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Abstract: Linguistic neutrosophic numbers (LNNs) include single-value neutrosophic numbers and
linguistic variable numbers, which have been proposed by Fang and Ye. In this paper, we define
the linguistic neutrosophic number Einstein sum, linguistic neutrosophic number Einstein product,
and linguistic neutrosophic number Einstein exponentiation operations based on the Einstein
operation. Then, we analyze some of the relationships between these operations. For LNN
aggregation problems, we put forward two kinds of LNN aggregation operators, one is the LNN
Einstein weighted average operator and the other is the LNN Einstein geometry (LNNEWG)
operator. Then we present a method for solving decision-making problems based on LNNEWA and
LNNEWG operators in the linguistic neutrosophic environment. Finally, we apply an example to
verify the feasibility of these two methods.

Keywords: multiple attribute group decision making (MAGDM); Linguistic neutrosophic; LNN
Einstein weighted-average operator; LNN Einstein weighted-geometry (LNNEWG) operator

1. Introduction

Smarandache [1] proposed the neutrosophic set (NS) in 1998. Compared with the intuitionistic
fuzzy sets (IFSs), the NS increases the uncertainty measurement, from which decision makers can use
the truth, uncertainty and falsity degrees to describe evaluation, respectively. In the NS, the degree
of uncertainty is quantified, and these three degrees are completely independent of each other, so,
the NS is a generalization set with more capacity to express and deal with the fuzzy data. At present,
the study of NS theory has been a part of research that mainly includes the research of the basic theory
of NS, the fuzzy decision of NS, and the extension of NS, etc. [2-14]. Recently, Fang and Ye [15]
presented the linguistic neutrosophic number (LNN). Soon afterwards, many research topics about
LNN were proposed [16-18].

Information aggregation operators have become an important research topic and obtained a
wide range of research results. Yager [19] put forward the ordered weighted average (OWA) operator
considering the data sorting position. Xu [20] presented the arithmetic aggregation (AA) of IFS. Xu
and Yager [21] presented the geometry aggregation (GA) operator of IFS. Zhao [22] proposed
generalized aggregation operators based on IFS and proved that AA and GA were special cases of
generalized aggregation operator. The operators mentioned above are established based on the
algebraic sum and the algebraic product of number sets. They are respectively referred to as a special
case of Archimedes t-conorm and t-norm to establish union or intersection operation of the number
set. The union and intersection of Einstein operation is a kind of Archimedes t-conorm and t-norm
with good smooth characteristics [23]. Wang and Liu [24] built some IF Einstein aggregation
operators and proved that the Einstein aggregation operator has better smoothness than the
arithmetic aggregation operator. Zhao and Wei [25] put forward the IF Einstein hybrid-average

Mathematics 2019, 7, 389; d0i:10.3390/math7050389 www.mdpi.com/journal/mathematics



Mathematics 2019, 7, 389 20f 11

(IFEHA) operator and IF Einstein hybrid-geometry (IFEHG) operator. Further, Guo etc. [26] applied
the Einstein operation to a hesitate fuzzy set. Lihua Yang etc. [27] put forward novel power
aggregation operators based on Einstein operations for interval neutrosophic linguistic sets. However,
neutrosophic linguistic sets are different from linguistic neutrosophic sets. The former still use two
values to describe the evaluation value, while the latter can use a pure language value to describe the
evaluation value. As far as we know, this is the first work on Einstein aggregation operators for LNN.
It must be noticed that the aggregation operators in References [15-18] are almost based on the most
commonly used algebraic product and algebraic sum of LNNs for carrying the combination process,
which is not the only operation law that can be chosen to model the intersection and union on LNNS.
Thus, we establish the operation rules of LNN based on Einstein operation and put forward the LNN
Einstein weighted-average (LNNEWA) operator and LNN Einstein weighted-geometry (LNNEWG)
operator. These operators are finally utilized to solve some relevant problems.

The other organizations: in Section 2, concepts of LNN and Einstein are described, operational
laws of LNNs based on Einstein operation are defined, and their performance is analyzed. In Section
3, LNNEWA and LNNEWG operators are proposed. In Section 4, multiple attribute group decision
making (MAGDM) methods are built based on LNNEWA and LNNEWG operators. In Section 5, an
instance is given. In Section 6, conclusions and future research are given.

2. Basic theories
2.1. LNN and Its Operational laws

Definition 1. [15] Set a finite language set ¥ = {i.|t € [0, k]|}, where . is a linguistic variable, k +1 is the
cardinality of ¥ . Then, we define uw = (Y, Py, ¥s), in which Yg,,,Ps €V and B,y,6 € [0, kI,
Y, Ys and 1, expresse truth, falsity and indeterminacy degree, respectively, we call w an LNN.

