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a b s t r a c t

Quadratic cost functions estimation in the linear optimal control systems governed by differential
equations (DEs) or partial differential equations (PDEs) has a well-established discipline in mathematics
with many interfaces to science and engineering. During its development, the impact of uncertain phe-
nomena to objective function and the complexity of the systems to be controlled have also increased
significantly. Many engineering problems like magnetohydromechanical, electromagnetical and signal
analysis for the transmission and propagation of electrical signals under uncertain environment can
be dealt with. In this paper, we study the optimal control problem with operating a fractional DEs
and PDEs at minimum quadratic objective function in the framework of neutrosophic environment
and granular computing. However, there has been no studies appeared on the neutrosophic calculus
of fractional order. Hence, we will introduce some derivatives of fractional order, including the
neutrosophic Riemann–Liouville fractional derivatives and neutrosophic Caputo fractional derivatives.
Next, we propose a new setting of two important problems in engineering. In the first problem, we
investigate the numerical and exact solutions of some neutrosophic fractional DEs and neutrosophic
telegraph PDEs. In the second problem, we study the optimality conditions together with the
simulation of states of a linear quadratic optimal control problem governed by neutrosophic fractional
DEs and PDEs. Some key applications to DC motor model and one-link robot manipulator model are
investigated to prove the effectiveness and correctness of the proposed method.
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1. Introduction

1.1. Neutrosophic sets — An extension of introduced sets

Neutrosophic analysis ultimately based on neutrosophic set
(NS) and neutrosophic logic has been recognized as a natural ex-
tension of classical analysis, fuzzy analysis and intuitionistic fuzzy
analysis. The distinctions of NS with previous sets are the degree
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Fig. 1. The distinctions between neutrosophic sets with previous introduced
sets.

of indeterminacy/neutrality as the independent component and
relationship as shown in Fig. 1.

Smarandache has laid the first mathematical foundations on
neutrosophic sets and measure [1,2], neutrosophic probability
and statistic [3], neutrosophic calculus and precalculus [4], etc.
The original basic studies of Smarandache have opened up a new
trend of uncertain theoretical research with various applications
to engineering. To promote his achievements, many scientists
have been working hard to bring this theory reaching superior
position with many achievements. For examples, we can mention
researches on linear programming with applications to various
problems [5], state feedback design for single input–single output
neutrosophic linear systems [6], soft computing [7], fuzzy clus-
tering [8], neutrosophic optimization technique [9,10]. Especially,
neutrosophic theory has been successfully applied to decision
making processing [11] and other applications [12].

Alongside with the history of formation and development
of neutrosophic theory, Smarandache [13] classified the neutro-
sophic structure into two different types: the (t, i, f )-
neutrosophic structures (based on the components t = truth,
i = numerical indeterminacy, f = falsehood) and I-neutrosophic
algebraic structures (based on neutrosophic numbers of the form
a + bI , where a, b ∈ R, I = literal indeterminacy). The neu-
trosophic differential calculus and neutrosophic dynamic systems
based on (t, i, f )-neutrosophic structures were studied in [7]. In
which, the authors used the parametric form of single-valued
neutrosophic sets to define the neutrosophic differentiability of
integer order via granular difference. The precalculus and calculus
of neutrosophic numbers of the form a+bI were first introduced
in [4]. In this setting, differential calculus and integral calculus are
built with integer order and based on the set analysis. However,
the neutrosophic fractional calculus has not been studied yet.

1.2. Fuzzy fractional calculus with applications

Fractional calculus is an important branch of mathematical
analysis with a long history of studying and applications. This
theory aims to study some different possibilities in defining the
order of power of differential operator in the case this order is
not integer. Alongside with the development of fractional calcu-
lus, fractional DEs, fractional PDEs and fractional order control
have been also dramatically studied by the high applicability,
see for instance [14,15]. In the last decade, fractional differen-
tial calculus in uncertain environment has obtained a signifi-
cant achievement. Fuzzy differential calculus was introduced by
Dubois and Prade [16]. Later, fuzzy DEs of integer order was

studied in [17], and after that, it has attracted a large amount of
research over the past three decades including extensive works
for fuzzy PDEs [18,19]. Fuzzy fractional calculus extends the con-
cept of fuzzy derivative to non-integer order. Fuzzy fractional DEs
without using fuzzy fractional derivatives was first studied in [20]
for Cauchy problem. Then Allahviranloo et al. [21] extended this
concept to fractional DEs with Riemann–Liouville derivatives.
Mazandarani and Kamyad [22] studied numerical solutions of
fractional initial problem under Caputo gH-differentiability. In
the last decade, fuzzy analysis of fractional order has amaz-
ingly developed in various applications including fuzzy fractional
PDEs [23]. For optimal problems, the combination of fuzzy theory
and fractional calculus theory in optimal control has also ob-
tained many significant achievements. Shahri et al. [24] proposed
a new procedure called augmented Lagrangian particle swarm
optimization using fractional order velocity to enhance the per-
formance and convergence rate of a desired controller. Sharma
et al. [25] proposed a scheme implemented two-layered fractional
order fuzzy logic controller for robotic manipulator. Alinezhad
and Allahviranloo [14] presented an extension to determine the
best possible fuzzy control which satisfies the related fuzzy frac-
tional dynamic systems and minimizes the fuzzy performance
index. Jafari et al. [26] used interval type-2 Fuzzy logic systems
to approximate an underlying relationship in a fractional-order
nonlinear system. Long [19] combined two most common types
of uncertainty into one fractional PDEs, namely fuzzy random
PDEs. For further references on fractional calculus of fuzzy-valued
functions with various applications, readers are kindly referred
to [27–30].

1.3. Intuitionistic fuzzy fractional calculus with applications

The difficulty in defining the difference operator in the set
of fuzzy intuitionistic sets has limited further research on fuzzy
intuitionistic derivatives, fuzzy intuitionistic integral and beyond
that is the study of fuzzy intuitionistic DEs and fuzzy intuitionistic
optimal control problem. Modal [31] studied the differentiability
for intuitionistic fuzzy-valued function by generalized Hukuhara
difference. This approach has a limitation that leads to multi-
plicity of solutions with different geometrical representations.
Furthermore, the switching points of differentiability may re-
quires us to solve many complicated cases, i.e., the fuzzy solutions
depend on the natural of uncertainty. As far as we know, there is
no result on the Atanassov’s intuitionistic fuzzy dynamics system
of fractional order, even in some aspects the fuzzy intuitionistic
set is considered as a very significant extension of the Zadeh’s
fuzzy set.

1.4. Neutrosophic fractional calculus with applications

Smarandache proposed the concept of neutrosophic sets in
1998, and this new born theory has been widely accepted and
studied by many scientists. However, it seems to be an imbal-
ance between the study of neutrosophic algebraic structure (neu-
trosophic approximate reasoning, neutrosophic decision making,
etc.) compared to the study of neutrosophic analysis (neutro-
sophic dynamic systems, neutrosophic optimal control problems,
etc.). The idea of integrating neutrosophic uncertainty into the dy-
namic systems was initiated by Smarandache in Section 2.21 [13],
that from the classical point of view, it is a chaotic extension. In-
stead of fixed points in classical dynamic systems, one deals with
fixed regions, as approximate values of the neutrosophic vari-
ables. In general, all neutrosophic dynamic system’s components
are interacted in a certain degree, repelling in another degree, and
neutral (no interaction) in a different degree. For example, let us
consider a simple model of one-link robot manipulator where the



Please cite this article as: N.T.K. Son, N.P. Dong, H.V. Long et al., Linear quadratic regulator problem governed by granular neutrosophic fractional differential equations. ISA
Transactions (2019), https://doi.org/10.1016/j.isatra.2019.08.006.

N.T.K. Son, N.P. Dong, H.V. Long et al. / ISA Transactions xxx (xxxx) xxx 3

motion of robot’s arm is controlled by a DC motor via a gear (see
Example 6.2. for more details). Using Lagrange’s equation, we can
derive the dynamics of robot manipulator as follows

Mℓ2
gr
0+D2βθ (t) = Mgℓ sin θ (t)

+ ρKmo

(
u(t)
R

−
ρKb

gr
0+Dβθ (t)
R

)
,

where the reasonable parameters of robot are given in Table 6.
Here, due to the influence of environment factors such as the
height, temperature, humidity, air pressure and the errors arising
from measurements, the gravitational acceleration g cannot be
fixed value, it should be neutrosophic-valued g = 9.7 + 0.3I .

On the basis of the aforesaid motivation, in this paper, we
introduce some basic definitions and results for neutrosophic
fractional calculus related to I-neutrosophic structures and in-
vestigate some applications to neutrosophic fractional DEs, neu-
trosophic optimal control governed by fractional DEs, fractional
PDEs. Let us recall that the fractional calculus induced from
fractional order operators that is a powerful mathematical tool
for describing long memory and hereditary properties of different
phenomena and process, see [24,27]. Experimental results prove
that fractional computing are appropriate to represent many in-
dustrial automation better than integer order, see [32]. Thus, the
extension of neutrosophic differential calculus to fractional order
will extend the applicable scope of optimal control problem to
many important engineering problems.

1.5. The contributions and novelties

The contribution in this paper is threefold:
(1) Firstly, we introduce fractional calculus of neutrosophic-

valued functions. We will define new concepts of neutrosophic
fractional derivatives in both Riemann–Liouville and Caputo
types. Neutrosophic fractional integral will be also introduced
with its fundamental properties. We note that the notions of
the differential operator on the space of neutrosophic sets is
not easy to define because of the semi-linear algebraic struc-
ture of the base space. Moreover, the well-defined property of
the differential operator for neutrosophic-valued functions often
requires very complicated hypothesis. Generalized Hukuhara dif-
ference [33] can be a candidate for differential calculus on the
neutrosophic space but the multi-trajectory with different long-
term geometric behavior related to switching points will cause
the complexity for the multi-solution of neutrosophic DEs. Thanks
to granular representation concept and relative-distance-measure
variables introduced in [34,35], we manage in establishing the
fractional calculus of neutrosophic functions. Our results ex-
tend and develop the previous works [36–38] to neutrosophic
environment.

(2) Secondly, we investigate new setting of fractional order
equations with uncertainty, namely neutrosophic fractional DEs
and neutrosophic fractional PDEs. Under granular differentiabil-
ity, the neutrosophic DEs can be transformed equivalently into
the set of deterministic DEs with granular parameters and they
preserve the qualitative properties of the neutrosophic solution.
One of the most advantages of the proposed method is that
we can proceed both analytical methods and numerical methods
on deterministic DEs and then the correspondence neutrosophic
solutions can be retrieved by inverse transformation. This is very
useful for practical applications in the real world, where we
always have to solve the solutions of modeling problems affected
by uncertainty. To demonstrate the efficiency of the theoretical
method, we utilize Adomian decomposition method and Matlab
Toolbox to solve approximate solution of neutrosophic fractional
telegraph equations.

(3) Thirdly, our main goal is to study Linear Quadratic Reg-
ulator (LQR) problem for a linear time-invariant neutrosophic
fractional differential system (22). The aim of LQR problem is
to find a control input u(t) that steers the state variable x(t) of
system (22) from an initial state x(t0) = x0 to the original at the
time t = tf and minimizes the performance index (23). To this
end, we establish some sufficient conditions for (x, u) to be an
optimal pair and apply to some important problems such as DC
motor model and one-link robot manipulator model.

The paper is organized as follows: Section 2 presents some
preliminaries on fractional calculus, space of neutrosophic
numbers. Moreover, we introduce the concepts of neutrosophic-
valued functions of several variables and their granular par-
tial derivatives. The definitions and related properties of granu-
lar Riemann–Liouville derivative, granular Caputo derivative and
granular integrals are introduced in Section 3, while Section 4
is devoted to present neutrosophic granular partial fractional
derivatives. In addition, some theorems regarding to the rela-
tionship between these concepts are also given. In Section 5,
under the granular differentiability, the Cauchy problems for
neutrosophic fractional DEs and neutrosophic fractional PDEs
are investigated. And then, in order to illustrate the theoretical
results, we consider some realistic models such as fractional
damped single degree of freedom spring mass model and neu-
trosophic space–time fractional telegraph equations and calculate
their approximate solutions by numerical methods and Mat-
lab program. Next, based on the new definitions and theorem
presented in the previous sections, the solution to the Neutro-
sophic Fractional Linear Quadratic Regulator problem is given in
Section 6. Additionally, two application examples are given to
illustrate obtained result. The brief of the obtained results are
explained and discussed in Section 7. Finally, conclusions and
future works are discussed in Section 8.

2. Preliminaries

For the convenience of the readers, we will recall some pre-
liminaries on fractional calculus. For more details, see [15] and
the references therein. Some common notations used throughout
this paper will be summarized in Table 1.

