confirm the following inclusions:

Iint(A) Cint,, (A), Iint(A) C intrv (A)

and
clr(B) C Id(B),cl;,, (B) C Ic(B).

Result 4.17 ([L1], Proposition 3.15). Let (X,7) be an ITS and let A € IS(X).
Then

Iint(A°) = (Icl(A))¢ and Icl(A°) = (Iint(A))°.

Result 4.18 ([12], Proposition 3.10). Let (X,7) be an ITS and let A € IS(X).
Then

Iint(A) =int,, (A) Nint.,, (A).
The following is the immediate result of Definition 4.15 and Results 4.17 and 4.18.
Corollary 4.19. Let (X,7) be an ITS and let A € 1S(X). Then
Icl(A) = cl-, (A) Ud,,, (A).

Example 4.20. In Example 4.9, let A = ({a,c},{d}), B = ({d},{a,c}). Then we
can see that

Icl(B) = ({b,d}, {c}), clr; (A) = ({d}, {c}), clryy (A) = ({b,d}, {a, c})
. Tint(A) = ({c},{b, d}), int-, (A) = ({c},{d}),intr;, (A) = ({a,b, c}, {b,d}).
cly, (B) Uclr,, (B) = ({d}v {C}) U ({b, d}7 {a, C}) = ({b> d}7 {C}) = ICI(B)

inty, (A) Nintr,, (A) = ({6}7 {d}) N ({av b, C}’ {b’ d}) = ({C}’ {bv d}) = Iint(A)'

The following is the immediate result of Definition 4.15.

and

and

Proposition 4.21. Let X be an ITS and let A € IS(X). Then
(1) A€ IC(X) if and only if A = Icl(A),
(2) A€ IO(X) if and only if A= Iint(A).

Result 4.22 ([11], Proposition 3.16, Kuratowski Closure Axioms). Let X be an ITS
and let A, B € IS(X). Then

[IKO] if A C B, then Icl(A) C Icl(B),
IKl] ICl(¢]) ¢[,

IK2] A C Icl(A),

IK3] Icl(Icl(A)) = Icl(A),

IK4]) Icl(AUB) = Icl(A) U Icl(A).

Let Icl* : IS(X) — IS(X) be the mapping satisfying the properties [TK1],
[TK2],[TK3] and [IK4]. Then we will call the mapping Icl* as the intuitionistic closure

operator on X.
13
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Proposition 4.23. Let Icl* be the intuitionistic closure operator on X. Then there
exists a unique IT T on X such that Icl*(A) = Icl(A), for each A € 1S(X), where
Icl(A) denotes the intuitionistic closure of A in the ITS (X, 7). In fact,

T={A°€IS(X): Icd*(A) = A}.
Proof. The proof is almost similar to the case of ordinary topological spaces. O

Result 4.24 ([11], Proposition 3.16). Let X be an ITS and let A, B € IS(X). Then
[I10] if A C B, then Iint(A) C Iint(B),
[112] Tint(A) C A,
[I13] Iint(Iint(A)) = Lint(A),
[IT14] Iint(A N B) = Iint(A) N Iint(A).
Let Iint* : IS(X) — IS(X) be the mapping satisfying the properties [II1],
[I12],[113] and [I14]. Then we will call the mapping lint* as the intuitionistic in-
terior operator on X.

Proposition 4.25. Let Iint* be the intuitionistic interior operator on X. Then
there exists a unique IT T on X such that Iint*(A) = Lint(A), for each A € I5(X),
where Iint(A) denotes the intuitionistic interior of A in the ITS (X, 7). In fact,

T={AeIS(X): LIint*(A) = A}
Proof. The proof is similar to one of Proposition 4.23. O

Definition 4.26 ([12]). Let (X, 7) be an ITS, p € X and let A € IS(X). Then

(i) pr € A is called a 77-interior point of A, if A € N(p;),

(ii) prv € A is called a 77y -interior point of A, if A € N(prv),

We will denote the union of all 7;-interior points [resp. 77y -interior points] of A
as r-int(A) [resp. Try-int(A)]. It is clear that

Tr-int(A) = {pr : A € N(pr)} [resp. Trv-int(A) = U{prv : A € N(prv)}].

Result 4.27 ([12], Proposition 4.2). Let (X, 7) be an ITS and let A € I1S(X).

(1) A € 71 if and only if Ay = -int(A).

(2) A € 1y if and only if Apy = Trv-int(A).
Result 4.28 ([12], Proposition 4.3). Let X be a non-empty set, (G;)jes C IS(X)
and let G =J,c; Gj. Then

(1) Gr= UjeJ Gjr1,

(2) G[V - UjEJ Gjy[\/.
Result 4.29 ([12], Proposition 4.4). Let (X, 7) be an ITS and let A € IS(X). Then

(1) 17-int(A) = UGcA,Gen Gr,

(2) TIV—Znt(A) = UGCA,GGTIV GIV
Remark 4.30 ([12]). Tr-int(A) Cint,, (A) and 7py-int(A4) C int,,,, (4).
But the converse inclusions do not hold, in general.