Definition 2. [15] Set three LNNs u = (Y, ¥y, Ps), w1 = (Pp,, ¥y, ¥s,) and  uy = (g, Py, Ps,)
in ¥ and A = 0, then, the operational rules are as following:

D u; = (P, Uy, Us,) © (g, Uy, Us,) = (lIJBlJrBZ_%, lllvgz.lll%); (1)

U ® uy = (g, Uy, Us,) ® (Pg,, Uy, Us, ) = (dJBlsz,¢Y1+y2_vgz,¢81+82_%); )
A= Ay, Py Ws,) = Wy Yrgohr V) 3)

ut = Wp W, 5,0 = <‘/’k(§y1' Vit lpk_k(l_%)a)- @)

Definition 3. [15] Set an LNN u = (g, P, Ps) in ¥, we define {(u) as the expectation and n(u) as the
accuracy:

{(w= (2k+B -y -8)/3k ®)

nw)=( -8)/k (6)

Definition 4. [15]: Set two LNNs u; = (g, ¥y, Ys,) and uy = (Pg,, Py, ¥s,) in'¥, then
If {(uy) > {(uy), then uy > uy;

If¢(uy) = ¢(uz) then

If n(uy) > n(uy), thenuy > uy;

If n(uy) = n(uy), thenuy ~ u,.

2.2. Einstein Operation
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Definition 5. [28,29] For any two real Numbers a, b€ [0,1], Einstein @, is an Archimedes t-conorms,

Einstein @, is an Archimedes t-norms, then

a+b ab

a®.b= a®3b=1+(1—a)(1—b)' @)

1+ab’

2.3. Einstein Operation Under the Linguistic Neutrosophic Number

Definition 6. Set u = (Yp, ), Ps), U1 = (Pp,, Py, Ys,) and  u, = (Pg,,Py,, Ps,) as three LNNs in
WY, >0, the operation of Einstein @, and Einstein @, under the linguistic neutrosophic number are
defined as follows:

Uy ®eu2=(¢k2(61+62), Y ky1ve Y k8182 )

8

WZ1pi B, RCr-yD(eys)  KZ=81)(k=-57) ®)

U ®eUs=(Y__ kB1B2  Yi2iyiayy)y Vitsitsn) )
k2+(k—B1)(k—B2) kZ+y1y2 k2+81682

’1”=<‘/’k wept-tep ¥ wh W 7

K (10)
(e+ By +(k—p)A @k-y)A+y1 (2k-8)A+5%
A _
u _w’k TR (k57— (e-5)1)- (11)
(2k-p)t+ph (et A+ (k-2 (e+8)A+(k-8)A

Theorem 1. Set u = (Yp, ), Vs), Uy = (Wp,, Yy, Ys,) and  u, =Yg, Py, ,Ps,) as three LNNs
in ¥, A= 0, then, the operation of Einstein @, and Einstein ®, have the following performance:

U DUy = U, Douy; (12)
U@ Uy = U Qelly; (13)
A(uy Beu,) = Auy BeAuy; (14)
(W ®euz)* = w1 @ ur*; (15)

Proof. Performance (1) and (2) are easy to be obtained, so we omit it; Now we prove the
performance (3):

According to Definition 6, we can get

O w; @uz= Wiz p,0 ¥ ky1vo P k815, );
kK2+B1By P H(k—y1)(k-y2)  kZ+(k—=81)(k—52)

@ A B, ur)

=t PRGN kz(ﬁmsz))"w ( A2 )* ¥ (1 - )
TN T TN 7k K+ ly)lery) ; * ks 5k Hkiﬁ‘l)((ki%) [0 )z
kz(ﬁ1+ﬁ2) kz(ﬁ1+ﬁ2) ky,v, ’ < ky.v, > (2k—— 12 ) + 7 12
k+ k 2k k“+(k—=61)(k—=682) k*+(k—81)(k—87).
rory e ey B By i L Vo g Ve Ve
=<‘l’k (kw1)l(k+ﬂz)L(k—m’l(k—ﬁz)%‘l’ 2(ray2)* P 2(8,6)% )
Ge+BDAKk+B)A+ (k=B 1)Ak-B)A (@k-yDACk-y2)A)+F1r)* (@k-81)A@k-52)4)+(6152)%
® A, = W sppiepor ¥, i ST %
G+pt+e-pr 7 kvt T gposArs,
@ Aup = (wk (k+ﬁz)’1—(k—ﬁz)}"¢k 2y,? ’wk 28, )z
U+ (=Bt 7 @k-y2)h4r2t g s,)A48,7
® 2, D, Au,