2.1. Fractional derivative and integral of real functions

For convenience to the readers, we briefly recall some notions
of fractional real analysis. For more details, see [15] and the
references therein.

The right-sided and left-sided fractional integrals Iβ

a+ f (t), I
β

b−

f (t) of order β > 0 of a function f ∈ L1([a, b],R) are defined by

Iβ

a+ f (t) :=
1

Γ (β)

∫ t

a
(t − s)β−1f (s)ds, Iβ

b− f (t)

:=
1

Γ (β)

∫ b

t
(s − t)β−1f (s)ds,

respectively. Here, Γ (β) is the gamma function Γ (β) =

∫
∞

0
tβ−1

e−tdt .
The right-sided and left-sided Riemann–Liouville fractional

derivatives RL
a+Dβ f (t), RL

b−Dβ f (t) of order β > 0 of a function f are
defined by

RL
a+Dβ f (t) :=

1
Γ (n − β)

(
d
dt

)n ∫ t

a
(t − s)n−β−1f (s)ds,

and

RL
b−Dβ f (t) :=

1
Γ (n − β)

(
−

d
dt

)n ∫ b

t
(s − t)n−β−1f (s)ds,
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Table 1
The mathematical notations.
Notation Description Location

Iβ

b− , I
β

a+ Left-sided, Right-sided fractional integrals Section 2.1
RL
b−Dβ , RL

a+Dβ Left-sided, Right-sided Riemann–Liouville derivatives Definition 2.1
C
b−Dβ , C

a+Dβ Left-sided, Right-sided Caputo derivatives Section 2.1

L(u) Horizontal membership function of u Definition 2.1

dgr/dt Granular derivative Definition 2.6

∂gr/∂xi Granular partial derivative w.r.t. variable xi Definition 2.9
grIβ

b− , grIβ

a+ Left-sided, Right-sided neutrosophic granular integrals Definition 3.1
gr
b−Dβ , gr

a+Dβ Left-sided, Right-sided gr-Riemann–Liouville derivatives Definition 3.2
gr
b−Dβ , gr

a+Dβ Left-sided, Right-sided gr-Caputo derivatives Definition 3.3
grIσk

b−

k
, grIσk

a+

k
Left-sided, Right-sided gr-partial integrals w.r.t. xk Definition 4.1

gr
b−

k
Dβ

xk ,
gr
a+

k
Dβ

xk Left-sided, Right-sided gr-Caputo partial derivatives w.r.t. xk Definition 4.2

respectively, where n − 1 < β < n, n ∈ N and the function f has
absolutely continuous derivatives up to order (n − 1).

The right-sided and left-sided Caputo fractional derivatives
C
a+Dβ f (t), C

b−Dβ f (t) of order β > 0 of a function f ∈ Cn([a, b],R)
are defined by

C
a+Dβ f (t) :=

1
Γ (n − β)

∫ t

a
(t − s)n−β−1f (n)(s)ds,

and

C
b−Dβ f (t) :=

(−1)n

Γ (n − β)

∫ b

t
(s − t)n−β−1f (n)(s)ds,

respectively, where n − 1 < β < n, n ∈ N.

Remark 2.1.

(i) The Caputo fractional derivatives of a constant function C is
equal to 0.

(ii) The Riemann–Liouville fractional derivatives of order β ∈

(0, 1) of a constant function C is given by

RL
a+DβC =

C
Γ (1 − β)

(t − a)−β and

RL
b−DβC =

C
Γ (1 − β)

(b − t)−β .

2.2. Space of neutrosophic numbers

The set of all neutrosophic numbers, denoted by E , consists of
elements of the form u = a + bI , where a ∈ R, b ∈ R+ and I is
the indeterminacy [4].

Note that the indeterminacy I can be presented as a possible
changeable range

[
I, I
]
. Then, the neutrosophic number u = a+bI

can be specified as an interval representation
[
a + bI, a + bI

]
. In

particular case, if either b = 0 or I = I , that means bI = 0, then
u = a is a real number. The basic arithmetic operations on the
set E such as addition, multiplication, scalar multiplication and
division can be referred to [4].

Definition 2.1 (gr-Representation). For u = a + bI ∈ E , the num-
ber u can be rewritten in the following horizontal membership
function form

ugr
: [0, 1] → [a + bI, a + bI]

µ ↦→ ugr (µ) = a + bI + b diam[I]µ

in which diam[I] = I − I , the notion ’’gr’’ stands for the granule
of information included in [a+ bI, a+ bI] and µ ∈ [0, 1] is called
the relative distance measure variable.

Let us denote by L(u) ≜ ugr (µ) the horizontal membership
function of an element u ∈ E . In addition, we can see that the
interval representation of u ∈ E can be obtained by using the
following inverse transformation

L−1(ugr (µ)) =

[
min

µ∈[0,1]
ugr (µ), max

µ∈[0,1]
ugr (µ)

]
. (1)

For two neutrosophic numbers u1 and u2, we have u1 = u2 if
and only if L(u1) = L(u2). Then, we define

L(u1 ⊗ u2) ≜ L(u1) ∗ L(u2),

where the notions ‘‘⊗’’, ‘‘∗’’ are used to present the arithmetic op-
erations such as addition, subtraction, multiplication or division,
in E and R, respectively. Especially, the difference in this sense,
denoted by ⊖

gr , is called granular difference (or gr-difference for
short).

Definition 2.2 (gr-Metric). Let u1, u2 be two neutrosophic num-
bers. Then, the gr-distance is defined as follows

ρgr (z1, z2) = max
µ1,µ2

⏐⏐zgr1 (µ1) − zgr2 (µ2)
⏐⏐ .

We can see that the space (E, ρgr) is a complete metric space.

2.3. Neutrosophic matrices

Definition 2.3. Matrix A = (aij)m×n is called a neutrosophic ma-
trix of order m×n if all the entries aij are neutrosophic numbers.
Especially, if m = n then the matrix A is called square neutro-
sophic matrix of order n. Furthermore, based on the horizontal
membership function approach, the granular representation of A
is given by Agr (µA) = (agrij (µij))m×n, where µA := {µij ∈ [0, 1] :

i = 1,m, j = 1, n}.

Remark 2.2. Based on arithmetic operations in E , we can per-
form the neutrosophic matrix operations, e.g., matrix addition–
subtraction, scalar multiplication, matrix transpose, matrix in-
verse, and so on.

Definition 2.4. The inverse matrix A−1 and the transpose matrix
AT of a neutrosophic matrix A are neutrosophic matrices such that
L
(
A−1

)
= (L(A))−1 and L

(
AT
)

= (L(A))T, respectively.

Definition 2.5. Let A = (aij)n×n be a square neutrosophic matrix
of order n. We call a number λi ∈ E is an eigenvalue of A if and
only if

det
(
λ
gr
i (µi)In − Agr (µA)

)
= 0,

where det(·) and In represent the determinant and the n × n
identity matrix, respectively.
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Example 2.1. Let I = [0, 1] and consider a neutrosophic matrix

A =

(
−1 1
0 −3 + I

)
. The granular representation of the ma-

trix A, given by
(

−1 1
0 −3 + µ

)
, has the characteristic equation

(λgr (µ))2 + (4 − µ)λgr (µ) + (3 − µ) = 0, for each µ ∈ [0, 1].
Then, we have the eigenvalues of Agr (µ) is λ

gr
1 (µ) = −1, λ

gr
2 (µ) =

−3 + µ, corresponding to the eigenvalues λ1 = −1 λ2 = −3 + I .

2.4. Neutrosophic-valued functions and their calculus properties

A function f : [a, b] ⊂ R → E is said to be a neutrosophic-
valued function or E-valued function. If the E-valued function f
includes n distinct neutrosophic numbers u1, u2, . . . , un, then the
horizontal membership function of f at t ∈ [a, b], denoted by
L(f (t)) ≜ f gr (t, µf ), can be given as

f gr : [a, b] × [0, 1] × · · · × [0, 1] → R,

where µf ≜ (µ1, µ2, . . . , µn).

Definition 2.6 (The Differentiability). Let f : (a, b) ⊂ R → E be a
neutrosophic-valued function and t0 ∈ (a, b). Then, we say that f
is granular differentiable (gr-differentiable) at the point t0 if there

exists an element
dgr f (t0)

dt
∈ E such that the limit

lim
h→0

f (t0 + h) ⊖
gr f (t0)

h
=

dgr f (t0)
dt

, (2)

holds for h sufficiently near 0. Then, we call the value
dgr f (t0)

dt
the

granular derivative (gr-derivative) of function f at the point t0.
As a result, the function f is said to be gr-differentiable on

the interval (a, b) if and only if the gr-derivative
dgr f (t)

dt
exists

for all t ∈ (a, b). Then, the mapping t ↦→
dgr f (t)

dt
is called the

gr-derivative of f on (a, b) and denoted by
dgr f
dt

or f ′
gr .

Remark 2.3. In Definition 2.6, if the certain domain (a, b) ⊂ R
is replaced by the domain E1 ⊆ E , then the conclusion still holds.
Here, we note that the division on the left side of the formula (2)
can be known as the division of neutrosophic numbers.

Next, we give a necessary and sufficient condition for the
granular differentiability of a neutrosophic-valued function.

Proposition 2.1. Let f : (a, b) ⊂ R → E be an E-valued function
and t0 ∈ (a, b). The function f is gr-differentiable at the point t0 if
and only if its horizontal membership function is differentiable at t0.
Then, we have

L
(
dgr f (t0)

dt

)
=

∂ f gr (t0, µf )
∂t

.

Definition 2.7. Assume that Φ : [a, b] → E is a continu-
ous E-valued function and its horizontal membership function
L (Φ(t)) := Φ(t, µ) is integrable on [a, b], i.e., there exists a

number I(µ) ∈ R such that I(µ) =

∫ b

a
Φ(t, µ)dt . Then, the

neutrosophic number I, obtained by the transformation I :=

L−1(I(µ)), is said to be the granular integral (gr-integral) of

function Φ on [a, b] and denoted by I =

∫ b

a
Φ(t)dt .

Remark 2.4. By analogous arguments as in Proposition 2.1, we
can also prove that the granular integrability of neutrosophic-
valued function f and the integrability of its horizontal member-
ship function are equivalent.

Theorem 2.1 (Newton–Leibniz’s Formula). Assume that φ : [a, b] ⊆

R → E is a neutrosophic-valued function that is gr-differentiable on
[a, b] and the function Φ(t) := φ′

gr (t) is continuous on this interval.
Then, Φ is gr-integrable and∫ b

a
Φ(t)dt = φ(b) ⊖

gr φ(a).

Example 2.2. Let φ : [0, 2π ] → E be given by φ(t) = z1e−t
+

z2 cos 2t , where z1 = 4+ I , z2 = −6+ I ∈ E . Then, the horizontal
membership function of φ(t) is

φgr (t, µ1, µ2) = (4 + µ1) e−t
+ (−6 + µ2) cos 2t.

We see that φ(t) is gr-differentiable on [0, 2π ] and its derivative,
denoted by Φ(t) = φ′

gr (t), is a continuous function on [0, 2π ] and
we have

Φgr (t, µ1, µ2) =
∂φgr (t, µ1, µ2)

∂t
= (−4 − µ1) e−t

+ (12 − 2µ2) sin 2t,

where µ1, µ2 ∈ [0, 1]. Then, the gr-integral I of Φ(t) on [0, 2π ]

is given by

I = L−1
(∫ 2π

0
[(−4 − µ1) e−t

+ (12 − 2µ2) sin 2t]dt
)

= 5(e−2π
− 1) +

(
1 − e−2π) I.

On the other hand, we can see that all assumptions of Theo-
rem 2.1 are fulfilled and thus, it follows that∫ 2π

0
Φ(t)dt = φ(7) ⊖

gr φ(0) = 5(e−2π
− 1) +

(
1 − e−2π) I.

2.5. Neutrosophic-valued functions of several variables and their
granular partial derivative

This section presents the concepts of neutrosophic-valued
functions of several variables, their granular partial derivative and
the granular chain rule. Definitions and theorems corresponding
to these notions are given as follows.

Definition 2.8. A mapping f : En
→ E , defined by (x1, . . . , xn) ↦→

f (x1, . . . , xn), is called a neutrosophic-valued functions of several
variables. And, the granular representation is f gr

(
xgr1 (µ1), . . . ,

xgrn (µn); µf
)
for all µi, µf ∈ [0, 1].