Example 4.31. Let X = {a,b,¢,d, e} and let us consider ITS (X, 7) given by:

T = {¢IaXI7AlaA27A37A4}7
14
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where A; = ({aa b, 0}7{6}), Ay = ({Cv}v{d})v Az = ({C}v{d’e})v Ay = ({avbv C}v¢)'

Then we can easily find 77 and 77v:
77T =7TU {A5,A6},
where A5 = ({c},d), Ag = ({c}, {e})

and
v =T U {A7, Ag, Ag, Ao, A11, A2, A1z, Ara, Ars, Asg ),

where A7 = ({a,b,c,d},{e}), As = ({a,b,c},{d}), Ag = ({b,c, e}, {d}),
Ao = ({a,b, ¢, e}, {d}), A = ({a, ¢}, {e}), A1z = ({b,c}, {e}),
A13 = ({C? d}7 {6}), A = ({av ¢, d}7 {6}), A15 = ({(l, b, ¢, d}v ¢)a
A = ({a,b,c,e}, @).

Now let A = ({b,c},{e}). Then

Iimt(A) =U{GeT:GC A} = As,
Z’I’LtTI(A) = U{G err:GC A} = A3 UA6 = A67
iTLtTIV (A) = U{G €TV . G C A} = A3 U A12 = Alg,
T]—int(A) = U{p[ A€ N(p])} =cy,
ij—i’l’bt(A) = U{p[\/ A€ N(pjv)} =ayy.

Thus we have the following strict inclusions:
Tr-int(A) Cintr, (A), Tr-int(A) # int, (A),
Trv-int(A) C intr,,, (A), Trv-int(A) #int,,, (A).

Result 4.32 ([12], Proposition 4.6). Let (X,7) be an ITS and let A, B € I5(X).
Then
(1) T[-int(A) C A[, ij-int(A) C AIV7
(2) if A C B, then 1r-int(A) C 1r-int(B), Trv-int(A) C mpv-int(B),
(3) Tr-int(AN B) = 1r-int(A) N 1r-int(B),
T[\/—int(A N B) =TIV —int(A) n T[\/—int(B),
(4) T[-Z"l’Llf(X[) = XI7 T[V-int(X[) = X[.

Definition 4.33. Let (X,7) be an ITS, p € X and let A € IS(X). Then
(i) pr is called a 77-closure point of A, if for each N € N(py),

ANN # ¢p, ie., ApNNp # ¢ or Ap U Np # X,
(i) prv is called a 77y -closure point of A, if for each N € N(prv),
ANN # ¢y, ie., ATQNT#(bOTAFUNF#X.

We will denote the union of all 77-closure points [resp. 7ry-closure points] of A
as 77-cl(A) [resp. Trv-cl(A)]. It is obvious that

TI-@[(A) = U{p[ :ANN 7é ¢I7VN € N(pf)}
[resp. Trv-cl(A) = U{p[V cANN # ¢, VN € N(pjv)}].

Remark 4.34. T1-cl(A) C cly, (A) and Try-cl(A) C clrpy (A).
But the converse inclusions do not hold, in general.

Example 4.35. In Example 4.31, let us consider ITS (X, 7) given by:

T = {¢IaXI7AlaA27A37A4}7
15
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where A; = ({avbv C}v{e})’ Ay = ({C}v{d})a As = ({C}’{dae})7 Ay = ({aabv 0}7 )
and X = {a,b,¢,d,e}. Then we can easily find IC,(X), IC;,(X) and IC,, (X):

ICT(X) = {(b? XI7AiaAS7A§7AACL}a

where Af = ({6}, {a7b7 C}), A = ({d}7 {C})7 Ag = ({d7 6}, {C})a Af = (¢7 {avb’ C}),
1C1,(X) = IC,(X) U {43, 45},

where Af = (¢, {c}), A5 = ({e}, {c})

and
IC‘FIV(X) = ICT(X) U {A?,Ag,Ag,AiO,A(fl,A§27Ai3,Ai4,A§5,A(1:6},

where A7 = ({a,b,¢,d}, {e}), A = ({a,b,c}, {d}), A§ = ({b,c, e}, {d}),
Ay = ({a7 b, c, e}’ {d})> Aty = ({6}7 {CL7 C})7 Afy = ({6}7 {b7 C}),
Afg = ({6}7 {C’ d})’ Afy = ({6}, {a’ = d})7 Afs = (¢a {aa b,c, d}),
Aifi = (¢7 {CL, b’ G, 6})
Now let A = ({e},{b,c}). Then
Tel(A) = ({F € IC,(X) : AC F} = X; 1 A = As,
(A ={FelC,(X): ACF}=XnNA5NA§ = Ag,
ey (A) = (UF € IC,,, (X): AC F} = X; 1 AS N A, = AS,
Tr-cl(A) = U{pr : Nr N Ar # ¢, YN € N(p1)} = ey,
T[\/—CZ(A> = U{plv :NrpUAFRp # X, VN € N(pjv)}
=apy Ubry Udpy.
= (¢, {c}).
Thus we have the following strict inclusions:
Tr-cl(A) C clr, (A), 71-cl(A) # el (A),
Trv-cl(A) C el (A), Trv-cl(A) # el (A).