Definition 2.9. Let f : En
→ E . Then, the function f is said to be

granular partial differentiable with respect to xi if there exists an

element
∂gr f (x1, . . . , xi, . . . , xn)

∂xi
∈ E such that the limit

lim
h̃→0̃

1

h̃

(
f (x1, . . . , xi + h̃, . . . , xn) ⊖

gr f (x1, . . . , xi, . . . , xn)
)

=
∂gr f (x1, . . . , xi, . . . , xn)

∂xi
,

holds for all h̃ near 0̃.

Remark 2.5. We consider some particular cases of neutrosophic-
valued (several) variables functions that will be used throughout
this work.
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• If n = 1, then the function f : E → E , given by x ↦→ f (x),
is said to be a neutrosophic-valued function. Its granular

(partial) derivative w.r.t. variable x is given by
∂gr f (x)

∂x
.

• If n = 2, then the function f : E2
→ E , given by

(x1, x2) ↦→ f (x1, x2), is said to be a neutrosophic-valued
two variables function. Then, its granular partial derivatives
w.r.t. variable x1 and variable x2 are given respectively by
∂gr f (x1, x2)

∂x1
,

∂gr f (x1, x2)
∂x2

.

Theorem 2.2. A neutrosophic-valued several variables function
f : En

→ E is granular partial differential with respect to xi if
and only if its horizontal membership function is differentiable with
respect to L(xi). Moreover,

L
(

∂gr f (x1, . . . , xi, . . . , xn)
∂xi

)
=

∂ f gr
(
xgr1 (µ1), . . . , x

gr
n (µn); µf

)
∂xgri (µi)

.

Definition 2.10 (gr-Derivative of Composite Function). Assume that

(i) the function f : [a, b] ⊂ R → E1 ⊆ E is gr-differentiable at
the point t0 ∈ [a, b];

(ii) the function g : E1 → E is granular partial differentiable
w.r.t the variable f (t) at the point t0.

Then, the composite function of the functions f and g at the
point t0 ∈ [a, b] is denoted by (g ◦ f )(t) or g (f (t)) and it is said to
be granular differentiable at the point t0 if there exists an element
dgr (g(f (t0)))

dt
∈ E such that the following limit exists

lim
h→0

g (f (t0 + h)) ⊖
gr g (f (t0))

h
=

dgr (g(f (t0)))
dt

for all h sufficiently near 0.

Theorem 2.3 (Granular Chain Rule). Assume that

(i) The function f : [a, b] ⊂ R → E1 ⊆ E is gr-differentiable at
the point t0 ∈ [a, b].

(ii) The function g : E1 → E is granular partial differentiable with
respect to variable f (t) at the point t0.

Then, granular derivative of the composite function (g ◦ f ) at the
point t0 is given by
dgr (g(f (t0)))

dt
=

∂grg(f (t0))
∂ f (t)

·
dgr f (t0)

dt
.

Proof. Using the condition (i), it follows that for all h >
0 sufficiently near 0, the neutrosophic number f ′

gr (t0) satisfies

limh→0
1
h
[f (t0 + δ) ⊖

gr f (t0)] = f ′
gr (t0), or equivalently, there

exists an element δ(h) ∈ E depending on h such that δ(h) ap-

proaches zero neutrosophic number 0̃ as h → 0 and
1
h
[f (t0 + h)

⊖
gr f (t0)] = δ(h)+ f ′

gr (t0), which follows that f (t0 + h)⊖gr f (t0) =[
δ(h) + f ′

gr (t0)
]
h. Thus, the element g(f (t0 + h)) can be rewritten

as follows g(f (t0 + h)) = g
(
f (t0) +

[
δ(h) + f ′

gr (t0)
]
h
)
.

Similarly, due to the assumption (ii), we can consider an
element ∂gr g(f (t0))

∂ f (t) ∈ E as the granular partial derivative of func-
tion g with respect to variable f (t) at the point t0 and there
exists an element ω(h̃) ∈ E depending on h̃ ∈ E such that
1

h̃

[
g(f (t0) + h̃) ⊖

gr g(f (t0))
]

= ω(h̃) +
∂gr g(f (t0))

∂ f (t) , or equivalent to

g(f (t0) + h̃) ⊖
gr g(f (t0)) =

[
ω(h̃) +

∂gr g(f (t0))
∂ f (t)

]
h̃, where ω(h̃) is

as small as h̃ → 0̃. Moreover, we can see that
[
δ(h) + f ′

gr (t0)
]
h

approaches 0̃ as h → 0 and so, by choosing h̃ =
[
δ(h) + f ′

gr (t0)
]
h,

Fig. 2. The granular representation of the composite function (g ◦ f )(t) on the
interval [0, 2π ].

this formula becomes g(f (t0)+h̃)⊖gr g(f (t0)) =

[
ω(h̃) +

∂gr g(f (t0))
∂ f (t)

]
[
δ(h) + f ′

gr (t0)
]
h, or equivalent to,

1
h

[
g(f (t0) + h̃) ⊖

gr g(f (t0))
]

=[
ω(h̃) +

∂gr g(f (t0))
∂ f (t)

] [
δ(h) + f ′

gr (t0)
]
.

Next, by letting h → 0, we immediately obtain limh→0
1
h[

g(f (t0) + h̃) ⊖
gr g(f (t0))

]
=

∂gr g(f (t0))
∂ f (t) f ′

gr (t0). Therefore, the proof
is completed. □

Corollary 2.1. Consider a neutrosophic-valued function f̃ : [a, b]×
C([a, b], E) → E . Then, we have the granular derivative of function
f̃ is given by

dgr
dt

(
f̃ (t, x̃(t))

)
=

∂gr f̃ (t, x̃(t))
∂t

+
∂gr f̃ (t, x̃(t))

∂ x̃(t)
dgr x̃(t)
dt

,

where ∂gr f̃ (t,x̃(t))
∂ x̃(t) is denoted for the granular partial derivative w.r.t.

variable x̃(t).

Example 2.3. Consider neutrosophic-valued functions f (t) =

t3 − 4t2 + ã, t ∈ [0, 2π ] and g : E → E , g(x) = b̃ cos x,
where ã = 1 + I , b̃ = 7 + 2I are neutrosophic numbers with
indeterminacy I = [0, 1]. Then, the composite function (g ◦ f )(t)
is defined as

(g ◦ f )(t) = b̃ · cos
(
t3 − 4t2 + ã

)
.

Since the respective granular representations of ã and b̃ are given
by L(ã) = 1 + µ and L(b̃) = 7 + 2µ for each µ ∈ [0, 1], we have

L ((g ◦ f )(t)) = (7 + 2µ) cos(L(f (t)))

= (7 + 2µ) cos(t3 − 4t2 + 1 + µ),

and its graphical representation is given in Fig. 2.
As a result of Proposition 2.1, it is easy to see that L

(
dgr f (t)

dt

)
=

3t2 − 8t , and therefore, based on Theorems 2.2 and 2.3, we have

L
(

∂grg(f (t))
∂ f (t)

)
= −(7 + 2µ) sin(L(f (t)))

= −(7 + 2µ) sin(t3 − 4t2 + 1 + µ).

L
(
dgr (g ◦ f )(t)

dt

)
= L

(
∂grg(f (t))

∂ f (t)

)
L
(
dgr f (t)

dt

)
= −(7 + 2µ) sin(t3 − 4t2 + 1 + µ)(3t2 − 8t).
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Fig. 3. The granular representation of the function ∂gr g(f (t))
∂ f (t) on the interval

[0, 2π ].

Fig. 4. The granular representation of the function dgr (g◦f )(t)
dt on the interval

[0, 2π ].

Hence, using the transformation (1), we obtain
dgr (g ◦ f )(t)

dt
= L−1 (

−(7 + 2µ) sin(t3 − 4t2 + 1 + µ)(3t2 − 8t)
)

= b̃ (8t − 3t2) sin(t3 − 4t2 + ã).

The graphical representations of functions ∂gr g(f (t))
∂ f (t) and

dgr (g◦f )(t)
dt on the interval [0, 2π ] are shown in Figs. 3 and 4,

respectively.

3. Neutrosophic granular fractional integrals and fractional
derivatives

In this section, we present the notions of granular fractional
integral, granular Riemann–Liouville, and granular Caputo frac-
tional derivatives of neutrosophic-valued functions. Some related
properties of the granular Riemann–Liouville and granular Caputo
fractional derivatives are also mentioned.

Definition 3.1. Let f : [a, b] ⊂ R → E . Then, the right-sided
and left-sided neutrosophic granular fractional integrals of order
β ∈ (0, 1) of f are defined by

grIβ

a+ f (t) =
1

Γ (β)

∫ t

a
(t − s)β−1f (s)ds,

grIβ

b− f (t) =
1

Γ (β)

∫ b

t
(s − t)β−1f (s)ds.

Remark 3.1. Thanks to Definition 2.7, we obtain

(i) The horizontal membership function of the right-sided neu-
trosophic granular fractional integrals of order β ∈ (0, 1) is
given as follows

L
(

grIβ

a+ f (t)
)

=
1

Γ (β)

∫ t

a
L
(
(t − s)β−1f (s)

)
ds

=
1

Γ (β)

∫ t

a
(t − s)β−1L (f (s)) ds,

that means L
(

grIβ

a+ f (t)
)

= Iβ

a+L (f (t)).

(ii) The horizontal membership function of the left-sided neu-
trosophic granular fractional integrals of order β ∈ (0, 1) is
given as follows

L
(

grIβ

b− f (t)
)

=
1

Γ (β)

∫ b

t
L
(
(s − t)β−1f (s)

)
ds

=
1

Γ (β)

∫ b

t
(s − t)β−1L (f (s)) ds,

that means L
(

grIβ

b− f (t)
)

= Iβ

b−L (f (t)).

Definition 3.2. Let f : [a, b] ⊂ R → E . Then, the right-
sided and left-sided neutrosophic granular Riemann–Liouville
fractional derivatives of order β ∈ (0, 1) of the function f are
defined as follows

gr
a+D

β f (t) =
1

Γ (1 − β)
dgr
dt

(∫ t

a
(t − s)−β f (s)ds

)
,

gr
b−D

β f (t) = −
1

Γ (1 − β)
dgr
dt

(∫ b

t
(s − t)−β f (s)ds

)
.

Remark 3.2. The horizontal membership function of the neutro-
sophic granular Riemann–Liouville fractional derivatives of order
β ∈ (0, 1) are given as follows

(i) L
( gr

a+Dβ f (t)
)

=
RL
a+DβL (f (t)).

(ii) L
( gr

b−Dβ f (t)
)

=
RL
b−DβL (f (t)).

Indeed, we have

L
( gr

a+D
β f (t)

)
= L

(
1

Γ (1 − β)
dgr
dt

(∫ t

a
(t − s)−β f (s)ds

))
=

1
Γ (1 − β)

L
(
dgr
dt

(∫ t

a
(t − s)−β f (s)ds

))
=

1
Γ (1 − β)

d
dt

(∫ t

a
(t − s)−βL (f (s)) ds

)
=

RL
a+DβL (f (t)) .

Thus, the assertion (i) holds. Similarly, we also have the rest of
proof.

Definition 3.3. Let f : [a, b] ⊂ R → E be a granular differen-
tiable function. Then, the right-sided and left-sided neutrosophic
granular Caputo fractional derivatives of order β ∈ (0, 1) of the
function f are defined as follows

gr
a+Dβ f (t) =

1
Γ (1 − β)

∫ t

a
(t − s)−β dgr f (s)

ds
ds

=
grI1−β

a+

(
dgr f (t)

dt

)
,

gr
b−Dβ f (t) = −

1
Γ (1 − β)

∫ b

t
(s − t)−β dgr f (s)

ds
ds

= −
grI1−β

b−

(
dgr f (t)

dt

)
.

As a consequence, we can see that if f (t) is a constant function
then we have
gr
a+Dβ f (t) =

gr
b−Dβ f (t) = 0̂, (3)

It should be noted that the equality (3) is one of characteristic
properties of granular Caputo fractional derivative, which does
not hold for the case of granular Riemann–Liouville fractional
derivative.



Please cite this article as: N.T.K. Son, N.P. Dong, H.V. Long et al., Linear quadratic regulator problem governed by granular neutrosophic fractional differential equations. ISA
Transactions (2019), https://doi.org/10.1016/j.isatra.2019.08.006.

8 N.T.K. Son, N.P. Dong, H.V. Long et al. / ISA Transactions xxx (xxxx) xxx

Remark 3.3. By similar arguments as in Remarks 3.1 and 3.2,
we can conclude that

(i) L
( gr

a+Dβ f (t)
)

=
C
a+DβL (f (t)).

(ii) L
( gr

b−Dβ f (t)
)

=
C
b−DβL (f (t)).

Proposition 3.1. The right-sided and left-sided neutrosophic gran-
ular Caputo fractional derivatives of order β ∈ (0, 1) are linear
operators, i.e., for all gr-differentiable neutrosophic-valued functions
f , g : [a, b] → E and λ1, λ2 ∈ R, we have

(i) gr
a+Dβ [λ1f (t) + λ2g(t)] = λ1

gr
a+Dβ f (t) + λ2

gr
a+Dβg(t).

(ii) gr
b−Dβ [λ1f (t) + λ2g(t)] = λ1

gr
b−Dβ f (t) + λ2

gr
b−Dβg(t).

The next theorem presents the relation between neutrosophic
granular Riemann–Liouville fractional derivatives and neutro-
sophic granular Caputo fractional derivatives

Theorem 3.1. Let f : [a, b] ⊂ R → E be a granular differen-
tiable function. Then, the relation between the neutrosophic granular
Riemann–Liouville fractional derivatives and the neutrosophic gran-
ular Caputo fractional derivatives of order β ∈ (0, 1) of f can be
characterized by following equalities

(i) gr
a+Dβ f (t) =

gr
a+Dβ f (t) ⊖

gr (t − a)−β

Γ (1 − β)
f (a).

(ii) gr
b−Dβ f (t) =

gr
b−Dβ f (t) ⊖

gr (b − t)−β

Γ (1 − β)
f (b).

Proof. We will prove the first assertion, while the second will be
proved similarly. Indeed, it is sufficient to prove that

L
( gr

a+Dβ f (t)
)

= L
(

gr
a+D

β f (t) ⊖
gr (t − a)−β

Γ (1 − β)
f (a)

)
= L

( gr
a+D

β f (t)
)
−

(t − a)−β

Γ (1 − β)
L (f (a)) .

Employ the formula (2.4.8) in [39], we have

C
a+DβL (f (t)) =

RL
a+DβL (f (t)) −

(t − a)−β

Γ (1 − β)
L (f (a)) .

On the other hand, from Remark 3.2(i) and Remark 3.3(i), we can
see that

L
( gr

a+D
β f (t)

)
=

RL
a+DβL (f (t))

L
( gr

a+Dβ f (t)
)

=
C
a+DβL (f (t))

Therefore, we deduce that

L
( gr

a+Dβ f (t)
)

= L
(

gr
a+D

β f (t) ⊖
gr (t − a)−β

Γ (1 − β)
f (a)

)
.

Hence, the proof is complete. □

Corollary 3.1. As a consequence of Theorem 3.1, we directly obtain
that

(i) If f (a) = 0 then gr
a+Dβ f (t) =

gr
a+Dβ f (t).

(ii) If f (b) = 0 then gr
b−Dβ f (t) =

gr
b−Dβ f (t).

Theorem 3.2. Assume that

(i) f , g : [a, b] ⊂ R → E are granular differentiable functions.
(ii) f (a) = g(b) = 0.

Then, the following equality holds∫ b

a

( gr
a+Dβ f (t)

)
g(t)dt =

∫ b

a
f (t)

( gr
b−Dβg(t)

)
dt. (4)

Proof. By using Definition 2.7 and Remark 3.2(i), the left side of
(4) becomes

L
(∫ b

a

( gr
a+Dβ f (t)

)
g(t)dt

)
=

∫ b

a

C
a+DβL (f (t))L (g(t)) dt.

In addition, due to the granular differentiability of f and g ,
we imply that the real-valued functions L(f (t)), L(g(t)) are dif-
ferentiable on [a, b], and therefore, based Section 2.6 in [15], if
L (f (a)) = L (g(b)) = 0 then the right hand side of above equality
equals∫ b

a

C
a+DβL (f (t))L (g(t)) dt =

∫ b

a
L (f (t)) C

b−DβL (g(t)) dt,

that means

L
(∫ b

a

( gr
a+Dβ f (t)

)
g(t)dt

)
= L

(∫ b

a
f (t)

( gr
b−Dβg(t)

)
dt
)

,

or equivalent to∫ b

a

( gr
a+Dβ f (t)

)
g(t)dt =

∫ b

a
f (t)

( gr
b−Dβg(t)

)
dt. □

4. Neutrosophic granular partial integrals and neutrosophic
granular partial derivatives

This section presents the concepts of granular partial integrals
and derivatives of order σ ∈ (0, 1)n for a neutrosophic-valued
several variables functions f (z1, z2, . . . , zn). Such operations of
fractional integration and fractional differentiation are natural
generalizations of the corresponding fractional integration and
fractional differentiation of single variable neutrosophic-valued
functions.

For z = (z1, z2, . . . , zn) ∈ En, σ = (σ1, σ2, . . . , σn) ∈ (0, 1)n,
a = (a1, a2, . . . , an) ∈ Rn and b = (b1, b2, . . . , bn) ∈ Rn, the
following notations will be used throughout this paper: Γ (σ ) :=

Γ (σ1)Γ (σ2) · · · Γ (σn) and [a, b] = [a1, b1] × · · · × [an, bn] ⊂ Rn.

Definition 4.1. Let f : [a, b] ⊂ Rn
→ E . Then, the right-sided and

left-sided granular partial fractional integrals of order σk ∈ (0, 1)
w.r.t. the kth variable zk are defined by

grIσk
a+

k
f (z) :=

1
Γ (σk)

∫ zk

ak

f (z1, . . . , τk, . . . , zn)
(zk − τk)1−σk

dτk,

grIσk
b−

k
f (z) :=

1
Γ (σk)

∫ bk

zk

f (z1, . . . , τk, . . . , zn)
(τk − zk)1−σk

dτk.

As a corollary, we can define the granular mixed fractional
integrals of order σ ∈ (0, 1)n.

Corollary 4.1. Let f : [a, b] ⊂ Rn
→ E . Then, the right-sided and

left-sided granular mixed fractional integrals of order σ ∈ (0, 1)n
are defined by

grIσ
a+ f (z) =

(
grIσ1

a+

1

grIσ2
a+

2
· · ·

grIσn
a+
n

)
f (z)

=
1

Γ (σ )

∫ z1

a1

∫ z2

a2

· · ·

∫ zn

an

f (τ )
(z − τ )1−σ

dτ ,

grIσ
b− f (z) =

(
grIσ1

b−

1

grIσ2
b−

2
· · ·

grIσn
b−
n

)
f (z)

=
1

Γ (σ )

∫ b1

z1

∫ b2

z2

· · ·

∫ bn

zn

f (τ )
(τ − z)1−σ

dτ ,

where τ = (τ1, τ2, . . . , τn) and dτ = dτ1dτ2 . . . dτn.

Definition 4.2. Let f : [a, b] ⊂ Rn
→ E be a granular

partial differentiable function. Then, the right-sided and left-sided
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granular Caputo partial fractional derivatives of order σk ∈ (0, 1)
with respect to the kth variable zk are defined by

gr
a+

k
Dβ

zk f (z) =
1

Γ (1 − σk)

∫ zk

ak

(zk − τk)−σk

×
∂gr f (z1, . . . , τk, . . . , zn)

∂τk
dτk,

gr
b−

k
Dβ

zk f (z) = −
1

Γ (1 − σk)

∫ bk

zk

(τk − zk)−σk

×
∂gr f (z1, . . . , τk, . . . , zn)

∂τk
dτk.

Remark 4.1. As a consequence of Theorem 2.2 and Remarks 3.1
and 3.3, the following relations are fulfilled:

(i) L
(

grIσk
a+

k
f (z)

)
= Iσk

a+

k
L(f (z)),

(ii) L
(

grIσk
b−

k
f (z)

)
= Iσk

b−

k
L(f (z)),

(iii) L
(

gr
a+

k
Dβ

zk f (z)
)

=
C
a+

k
Dβ

zkL(f (z)),

(iv) L
(

gr
b−

k
Dβ

zk f (z)
)

=
C
b−

k
Dβ

zkL(f (z)).

5. Neutrosophic fractional DEs under granular differentiabil-
ity

In this section, based on the concepts of neutrosophic gran-
ular Caputo derivatives, we investigate the initial problem for
following neutrosophic fractional DEs{gr

∗ Dβx(t) = f (t, x(t))
x(t0) = x0,

(5)

where the notion gr
∗ Dβx(t) denotes for the right-sided or left-sided

granular Caputo derivatives of order β ∈ (0, 1) of the state vector
x : [t0, tf ] → En, x0 ∈ E is the initial condition and f is a
neutrosophic-valued function that will be specified later.

Thanks to Remark 3.2, the Cauchy problem (5) can be rewrit-
ten in following granular form{C

∗
Dβxgr (t, µ1) = f (t, xgr (t, µ1), µf ),

xgr (t0, µ1) = xgr0 (µ0),
(6)

for all µ0, µ1, µf ∈ [0, 1].
Here, we can see that by the use of horizontal membership

function approach, the Cauchy problem (5) for neutrosophic frac-
tional DEs is transformed into Cauchy problems for a set of
real-valued fractional DEs, which are called granular fractional
DEs. It is well-known that under this approach, the solution
sets of Cauchy problems for both types of fractional DEs are
equivalent, i.e., if the Cauchy problem (5) does not have any
solution then the Cauchy problem (6) also does not. Conversely,
if xgr (t, µ) is a solution of the problem (6) then the neutrosophic-
valued function L−1 (xgr (t, µ)) is a solution of the problem (5).
Moreover, it should be noted that some important results such
the well-posed property or the unique existence of solution to
Cauchy problem (5) also correspond to those of Cauchy problem
(6). We propose the following procedure to solve numerical or
analysis neutrosophic solutions of problem (5).

Remark 5.1. The procedure to solve the Cauchy problem for neu-
trosophic fractional DEs under granular fractional differentiability
can be given as follows:

Step 1. Convert the considered Cauchy problem (5) into the cor-
responding granular form (6);

Step 2. Employ analytic or numerical methods to obtain the ex-
act or approximate solution of granular fractional DEs (6);

Step 3. Use the inverse transformation (1) to convert the ob-
tained granular solution into changeable range form;

Step 4. Sketch the graphical representation of the neutrosophic
solution by DE or PDE Toolbox — Matlab.

Now, in order to illustrate the useful of proposed method, we
will consider some Cauchy problems for neutrosophic fractional
DEs. Additionally, based on numerical methods mentioned in [15,
39,40], we will investigate the exact or approximate solutions of
considered problems.

Example 5.1. Consider the Cauchy problem for following neu-
trosophic fractional DE{gr

0+D1/2x(t) = λ̃tβx(t),
x(0) = x0,

(7)

where the parameter λ̃ = 2+I and the initial condition x0 = 5+2I
are uncertain quantities with the indeterminacy I = [0, 0.5] and
β ∈ R, β > −

1
2 .

Based on the horizontal membership function approach, we
can transform the fractional system (7) into the following granu-
lar form{C

0+D1/2xgr (t, µ1) = (2 + µ2)tβxgr (t, µ1),
xgr (0, µ1) = 5 + 2µ,

(8)

for all µ1, µ2 ∈ [0, 1].
Then, based on the method of reduction to Volterra integral

equations introduced in [39], we can give a closed-form solution
of the system (8) as follows

xgrβ (t, µ1) = (5 + 2µ)E 1
2 ,2β+1,2β

[
(2 + µ2)tβ+

1
2

]
,

that means xβ (t) = x0 · E 1
2 ,2β+1,2β

(
λ̃tβ+

1
2

)
, t ≥ 0 is the solution

of Cauchy problem (7).
In particular, if β = 0 then the problem (7) is equivalent to

the Cauchy problem for Malthusian equation [41] that describes
a simplest model of the population dynamics of a bacteria species.
Here, the parameter λ is the rate of growth of the population
and x0 is the initial population. Since the fast growth speed of
the bacteria species and limitation of measure equipment, the
parameter λ and initial population x0 may not be measured
exactly. So, in this model, we present the parameter λ and initial
condition x0 as neutrosophic numbers. Then, as a consequence,
the solution of population model is given by

x(t) = x0 · E 1
2 ,1,0

(
λ̃
√
t
)

= x0 · E 1
2

(
λ̃
√
t
)

,

and by using Matlab program ‘fde12’ to evaluate the Mittag-
Leffler function E 1

2
(·), the graphical representation of approxi-

mate solution x(t) is shown in Fig. 5.

Example 5.2. Consider the following neutrosophic fractional DE
gr
0+D3/2x(t) = λ

gr
0+D1/2x(t), t > 0, (9)

with the initial conditions

x(0) = 1 + 0.3I,
dgrx(0)

dt
= 0.5 + 0.1I, (10)

where λ ∈ R and x0, x1 ∈ E are initial conditions with the
indeterminacy I = [0, 1]. Under the horizontal membership
function approach, the Cauchy problem for the fractional DE (9)
can be transformed into following granular form⎧⎪⎪⎨⎪⎪⎩

C
0+D3/2xgr (t, µ) = λ C

0+D1/2xgr (t, µ),
xgr (0, µ) = 1 + 0.3µ,
∂x(0, µ)

∂t
= 0.5 + 0.1µ,

(11)

for each µ ∈ [0, 1].
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Fig. 5. Approximate solution of the Cauchy problem (7) for t ∈
[
0, 1

2

]
.