Proposition 4.36. Let (X,7) be an ITS and let A € 1S(X). Then
(1) (T[-int(A))C:’T[-Cl(AC), T]-int(Ac):(T[-Cl(A))c
(2) (T[V-int(A))c:ij-Cl(Ac), ij-int(Ac):(T[V -Cl(A))C.

Proof. (1) Let p; € (7r-int(A))°. Then A ¢ N(p;). Thus G ¢ A, ie., Gpr ¢ Arp
or Gp 2 Ap, for each G € 7 with p; € G. So ¢ = GrNGr p Gr N Ap, ie.,
Gr N Ap # ¢. Hence py € 7y-cl(A°).

Suppose pr € 17-cl(A°) and let N € N(pr). Then NrNAp # ¢, say q € NrNAp.
Assume that N C A, i.e., Ny C Ar and Np D Ap. Since ¢ € Nr N Ap, q € Ar
and ¢ € Np. Thus Ny N Np # ¢ and Ar N Ap # ¢. These are contradictions from
NrNNp =¢ and Ay N Arp = ¢. So N ¢ A1 or Np ZS Ap, ie., A ¢ N(p]), ie.,
pr ¢ Tr-int(A) and thus pr € (77-int(A))°. Hence (7r-int(A))°=17-cl(A°).

The proof of the second part is similar.

(2) The proof is similar to (1). O

Proposition 4.37. Let (X, 1) be an ITS and let A € 15.(X). Then
(1) A e IC;,(X) if and only if A = 11-cl(A),
(2) A€ IC;,,(X) if and only if Ary = Trv-cl(A).

Proof. (1) Since A € IS.(X), by Remark 2.12, A = A; = [ ]A =< > A. Then
clearly, (Ar)¢ = (A°)r. Thus
A€ IC,,(X) if and only if A° € 71
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if and only if (A¢); = 77-int(A°) [By Result 4.27 (1)]
if and only if (A;)¢ = (17-¢l(A))° [By Proposition 4.36 (1)]
if and only if A; = 77-cl(A).
(2) The proof is similar to (1). O

Lemma 4.38. Let X be a set, (F})jes C IS(X) and let F'=(;c; Fj. Then
(1) Fr = ﬂjeJ Frj,
(2) Frv = e Frvg-

Proof. (1) Let pr € Fy. Then p € F, i.e., p € (\;c; Frr;. Thus there exists j € J
such that p € Frj, i.e., pr € Frj. So pr € njeJ Fy ;. Hence F; C njeJ Fr;.
Conversely, suppose py € ﬂjeJ Fr ;. Then there exists j € J such that p; € Fy ;.
Thus p € Fr;. Sop € ijJ Fr;, ie., pr € Fr. Hence ﬂjEJ Fr; C Fr. Therefore
the result holds.
(2) The proof is similar to (1). O

Proposition 4.39. Let (X,7) be an ITS and let A € 15.(X). Then
(1) 71-cl(A) = Nacr, FEIC,, (X) Fr,
(2) Trv-cl(A) = ﬂAcF, FeIC,,, (X) Fry.

Proof. (1) 77-cl(A) = (rr-int(A)) [By Result 4.27 (1)]
= (Ugc ac.ger, G1)° By Result 4.29 (1)]

= ﬂACGL‘,GCGICTI(X) (G)r

= nAcF,FeIC,I(X) Fr.
(2) The proof is similar to (1). O

From Result 4.32 and Proposition 4.36, the followings can be easily proved.

Proposition 4.40. Let (X, 1) be an ITS and let A, B € IS,(X). Then
(1) A; C 71-cl(A), Aryrrv-int(A) C mrv-cl(A),
(2) ZfA C B, then T]—CZ(A) C T]—CZ(B), ij—Cl(A) C T[\/—CZ(B),
(3) 71-cl(AU B) = 74-cl(A) Urj-cl(B),
ij-Cl(A U B) = ij-Cl(A) U T[\/-CZ(B),
(4) T[-CZ(X[) = XL T]\/-Cl(X]) = X[.

5. CONCLUSIONS

From Results 4.4 and 4.5, for any IT 7 on a set X, two ITs 7; and 71y were defined
on X such that 7 C 77 and 7 C 77y. In the future, by using three ITs 7, 77 and 77y
in an intuitionistic topological space, we expect that some types continuities, open
and closed mappings can be defined.
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