Adapting to Laplace transform method used in Section 5.3
of [39], approximate solution of the fractional DE (11) has fol-
lowing general form

xgr (t, µ) = C1(µ)
[
E1(λt) − λtE1,2(λt)

]
+ C2(µ)tE1,2(λt)

= C1(µ) +
C2(µ)

λ

(
eλt

− 1
)
, (12)

where E1(z) = ez and E1,2(z) =
ez − 1

z
are Mittag-Leffler

functions for each z ∈ C. Next, by substituting the initial con-
dition (10) into (12), we immediately obtain

xgr (t, µ) = (1 + 0.3µ)+
1
λ

(0.5 + 0.1µ)
(
eλt

− 1
)
, µ ∈ [0, 1].

Therefore, using inverse transformation (1), the approximate
solution of fractional DE (9) subject to initial conditions (10) is

x(t) = 1 + 0.3I +
1
λ

(0.5 + 0.1I)
(
eλt

− 1
)
,

and its graphical representation is given in Fig. 6.

Example 5.3. In this example, we consider following fractionally
damped single degree of freedom spring mass system whose
equation of motion is modeled by

m
d2grx(t)

dt2
+ ρ

gr
0+Dβx(t) + kx(t) = f (t), (13)

with the initial conditions

x(0) = x0,
dgrx(0)

dt
= v0,

where gr
0+Dβx(t) is granular Caputo fractional derivative of order

β ∈ (0, 1) of the displacement function x(t). Here, the parameter
β =

1
2 , known as the memory parameter, describes the frequency

dependence of the damping materials quite satisfactorily in the
crisp fractional dynamic systems and the parameters m, ρ and
k represent for the mass, damping and stiffness coefficients. In
order to control the mechanical system, we apply an external
force f := f (t). Finally, the initial displacement and initial velocity
are uncertainties given by x0 = −0.1 + I , v0 = −0.1 + I ,
respectively, with the indeterminacy I = [0, 0.2] (see Fig. 7).

Fig. 6. The approximate solution of the NFDE (9) with t ∈ [0, 5] with λ = 1
and λ = −1.

Fig. 7. A fractionally damped single degree of freedom spring mass system.

Then, based on the horizontal membership function approach,
we can rewrite the Cauchy problem for fractional differential
system (13) as follows⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂2xgr (t, µ)
∂t2

= −
ρ

m
C
0+D1/2xgr (t, µ) −

k
m

xgr (t, µ)

+
1
m

f gr (t, µ),

xgr (0, µ) = −0.1 + 0.2µ,

∂xgr (0, µ)
∂t

= −0.1 + 0.2µ,

(14)

for each µ ∈ [0, 1]. Based on Homotopy Perturbation Method
introduced in [42], we obtain the general form of approximate
solution of the problem (14) is given as follows

xgr (t, µ) = (0.2µ − 0.1) +

[
f (t)
m

−
k
m

(0.2µ − 0.1)
]

×

∞∑
n=0

(−1)n

n!

(
k
m

)n

t2(n+1)En
3
2 , n2 +3

(
−

ρ

m
t
3
2

)
, (15)

where En
3
2 , n2 +3

(·) is the generalized Mittag-Leffler function de-
fined in Section 1.9 of [39] and the values of parameters k, ρ and
m are given in Table 2.



Please cite this article as: N.T.K. Son, N.P. Dong, H.V. Long et al., Linear quadratic regulator problem governed by granular neutrosophic fractional differential equations. ISA
Transactions (2019), https://doi.org/10.1016/j.isatra.2019.08.006.

N.T.K. Son, N.P. Dong, H.V. Long et al. / ISA Transactions xxx (xxxx) xxx 11

Table 2
Parameter’s value.
k stiffness coefficient 9 N/m
ρ damping coefficient 1.2 N.s/m
m mass 1 kg
f (t) external applied force 1.6 N

Thus, the formula (15) becomes

xgr (t, µ) = (0.2µ − 0.1) + (2.5 − 1.8µ)

×

∞∑
n=0

(−9)n

n!
t2(n+1)En

3
2 , n2 +3

(
−1.2t

3
2

)
.

Finally, by using the transformation (1), we obtain the approx-
imate solution of Cauchy problem for fractional DE (13) is equal
to

x(t) = (−0.1 + 0.2I) + (0.7 + 9I)

×

∞∑
n=0

(−9)n

n!
t2(n+1)En

3
2 , n2 +3

(
−1.2t

3
2

)
,

with the indeterminacy I = [0, 0.2].

Example 5.4. Telegraph equations can be used in modeling
reaction–diffusion problems and in signal analysis for the trans-
mission and propagation of electrical signals. In this example, we
consider following neutrosophic space–time-fractional telegraph
equation

gr
0+Dβ

x u(t, x) =
∂2
gru(t, x)

∂t2
+

∂gru(t, x)
∂t

+ u(t, x), (16)

subject to the initial and boundary conditions⎧⎪⎪⎨⎪⎪⎩
u(t, 0) = c1e−t , t ≥ 0,
∂gru(t, 0)

∂t
= c1e−t , t ≥ 0,

u(0, x) = c2ex, 0 < x < 2,

(17)

where gr
0+D

β
t u(t, x) denotes for the right-sided granular Caputo

partial fractional derivative of order β ∈ (0, 2] w.r.t. the state
x and c1 = 7 + 2I , c2 = 1 + I are neutrosophic numbers with the
indeterminacy I = [0, 1].

By using granular transformation presented in Definition 2.1,
the Cauchy problem for the neutrosophic space–time-fractional
telegraph equation (16) with the initial and boundary condi-
tions (17) can be written as follows⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C
0+D

β
x ugr (t, x, µ) =

∂2ugr (t, x, µ)
∂t2

+
∂ugr (t, x, µ)

∂t
+ ugr (t, x, µ),

ugr (t, 0, µ) = (7 + 2µ1)e−t ,

∂ugr (t, 0, µ)
∂x

= (7 + 2µ1)e−t ,

ugr (0, x, µ) = (1 + µ2)ex,

(18)

for all µ1, µ2, µ ∈ [0, 1].
Next, we will apply Adomian’s decomposition method [43] to

find the approximate solution of the Cauchy problem (18). Firstly,
we assume that the approximate solution is given in following
series form

ugr (t, x, µ) =

∞∑
k=0

ugr
n (t, x, µ), µ ∈ [0, 1].

Fig. 8. The approximate solution u(t, x) for β = 2 in the domain [0, 2] × [0, 2].

Then, according to Adomian’s decomposition method used in [43,
44], we obtain some first components of the above decomposition
series

ugr
0 (t, x, µ) = (1 + x)(7 + 2µ1)e−t

ugr
1 (t, x, µ) =

(
xβ

Γ (β + 1)
+

xβ+1

Γ (β + 2)

)
(7 + 2µ1)e−t

ugr
2 (t, x, µ) =

(
x2β

Γ (2β + 1)
+

x2β+1

Γ (2β + 2)

)
(7 + 2µ1)e−t

ugr
3 (t, x, µ) =

(
x3β

Γ (3β + 1)
+

x3β+1

Γ (3β + 2)

)
(7 + 2µ1)e−t

. . . . . . . . .

And thanks to this manner, the rest of components of the de-
composition series are also determined. Hence, the approximate
solution ugr (t, x, µ) is given by

ugr (t, x, µ) = (7 + 2µ1)e−t
[
1 + x +

xβ

Γ (β + 1)
+

xβ+1

Γ (β + 2)

+
x2β

Γ (2β + 1)
+

x2β+1

Γ (2β + 2)
+ · · ·

]
,

that means the solution of the problem (16)–(17) is equal to

u(t, x) =

∞∑
k=0

c1e−t
(

xkβ

Γ (kβ + 1)
+

xkβ+1

Γ (kβ + 2)

)
.

Here, we can see that there is no linearization or perturbation and
the closed form of solution is obtainable by adding more terms to
the decomposition series. Especially, if β = 2 then the solution
u(t, x) becomes

u(t, x) = c1e−t
[
1 + x +

x2

2!
+

x3

3!
+

x4

4!
+

x5

5!
+ · · ·

]
,

that is equivalent to the exact solution u(t, x) = c1ex−t .
Finally, by using Matlab program, the graphical representa-

tions of the approximate solution u(t, x) with different values of
parameters β are shown in Figs. 8–10.

Example 5.5. Consider the following non-homogeneous neutro-
sophic space-fractional telegraph equation

gr
0+Dβ

x u(t, x) =
∂2
gru(t, x)

∂t2
+

∂gru(t, x)
∂t

+ u(t, x) + g(t, x), (19)

subject to the initial and boundary conditions

u(t, 0) = ct, t ≥ 0,
∂gru(t, 0)

∂x
= 0, t ≥ 0,

u(0, x) = cx2, 0 < x < 1,

(20)

where gr
0+D

β
t u(t, x) denotes for the right-sided granular Caputo

partial fractional derivative of order β ∈ (0, 2] with respect to
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Fig. 9. The approximate solution u(t, x) for β =
3
2 , n = 200 and some different

values of x.

Fig. 10. The approximate solution u(t, x) for β =
1
2 , n = 200 and some different

values of x.

state variable x, g(t, x) = −x2 − t + 1 and c = 5 + I are
neutrosophic numbers with the indeterminacy I = [0, 1].

By similar arguments as in Example 5.4, the Cauchy prob-
lem for the non-homogeneous neutrosophic space-fractional tele-
graph equation (19) subject to the initial and boundary condi-
tions (20) can be given as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C
0+D

β
x ugr (t, x, µ) =

∂2ugr (t, x, µ)
∂t2

+
∂ugr (t, x, µ)

∂t
+ugr (t, x, µ) − x2 − t + 1,

ugr (t, 0, µ) = (5 + µ1)t,
∂ugr (t, 0, µ)

∂x
= 0,

ugr (0, x, µ) = (5 + µ1)x2,

(21)

for all µ, µ1 ∈ [0, 1].
In order to find the approximate solution of the problem

(21), we will use the Homotopy Perturbation Method [42,45].
Firstly, for an embedding parameter p ∈ [0, 1], we construct the
following homotopy( C

0+Dβ
x u

gr (t, x, µ) −
C
0+Dβ

x u
gr
0 (t, x, µ)

)
=

(
∂2ugr (t, x, µ)

∂t2
+

∂ugr (t, x, µ)
∂t

+ ugr (t, x, µ)

+ 1 − x2 − t −
C
0+Dβ

x u
gr
0 (t, x, µ)

)
.

And then it follows that the approximate solution of the problem
(21) can be obtained from the limit of a power series expansion
of p as p → 1, that is

ugr (t, x, µ) = lim
p→1

ugr (t, x, µ; p) =

∞∑
k=0

pkugr
k (t, x, µ),

where ugr
k (t, x, µ) (i = 0, 1, 2, . . .) are functions that need to be

determined. Here, by applying homotopy perturbation method,

one may have

ugr
0 (t, x, µ) = cgr (µ1)t

ugr
1 (t, x, µ) =

(
cgr (µ1) + 1

) xβ

Γ (β + 1)
+
(
cgr (µ1) − 1

) txβ

Γ (β + 1)

−
2xβ+2

Γ (β + 3)
,

ugr
2 (t, x, µ) =

2x2β

Γ (2β + 1)
+
(
cgr (µ1) − 1

) tx2β

Γ (2β + 1)

−
2x2β+2

Γ (2β + 3)
,

ugr
3 (t, x, µ) =

(
cgr (µ1) + 1

) x3β

Γ (3β + 1)

+
(
cgr (µ1) − 1

) tx3β

Γ (3β + 1)
−

2x3β+2

Γ (3β + 3)
,

. . . . . . . . .

Continuing this procedure, the general form of the approximate
solution ugr (t, x, µ) is

ugr (t, x, µ) = cgr (µ1)
[
t +

xβ

Γ (β + 1)
+

txβ

Γ (β + 1)

+
tx2β

Γ (2β + 1)
+

x3β

Γ (3β + 1)
+

tx3β

Γ (3β + 1)
+ · · ·

]
+

[
xβ

Γ (β + 1)
−

txβ

Γ (β + 1)
−

2xβ+2

Γ (β + 3)

+
2x2β

Γ (2β + 1)
−

tx2β

Γ (2β + 1)
−

2x2β+2

Γ (2β + 3)

+
x3β

Γ (3β + 1)
−

tx3β

Γ (3β + 1)
−

2x3β+2

Γ (3β + 3)
+ · · ·

]
,

for each µ, µ1 ∈ [0, 1]. Therefore, we obtain the formula of the
approximate solution of the Cauchy problem (19)–(20) as follows.

u(t, x) = c
[
t +

xβ

Γ (β + 1)
+

txβ

Γ (β + 1)
+

tx2β

Γ (2β + 1)

+
x3β

Γ (3β + 1)
+

tx3β

Γ (3β + 1)
+ · · ·

]
+

[
xβ

Γ (β + 1)
−

txβ

Γ (β + 1)
−

2xβ+2

Γ (β + 3)

+
2x2β

Γ (2β + 1)
−

tx2β

Γ (2β + 1)
−

2x2β+2

Γ (2β + 3)

+
x3β

Γ (3β + 1)
−

tx3β

Γ (3β + 1)
−

2x3β+2

Γ (3β + 3)
+ · · ·

]
.

Finally, by using Matlab program, the graphical representa-
tions of the approximate solution u(t, x) with different values of
parameters β are shown in Figs. 11–13.

The above figures illustrated for the fact that for β = 1.5
or β = 1.95, the space-fractional telegraph equation (19) is of
hyperbolic type while in the case β = 0.5, it is of parabolic type.

6. Neutrosophic fractional linear quadratic regulator problem

6.1. Linear quadratic regulator problem for a LTI fractional differen-
tial system

Consider a linear time-invariant (LTI) neutrosophic fractional
differential system{gr

t+0
Dβx(t) = Ax(t) + Bu(t)

x(t0) = x0,
(22)
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Fig. 11. The approximate solution u(t, x) on the domain [0, 2] × [0, 2] with β = 0.5.

Fig. 12. The approximate solution u(t, x) on the domain [0, 2] × [0, 2] with β = 1.5.

Fig. 13. The approximate solution u(t, x) on the domain [0, 2] × [0, 2] with β = 1.95.

where the state vector x : [t0, tf ] → En is a granular Caputo frac-
tional differentiable function; A and B are neutrosophic matrices
with appropriate dimensions, u : [t0, tf ] → Em is the control
input vector and x0 ∈ En is the neutrosophic initial condition.

The aim of neutrosophic fractional linear quadratic regulator
(NFLQR) problem is to find a control input u(t) that steers the
state x(t) of the system (22) from an initial state x(t0) = x0 to the
origin at the time t = tf and minimizes following performance
index

J(x, u) =
1
2
[x(tf )]TPx(tf ) +

1
2

∫ tf

t0

{
[x(t)]TQx(t) + [u(t)]TRu(t)

}
dt,

(23)

where P , Q ∈ Matn×n(R) are positive semi-definite symmetric
matrices and R ∈ Matm×m(R) is a positive definite symmetric
matrix.

Definition 6.1.

(i) A pair (x, u) is said to be an admissible pair if it satisfies the
linear time-invariant neutrosophic fractional system (22).

(ii) A pair (x, u) is said to be an optimal pair if it is an admissible
pair and minimizes the performance index (23).

The following theorem presents a standard to determine the
optimal pair (x, u).
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Theorem 6.1. A pair (x, u) is an optimal pair if the following
conditions are fulfilled.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

gr
t−f
Dβλ(t) = Qx(t) + ATλ(t)

gr
t+0
Dβx(t) = Ax(t) + Bu(t)

u(t) = −R−1BTλ(t)

Px(tf ) = 0

λ(tf ) = 0

x(t0) = x0.

(24)

Proof. Assume that (x, u) is an optimal pair of the NFLQR prob-
lem. For this proof, let us define a function λ : [t0, tf ] ⊂ R → En

as the neutrosophic Lagrange multipliers vector corresponding to

the problem. Next, we denote by ω(x(tf )) =
1
2
[x(tf )]TPx(tf ) and

Φ[x, u](t) =
1
2

∫ tf
t0

[x(τ )]TQx(τ ) + [u(τ )]TRu(τ )dτ .
By the use of Newton–Leibniz’s formula (Theorem 2.1), we

have ω(x(tf )) = ω(x(t0))+
∫ tf
t0

ω′
gr (x(τ ))dτ . Then, the performance

index J(x, u) becomes

J(x, u) = ω(x(t0)) +

∫ tf

t0

[
Φ[x, u](τ ) + ω′

gr (x(τ ))
]
dτ . (25)

Due to the fact that ω(x(t0)) is known as a neutrosophic number
that will not affect to the minimization, it follows that the min-
imization (25) depends on only the second term of right-hand
side. Then, as a consequence of Theorem 2.3, the performance
index (25) can be deformed as follows

J (x, u) =

∫ tf

t0

Φ[x, u](τ ) +

[
∂grω(x(τ ))

∂x(τ )

]T
x′

gr (τ )

+ λT(τ )
[
Ax(τ ) + Bu(τ ) ⊖

gr gr
t+0
Dβx(t)

]
dτ

=

∫ tf

t0

Q
(
x(τ ), u(τ ), x′

gr (τ ), λ(τ ),
gr
t+0
Dβx(τ )

)
dτ .

Here, for simplicity in representation, denote Q[x, u](t) := Q(
x(t), u(t), x′

gr (t), λ(t),
gr
t+0
Dβx(t)

)
and Qgr

[x, u](t, µ0) by the re-
spective granular representation of Q[x, u](t) with µ0 ∈ [0, 1].

Next, for any ε > 0, let us consider the following formation⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

x(t) = x(t) + εx(t)
u(t) = u(t) + εu(t)
x′
gr (t) = x′

gr (t) + εx′
gr (t)

λ(t) = λ(t) + ελ(t)
gr
t+0
Dβx(t) =

gr
t+0
Dβx(t) + ε

gr
t+0
Dβx(t).

Based on this formation, we can see that if the pair (x, u) is
optimal, i.e., it minimizes the functional (23) then the increment
of J (x, u) must be always non-negative, that is

∆J = J (x, u) ⊖
gr J (x, u) ≥ 0, (26)

or equivalent to

∆J =

∫ tf

t0

{
Q[x + εx, u + εu](t) ⊖

gr Q[x, u](t)
}
dτ ≥ 0,

where Q[x + εx, u + εu](t) is known as

Q
(
x(t) + εx(t), u(t) + εu(t), x′

gr (t) + εx′

gr (t), λ(t) + ελ(t),

gr
t+0
Dβx(t) + ε

gr
t+0
Dβx(t)

)
.

Then, by using the horizontal membership function approach, the
inequality (26) becomes

L (∆J ) ≥ 0 ⇐⇒ L (J (x, u)) − L (J (x, u)) ≥ 0,

in which

L (J (x, u)) =

∫ tf

t0

Qgr (xgr (τ , µ1), u
gr (τ , µ2), (x

′

gr )
gr (τ , µ1),

λ
gr
(τ , µ3),

C
t+0
Dβxgr (τ , µ1); µ0

)
dτ

L (J (x, u)) =

∫ tf

t0

Qgr (xgr (τ , µ1) + εxgr (τ , µ1), ugr (τ , µ2)

+ εugr (τ , µ2), (x′

gr )
gr (τ , µ1) + ε(x′

gr )
gr (τ , µ1),

λ
gr
(τ , µ3) + ελgr (τ , µ3), C

t+0
Dβxgr (τ , µ1)

+ε C
t+0
Dβxgr (τ , µ1); µ0

)
dτ ,

where (x′

gr )
gr (τ , µ1) =

∂xgr (t, µ1)
∂t

, (x′
gr )

gr (τ , µ1) =
∂xgr (t, µ1)

∂t
and µi, µi ∈ [0, 1] (i = 0, 3).

For the minimization of L (∆J ), note that the first order
changes of L (∆J ) with respect to the variables xgr (τ , µ1), u

gr

(τ , µ2), λ
gr
(τ , µ3), C

t+0
Dβxgr (τ , µ1) and x(tf , µ1) need to be zero.

Then, by applying Theorem 2.2, we obtain∫ tf

t0

{(
∂Qgr

[x, u](τ , µ0)
∂xgr (τ , µ1)

)T

εxgr (τ , µ1)

+

(
∂Qgr

[x, u](τ , µ0)
∂ugr (τ , µ2)

)T

εugr (τ , µ2)

+

(
∂Qgr

[x, u](τ , µ0)

∂λ
gr
(τ , µ3)

)T

ελgr (τ , µ3)

+

⎛⎝∂Qgr
[x, u](τ , µ0)

∂ C
t+0
Dβxgr (τ , µ1)

⎞⎠T

ε C
t+0
Dβxgr (τ , µ1)

+

(
∂Qgr

[x, u](τ , µ0)
∂(x′

gr )gr (τ , µ1)

)T

ε(x′

gr )
gr (τ , µ1)

⎫⎬⎭ dτ = 0.

Next, by integrating by parts, we immediately get that∫ tf

t0

{[(
∂Qgr

[x, u](τ , µ0)
∂xgr (τ , µ1)

)T

−
d
dτ

(
∂Qgr

[x, u](τ , µ0)
∂(x′

gr )gr (τ , µ1)

)T
⎤⎦ εxgr (τ , µ1)

+

(
∂Qgr

[x, u](τ , µ0)
∂ugr (τ , µ2)

)T

εugr (τ , µ2)

+

⎛⎝∂Qgr
[x, u](τ , µ0)

∂ C
t+0
Dβxgr (τ , µ1)

⎞⎠T

ε C
t+0
Dβxgr (τ , µ1)

+

(
∂Qgr

[x, u](τ , µ0)

∂λ
gr
(τ , µ3)

)T

ελgr (τ , µ3)

⎫⎬⎭ dτ

+

(
∂Qgr

[x, u](τ , µ0)
∂(x′

gr )gr (τ , µ1)

)T

εxgr (τ , µ1)
⏐⏐⏐
τ=tf

= 0,
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where by the setting of Q[x, u](t), the terms of above equality can
be rewritten as follows

∂Qgr
[x, u](τ , µ0)

∂xgr (τ , µ1)
=

∂Φgr
[x, u](τ , µΦ )

∂xgr (τ , µ1)
+ AT λ

gr
(τ , µ3)

= Qxgr (τ , µ1) + AT λ
gr
(τ , µ3)

∂Qgr
[x, u](τ , µ0)

∂ugr (τ , µ2)
=

∂Φgr
[x, u](τ , µΦ )

∂ugr (τ , µ2)
+ BT λ

gr
(τ , µ3)

= Rugr (τ , µ2) + BT λ
gr
(τ , µ3)

∂Qgr
[x, u](τ , µ0)

∂λ
gr
(τ , µ3)

= Axgr (τ , µ1) + Bugr (τ , µ2) −
C
t+0
Dβxgr (τ , µ1)

∂Qgr
[x, u](τ , µ0)

∂ C
t+0
Dβxgr (τ , µ1)

= −λ
gr
(τ , µ3)

∂Qgr
[x, u](τ , µ0)

∂(x′

gr )gr (τ , µ1)
= L

(
∂grω(x(τ ))

∂x(τ )

)
= Pxgr (τ , µ1).

Then, we have

LT
(

∂grω(x(τ ))
∂x(τ )

)
εxgr (τ , µ1)

⏐⏐⏐
τ=tf

+

∫ tf

t0

{[(
xgr (τ , µ1)

)T Q +

(
λ
gr
(τ , µ3)

)T
A
]

εxgr (τ , µ1)

+

[(
ugr (τ , µ2)

)T R +

(
λ
gr
(τ , µ3)

)T
B
]

εugr (τ , µ2)

−

(
λ
gr
(τ , µ3)

)T
ε C

t+0
Dβxgr (τ , µ1)

+
(
Axgr (τ , µ1) + Bugr (τ , µ2)

−
gr
t+0
Dβxgr (τ , µ1)

)T
ελgr (τ , µ3)

}
dτ = 0. (27)

Since the fact that xgr (t0, µ1) = xgr0 (µ1) is known for all µ1 ∈

[0, 1], it implies εxgr (t0, µ1) = 0. Thus, as a corollary of Theo-
rem 3.2, the following integral equality holds∫ tf

t0

(
λ
gr
(τ , µ3)

)T
ε C

t+0
Dβxgr (τ , µ1)dτ

=

∫ tf

t0

(
C
t−f
Dβλ

gr
(τ , µ3)

)T

εxgr (τ , µ1)dτ , (28)

provided that λ
gr
(tf , µ3) = 0 for all µ3 ∈ [0, 1]. Next, by

substituting the expression (28) into (27), it follows that the fol-
lowing integral equality holds for all small variations εxgr (τ , µ1),
εugr (τ , µ2), ελgr (τ , µ3) and εxgr (tf , µ1):

LT
(

∂grω(x(τ ))
∂x(τ )

)
εxgr (τ , µ1)

⏐⏐⏐
τ=tf

+

∫ tf

t0

{[(
ugr (τ , µ2)

)T R +

(
λ
gr
(τ , µ3)

)T
B
]

εugr (τ , µ2)

+

[ (
xgr (τ , µ1)

)T Q +

(
λ
gr
(τ , µ3)

)T
A

−

(
C
t−f
Dβλ

gr
(τ , µ3)

)T
]

εxgr (τ , µ1)

+

(
Axgr (τ , µ1) + Bugr (τ , µ2) −

C
t+0
Dβxgr (τ , µ1)

)T
× ελgr (τ , µ3)

}
dτ = 0. (29)

As a consequence, the equality (29) yields⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C
t+0
Dβxgr (τ , µ1) = Axgr (τ , µ1) + Bugr (τ , µ2)

C
t−f
Dβλ

gr
(τ , µ3) = Qxgr (τ , µ1) + AT λ

gr
(τ , µ3)

R ugr (τ , µ2) + BT λ
gr
(τ , µ3) = 0

P xgr (tf , µ1) = 0

λ
gr
(tf , µ3) = 0

xgr (t0, µ1) = xgr0 (µ1),

(30)

for all µ1, µ2, µ3 ∈ [0, 1]. By inverse transformation (1), the sys-
tem (30) is equivalent to (24). Therefore, the proof is
completed. □

6.2. Numerical example

Remark 6.1. From the proof of Theorem 6.1, we implement the
procedure to solve the fractional LQR problem for a neutrosophic
LTI fractional differential system under granular Caputo fractional
differentiability as follows:

Step 1. Convert the neutrosophic fractional LQR problem (22)–
(23) into corresponding granular form;

Step 2. Employ Matlab function ‘‘LQR’’ to solve matrix S from the
associated Riccati equation (32)

Step 3. Find out the granular form of the optimal control input
u(t) from (30);

Step 4. Use the transformation (1) to convert the obtained con-
trol input into changeable range form;

Step 5. Simulate the orientation of the state vector by Matlab
function ‘‘FDE12’’.

To illustrate our obtained result, let us consider following
examples.

Example 6.1. In this example, we consider following Neutro-
sophic Fractional Linear Quadratic Regulator problem

min J (x, u) =
1
2
x22(t) +

1
2

∫
∞

0

[
x21(τ ) + ρu2(τ )

]
dτ

s.t. (31)⎧⎪⎪⎨⎪⎪⎩
gr
0+D

1
2 x(t) =

[
0 1
0 0

]
x(t) +

[
0
1

]
u(t), t > 0,

x(0) =

[
1
1

]
,

where gr
0+D

1
2 x(t) is granular Caputo fractional derivative of order

β =
1
2 of the state vector x(t) =

[
x1(t) x2(t)

]T, u(t) is the
control input and ρ = 9 + I is the neutrosophic number with
the indeterminacy I = [0, 1].

According to Section 6.1, let us define the matrices

A =

[
0 1
0 0

]
, B =

[
0
1

]
, P =

[
0 0
0 1

]
,

Q =

[
1 0
0 0

]
, R = ρ.

Here, the Lagrange multiplier λ(t) can be rewritten in the form
λ(t) = Sx(t), where S is a positive definite symmetric matrix
satisfying following Riccati equation

SA + ATS + Q − SBR−1BTS = 0. (32)
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Fig. 14. The approximate solution of the problem (33) with µ ∈ {0, 0.5, 1.0}.

Indeed, if we denote S =

[
a b
b c

]
then the Riccati equations

becomes[
a b
b c

][
0 1
0 0

]
+

[
0 0
1 0

][
a b
b c

]
+

[
1 0
0 0

]
−

[
a b
b c

][
0
1

]
ρ−1 [0 1

] [a b
b c

]
=

[
0 0
0 0

]
.

Its solution is given by a =
4
√
4ρ, b =

√
ρ, c =

4
√
4ρ3, that means

S =

[
4
√
4ρ

√
ρ

√
ρ 4

√
4ρ3.

]
Therefore, we obtain the corresponding optimal control u(t) of
the problem (31) as follows

u(t) = −ρ−1 [0 1
] [ 4

√
4ρ

√
ρ

√
ρ 4

√
4ρ3

]
x(t) = −

[
1

√
ρ

√
2

4√ρ

]
x(t).

For the optimal control u(t), the LTI fractional differential system
of (31) becomes

[
gr
0+D

1
2 x1(t)

gr
0+D

1
2 x2(t)

]
=

[
−

√
2

4√ρ
1

0 −

√
2

4√ρ

][
x1(t)
x2(t)

]
, t > 0.

(33)

As a consequence of Example 5.1, the approximate solution of
the fractional differential system (22) with the initial condition[
x1(0) x2(0)

]
=
[
1 1

]
is given by⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

x1(t) = E 1
2

(
−

√
2

4√ρ
t
1
2

)
+
∫ t
0 (t − τ )−

1
2 E 1

2 , 12

(
−

√
2

4√ρ
(t − τ )

1
2

)
× E 1

2

(
−

√
2

4√ρ
τ

1
2

)
dτ ,

x2(t) = E 1
2

(
−

√
2

4√ρ
t
1
2

)
.

Its approximate solution can be obtained by using Matlab pro-
grams ‘fde12’ and the plot of approximate solution is shown in
Fig. 14.

Example 6.2. A DC motor model consists of a permanent magnet
and a rotor made of wires, as shown in Fig. 15.

The notations and coefficients are given in Table 3
By applying Kirchhoff’s voltage law to the electrical part and

Newton’s second law to the mechanical part, we obtain the fol-
lowing state equations⎡⎣gr

0+Dβθ (t)
gr
0+Dβω(t)
gr
0+Dβ i(t)

⎤⎦ =

⎡⎢⎣0 1 0

0 −
Dmo
Jmo

K
Jmo

0 −
K
L −

R
L

⎤⎥⎦[θ (t)
ω(t)
i(t)

]
+

⎡⎣0
0
1
L

⎤⎦ v(t).

Fig. 15. The DC motor model.

Table 3
Some notations and coefficients.
R the resistance of rotor 1.1 �

L the inductance of rotor 0.05 H
Ttor the load torque 0
Jmo the inertia of rotor 0.3 kg·m2

Dmo the friction coefficient [0.1, 0.2] N·m/Rad
K the proportional coefficient 0.75
v the input voltage variable
θ the angular displacement of motor variable
ω the angular velocity of motor variable
i the current in motor variable

In addition, the output equation is given by

θ (t) =
[
1 0 0

] [θ (t)
ω(t)
i(t)

]
.

Next, by using the parameters in Table 3, we obtain following
granular LTI fractional differential system⎡⎢⎣

gr
0+Dβθ gr (t, µ1)
gr
0+Dβωgr (t, µ2)
gr
0+Dβ igr (t, µ3)

⎤⎥⎦ =

⎡⎢⎣0 1 0

0 −
2
3 +

µ

3 2.5
0 −15 −22

⎤⎥⎦[θ gr (t, µ1)
ωgr (t, µ2)
igr (t, µ3)

]

+

[ 0
0
20

]
vgr (t, µ4),

for each µ, µ1, µ2, µ3, µ4 ∈ [0, 1].
For simplicity, let us denote

A =

⎡⎢⎣0 1 0

0 −
2
3 +

1
3 I 2.5

0 −15 −22

⎤⎥⎦ , B =

[ 0
0
20

]
,

C =
[
1 0 0

]
, x(t) =

[
θ (t)
ω(t)
i(t)

]
,

where the indeterminacy I = [0, 1].
In a standard FLQR problem, the goal is to move the state

vector to origin. However, in some practical applications, the goal
is to move the output to some constant. For instance, in the DC
motor model, our goal is to move the motor to θe = 10 while
minimizing the performance index

J =

∫
∞

0

{
9
(
θ (τ ) ⊖

gr θe
)2

+ v2(τ )
}
dτ .
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Table 4
The optimal solution of the FLQR problem (34) for µ ∈ [0, 1].

µ The multipliers λ
gr
(t, µ) The control δvgr (t, µ)

0.0 λ0.0 =

⎡⎣6.0406 1.4429 0.15
1.4429 0.4368 0.0471
0.15 0.0471 0.0051

⎤⎦ δx0.0 δv0.0 =
[
3 0.9429 0.1024

]
δx0.0

0.25 λ0.25 =

⎡⎣5.9804 1.4453 0.15
1.4453 0.4462 0.0481
0.15 0.0481 0.0052

⎤⎦ δx0.25 δv0.25 =
[
3 0.9625 0.1065

]
δx0.25

0.5 λ0.5 =

⎡⎣5.9219 1.4478 0.15
1.4478 0.456 0.0491
0.15 0.0491 0.0053

⎤⎦ δx0.5 δv0.5 =
[
3 0.9827 0.1024

]
δx0.5

0.75 λ0.75 =

⎡⎣5.8649 1.4504 0.15
1.4504 0.4661 0.0502
0.15 0.0502 0.0054

⎤⎦ δx0.75 δv0.75 =
[
3 1.0035 0.1087

]
δx0.75

1.0 λ1.0 =

⎡⎣5.8096 1.4531 0.15
1.4531 0.4766 0.0513
0.15 0.0513 0.0055

⎤⎦ δx1.0 δv1.0 =
[
3 1.0251 0.1109

]
δx1.0

To solve this problem, we first need to find the corresponding
desired state and input

lim
t→∞

x(t) = xe, lim
t→∞

v(t) = ve,

that achieve the final state θe. It is well-known that if there is no
state xe and input ve then the goal of limt→∞ θ (t) = θe is not
achievable. Additionally, it is obvious that xe and ve satisfy the
state and output equations, that is{gr

0+Dβxe = Axe + Bve

θe = Cxe
⇔

[
A B
C 0

][
xe
ve

]
=

⎡⎢⎣ 0
0
0
10

⎤⎥⎦ ,

which means that⎡⎢⎣θe
ωe
ie
ve

⎤⎥⎦ =

[
A B
C 0

]−1

⎡⎢⎣ 0
0
0
10

⎤⎥⎦

=

⎡⎢⎢⎣
0 1 0 0

0 −
2
3 +

1
3U 2.5 0

0 −15 −22 20
1 0 0 0

⎤⎥⎥⎦
−1⎡⎢⎣ 0

0
0
10

⎤⎥⎦ .

Now, we will use Matlab software to find the value of[
θ (t) ω(t) i(t) v(t)

]T, which is shown in the following pro-
gram

syms I ;
Abs = [0 ,1 ,0 ,0;0 ,−2/3+ I /3 ,2.5 ,0;0 ,−15 ,−22 ,20;1 ,0 ,

0 ,0 ] ;
Bbs = [0 ,0 ,0 ,10] ;
C = inv (Abs )
X = C∗(Bbs ) ’

Then, we define new variables as δv(t) = v(t) − ve and

δx(t) = x(t) − xe =

[
θ (t) − θe
ω(t) − ωe
i(t) − ie

]
, by using the equality (3)

and Proposition 3.1, we derive the state and output equations for
δx(t), δv(t) and δθ (t) as follows
gr
0+Dβδx(t) =

gr
0+Dβ [x(t) − xe] =

gr
0+Dβx(t)

= A [δx(t) + xe] + B
[
δvgr (t) + ve

]
= [Aδx(t) + Bδv(t)] + [Axe + Bve]
= Aδx(t) + Bδv(t),

δθ (t) = Cx(t) − Cxe = Cδx(t).

Therefore, the given problem is equivalent to following FLQR
problem

min J =

∫
∞

0

{
9 [δθ (τ )]2 + [δv(τ ) + ve]2

}
dτ ,

s.t. (34){gr
0+Dβδx(t) = Aδx(t) + Bδv(t),
δθ (t) = Cδx(t).

Note that after finding the optimal control δv∗(t), we can take
v(t) = δv(t) + ve, which is the desired optimal control of the
original problem.

According to Section 6.1, we have that

Aµ =

⎡⎢⎣0 1 0

0 −
2
3 +

µ

3 2.5
0 −15 −22

⎤⎥⎦ , B =

[ 0
0
20

]
,

Q =

[9 0 0
0 0 0
0 0 0

]
, R = 1,

for each µ ∈ [0, 1]. In addition, for simplicity in representa-
tion, we denote λµ := λ

gr
(t, µ), δvµ := δvgr (t, µ), δθµ :=

δθ
gr
(t, µ), δωµ := δωgr (t, µ), δiµ := δi

gr
(t, µ), δxµ :=[

δθµ δωµ δiµ
]T.

Then, by using Matlab program ‘LQR’ for some values of µ ∈

[0, 1], we can calculate the solution of the LQR problem (34) as
illustrated in Table 4.

Hence, the optimal control of the original problem is given in
Table 5.

Example 6.3. In this example, we consider a simple model of
one-link robot manipulator where the motion of robot’s arm is
controlled by a DC motor via a gear (see Fig. 16). Here, we assume
that

• The motor moment of inertia is negligible compared with
that of the robot’s arm and the arm can be known as a point
mass M attached to the end of a rod of length ℓ;

• The gear train has no backlash and all connecting shafts are
rigid;

• The ratio between radii of motor gear and arm gear is 1 : ρ.
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Table 5
The optimal control v∗(t) of the NFLQR problem for indeterminacy I = [0, 1].
µ The optimal control vgr (t, µ)

0.0 vgr (t, 0.0) =
[
3 0.9429 0.1024

]⎡⎣θ
gr
(t, 0.0)

ωgr (t, 0.0)
i
gr
(t, 0.0)

⎤⎦− 30

0.25 vgr (t, 0.25) =
[
3 0.9625 0.1065

]⎡⎣θ
gr
(t, 0.25)

ωgr (t, 0.25)
i
gr
(t, 0.25)

⎤⎦− 30

0.5 vgr (t, 0.5) =
[
3 0.9827 0.1024

]⎡⎣θ
gr
(t, 0.5)

ωgr (t, 0.5)
i
gr
(t, 0.5)

⎤⎦− 30

0.75 vgr (t, 0.75) =
[
3 1.0035 0.1087

]⎡⎣θ
gr
(t, 0.75)

ωgr (t, 0.75)
i
gr
(t, 0.75)

⎤⎦− 30

1.0 vgr (t, 1.0) =
[
3 1.0251 0.1109

]⎡⎣θ
gr
(t, 1.0)

ωgr (t, 1.0)
i
gr
(t, 1.0)

⎤⎦− 30

Fig. 16. One-link robot manipulator model.

Table 6
Parameters for the robot.
M the mass 1 kg
R the resistance of motor 1 �

ℓ the length of massless rod 1 m
Kb the back emf constant 0.15 V·sec/rad
Kmo the motor-torque constant 0.1 N·m/A
g the gravitational acceleration [9.7, 10] m/s2
ρ the ratio of radii of motor & arm gear 10

By using Lagrange’s equation, we can derive the dynamics of
robot manipulator as follows

Mℓ2
gr
0+D2βθ (t) = Mgℓ sin θ (t)

+ ρKmo

(
u(t)
R

−
ρKb

gr
0+Dβθ (t)
R

)
, (35)

where the reasonable parameters for the robot are given in Ta-
ble 6.

Next, we define new state variables and output variable as
x1(t) = θ (t), x2(t) =

gr
0+Dβθ (t), y(t) = x1(t). With the above

parameters and mechanical equation (35), we can construct the
fractional state–space model of the one-link robot manipulator as
follows[ gr

0+Dβx1(t)
gr
0+Dβx2(t)

]
=

[
x2(t)

g
ℓ
sin x1(t) −

ρ2KbKmo
Mℓ2R

x2(t)

]
+

[
0

ρKmo
Mℓ2R

]
u(t)

=

[
x2(t)

(9.7 + 0.3I) sin x1(t) ⊖
gr 1.5x2(t)

]
+

[
0
1

]
u(t)

(36)

Fig. 17. The plot of (x1, x2) versus time and phrase portrait of the uncontrolled
system.

y(t) =
[
1 0

] [x1(t)
x2(t)

]
subject to the initial condition

x(0) =

[
x1(0)
x2(0)

]
=

[
1
0

]
, (37)

where gr
0+Dβx1(t),

gr
0+Dβx2(t) stand for the right-sided granular

Caputo fractional derivatives of order β = 0.5 and u(t) is the
input control function. Here, due to the influence of environment
factors such as the height, temperature, humidity or air pressure,
etc., and the errors when measuring or calculating, the gravita-
tional acceleration g cannot be exactly measured. Thus, in this
example, we consider the parameter g as a neutrosophic number
g = 9.7 + 0.3I with the indeterminacy I = [0, 1].

In particular case, we consider the open-loop nonlinear frac-
tional differential system, i.e., the control input u ≡ 0. By using
Matlab, we simulate the histories of state trajectories of the open-
loop nonlinear fractional differential system (36) with the initial
condition (37). The results are shown in Fig. 17.

It can be seen that in the case of no controller, the state vector
of the mechanical system is stable. However, the component
x1(t) = θ (t) is convergent to a non-zero state as time increases.
Thus, if we need to steer the state of this system to a desired
state, e.g. null state, in shortest time then there is a need to design
an optimal controller and consider a fractional optimal control
problem for considered mechanical system.

Next, we denote A =

[
0 1

9.7 + 0.3U −1.5

]
, x(t) =

[
x1(t)
x2(t)

]
,

B =

[
0
1

]
. Now, for the goal of investigating the fractional optimal

control problem for nonlinear fractional DEs system (36)–(37),
by using the linearized method, we obtain the corresponding
linearized model of the fractional differential system (36), whose
granular representation can be given as follows

C
0+Dβxgr (t, µ) =

[
0 1

9.7 + 0.3µ −1.5

]
xgr (t, µ) +

[
0
1

]
ugr (t, µ),

ygr (t, µ) =
[
1 0

]
xgr (t, µ),

where xgr (t, µ) =
[
xgr1 (t, µ) xgr2 (t, µ)

]T and µ ∈ [0, 1].
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Table 7
The optimal solution of the FLQR problem (38) for µ ∈ [0, 1].
µ The matrix S The control input ugr (t, µ)

0 S =

[
77.1057 19.4514
19.4514 4.9150

]
ugr (t, 0) =

[
19.4514 4.9150

]
xgr (t, 0)

1
3

S =

[
78.1995 19.6509
19.6509 4.9461

]
ugr (t, 1

3

)
=
[
19.6509 4.9461

]
xgr
(
t, 1

3

)
2
3

S =

[
79.2980 19.8504
19.8504 4.9769

]
ugr (t, 2

3

)
=
[
19.8504 4.9769

]
xgr
(
t, 2

3

)

1 S =

[
80.4013 20.0499
20.0499 5.0077

]
ugr (t, 1) =

[
20.0499 5.0077

]
xgr (t, 1)

Our goal is to find an optimal control input u(t) = −Kx(t),
where the gain K = R−1BTS, such that it minimizes the following
performance index

J (x, u) =

∫
∞

0

[
x21(τ ) + u2(τ )

]
dτ (38)

subject to
gr
0+Dβx(t) = Ax(t) + Bu(t).

Here, we have that

P =

[
0 0
0 0

]
, Q =

[
1 0
0 0

]
, R = 1.

Then, the following associated Riccati equation

SA + ATS + Q − SBR−1BTS = 0

has the positive definite symmetric solution S ∈ Mat2×2(R),
and then, by employing the formula u(t) = −R−1BTSx(t), we
immediately obtain the form of the optimal control input u(t).
In Table 7, by using Matlab program ‘LQR’, we can give the some
results of the matrix S and ugr (t, µ) corresponding to some values
of µ ∈ [0, 1].

Finally, by applying the above optimal controller u(t) to the
nonlinear model, we can show the graphical representations of
the state variables x1(t), x2(t) versus time of the closed-loop
nonlinear system in Fig. 18. Thanks to this optimal controller, the
state of considered mechanical system, in particular the compo-
nent x1(t) = θ (t), is transferred into the null state in a shortest
time.

Moreover, based on the idea of Example 6.2, we also consider
an extended optimal control problem for this mechanical system,
where the state of the system will be transferred into an arbitrary
desired state in a shortest time.

7. Analysis and discussions

In [14], Alinezhad and Allahviranloo presented an extension
of fractional optimal control problem related fuzzy fractional dy-
namic systems. The authors employed generalized Hukahara (gH)
differentiability to set the description of problem in two forms
corresponding with two types of differentiability. This idea can be
extended to fractional optimal control problem in neutrosophic
environment. However, it is well-known that gH-differentiability
depends on gH-difference ⊖gH defined as

a = b ⊖gH c if and only if (1) b = a + c or (2) c = b + (−1)a.

Hence, the approach based on gH-differentiability has some fol-
lowing shortcomings. First, the gH-difference does not always

Fig. 18. The plot of (x1, x2) versus time and phrase portrait of the nonlinear
closed-loop system.

Fig. 19. The switching points of gH-differentiability.

exist for every fuzzy number b and c. So, if we define gH-
differentiability for neutrosophic functions, it requires some com-
plicated existence conditions. Furthermore, under gH-
differentiability the solutions of following equations are not the
same, see [46]
gH
t+0
Dβx(t) = Ax(t) + Bu(t)

gH
t+0
Dβx(t) + (−1)Ax(t) = Bu(t)

gH
t+0
Dβx(t) + (−1)Bu(t) = Ax(t)

gH
t+0
Dβx(t) + (−1)Ax(t) + (−1)Bu(t) = 0.

This shortcoming phenomenon is called ‘‘unnatural behavior in
modeling’’. Additionally, the switching points of gH-
differentiability often makes engineers dividing the problem into
many cases when they want to apply an numerical or an analysis
method to solve problem. The same appeared in [31] where the
author extended gH-differentiability technique to intuitionistic
fuzzy environment (see Fig. 19).

Ye and Cui [6] first introduced neutrosophic number into
single input–single output linear systems. They established the
state feedback design method for achieving a desired closed-
loop state equation. The numerical simulation stated that the
designed state feedback can perform its effectiveness and robust-
ness in neutrosophic environment. We notice that [6] considered
an neutrosophic linear systems related to a neutrosophic dynamic
systems of integer order. Furthermore, no neutrosophic differ-
entiability of functional relationship was considered. This seems
not perfect yet because the neutrosophic-valued input variables
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lead to the neutrosophic-valued output variable. Thus differential
calculus of plant state, closed-loop state equations and output
variables of systems must be taken into account in neutrosophic
environment, that is neutrosophic differential calculus.

In this paper, by representation neutrosophic number with
respect to horizontal membership function of relative distance
measure variable the differentiability of neutrosophic function is
built via granular difference, fractional DEs and fractional PDEs
are considered in new setting. Under new differentiability, the
proposed approach not only overcomes previous limitations but
also owns some following benefits:

1. We can conveniently define derivative and integral of neu-
trosophic function to ARBITRARY ORDER;

2. There does not exist SWITCHING POINT in neutrosophic
derivatives;

3. Avoiding MULTIPLICITY neutrosophic solutions, there is
only one neutrosophic solutions correspondence with one
granular representation;

4. We can apply numerical method or analysis method to
neutrosophic DEs and neutrosophic PDEs in a convenient
way.

8. Conclusions

A new class of linear quadratic regulator problems for a class
of controlled systems modeled by neutrosophic fractional DEs
and granular derivatives has been introduced and the major
contributions can be illustrated and reviewed as follows:

(1) New notions of Riemann–Liouville and Caputo deriva-
tives for neutrosophic-valued functions were defined via rela-
tive distance measure and granular computing. The proposed
techniques avoid multiplicity of solutions caused by switching
points or doubling property when we solve numerical solutions
of neutrosophic DEs and Neutrosophic PDEs.

(2) We proposed using horizontal membership function, that
the neutrosophic equations can be transformed as the combina-
tion of classical equations with parameters. Thus, some numerical
solution algorithm for neutrosophic fractional DEs can be de-
veloped and demonstrated by neutrosophic fractional damped
single degree of freedom spring mass system and neutrosophic
fractional telegraph model.

(3) The optimal control of linear quadratic function driven
by neutrosophic fractional telegraph PDEs have been investi-
gated. Our study is unique until now on neutrosophic DEs with
non-integer order.

It is interesting that, fractional telegraph equations have found
many applications to digital signal processing, image restoration
or describing sound propagation in rigid tubes, etc. Thus our
research may be useful for some further real world applications
in the neutrosophic environments. Besides, some related open
issues need to be further studied:

- To research on calculus of some extensions and modified
form of neutrosophic set such as Plithogenic set-valued func-
tions with applications to real-life uncertain dynamic systems
modeling and simulation, not limit to fundamental research;

- To study the considered problem under some new set-
tings such as neutrosophic optimal problem under generalized
Hukuhara differentiability, neutrosophic linear quadratic regu-
lator problem under Fréchet differentiability. Furthermore, the
comparison on the advantages and disadvantages of different
approaches when engineers apply to solve real-world problems;

- In general, neutrosophic techniques relate to nonparametric
statistics. For the future work, it is interesting if we can integrate
probability models into neutrosophic environment.
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