=W kz(k (et ' =Cemfy )P Gk ) (e ﬂ) B k( 2y, )(k 2y ) w k( 28, )( 25,2 ) )
(k+BDA+(k=BD* (k+B) +(k=B3)* @k=y) 4714\ 2k=y) +1,7 k=62 +8,2)\ (2k=8,)*+8,~
Uet A= (k=B UetBo) —(k=B2)* _ 2y, _ 2y,* 2
k2+<(k (kwi)h(k_ﬁi)a)(k (k+52)a+(k'ﬁ2)a)> k2+(k (k (Zk_h;l*'hl))(k (k (Zk—yz)“h’l)) K2+ k’(k (Zk—f§6)11+5 A)
1 1

3 28,% )
k (k (2k—=8,)*+8,
AW s aessnt-te-ppi-pph ¥ 2(ray2)* s 2(r18)* )

k 7 7 v v 7 7 ik 7 7 7
(k+BDA e+ B2) A+ (k=B A (k-B2) (@h-yDA@I-y2)A)+(r1v2) (k=612 2k=52)2)+(5152)

So, we can get A(u;@Pu,) = Auy B Au,.
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Now, we prove the performance (4):

A _ .
® u” = (‘l)k 25,2 P (kty )= (k= l'bk (k+61)’1—(k—§1))‘>f
(2k=-p A +p, A (k+y )+ (k—y DA (eto) A+ (k—o1)2

A .
@ U™ = (1/)k 26, ﬂl)k (R A wk (k+62)7‘—(k—62)7‘>'
@k=p) P45, ()P +(ke=r ) U+ 82)M+(k=52)*

k4 k(k 28, )(k 28, ) :
(k=) +8,* )\ (2k—B)*+8,"

A A
k2+ k—<k 2B > k—<k 26, >
< (@k=Bo Y +p," (k=2 +B,"

Y ,
e 2 ( (k) = (= m‘>+<k 28, )
B ur®.ux* = (k) +(e—y1)2 2k—B) By )
20 (v GV (k=) < 26," )
g +(k (k+y1)’1+(k—n)’1) § (2k—B2) +B,"

lpkz er et 8D = (=8N | () (et 6) (=)
(k+8) M+ (k-8)* (k+85)A+(k=6,)4

(k+8)*—(k=6)* (k+8,)*—(k=8,)*
k2+<k (k+61)’1+(k—61)’1)( (k+52)/1+(k—52)/1)

= 2(B182)* W ey ey -Gy eyt ¥, Gersp Aersp i kmspAk-s)A)
(@k-BD)(2k=p2)A)+(B1B2)* Uty DAy 2)A 4+ (e=y 1) Ay 2)4 U+ 85)A(k+82)A 4+ (ke=61) A (e—82)%

@ u1®eu2=<lp kB1B2 ’ lpkz(y1+y2)' l1bk2(81+62));

k2 +(k—B1) (k- B2) k2+y1v2 k2+81687

A
® W ®ux)*=(y gV W aran Rer e ¥ e, k2(51+52))1>
<k2+(k—5 Yk-F ))  KZ+y1ys ” k2+y1y2 k24818,
k 1 2 2 2 2
7 I k (v1+v2) VA (ke K (V1+Vz))l 1 WS (51+52))7L K k (51+52)),’1
2k kB1B2 At ( kp1B2 ) Tk 4yave " K2+5152 +6162
K2+(k=B1)(k=B2)  \KZ+(k—B1)(k-B2)
= 2(81 8% T e <k+61>1(k+sz>’1—(k—slﬂ(k—szﬂ)/'
(@k-pAGK-B2)A)+(B162)* o Gery Ky ) T (koy Ay 28 e+ 8D)A e+ 52)2+ (k=5 )A(k-52)2
1 2 1P2 V1 V2 Y1 Y2 1 2 1 2

So, we can get (u; ®,u,)*=u;*® u,*.00
3. Einstein Aggregation Operators

3.1. LNNEWA Operator

Definition 7. Set a LNN u; = (wﬁi,lpyi,lpgi) in', for i=1,2, ..., z, we define the LNNEWA operator:

Z
LNNEWA(uq,uy, ... u,) = @, €;u;, (16)
i=1

with the relative weight vector € = (€, €5, ..., €,)" , Xi—1 €, =1 and ¢€; € [0,1].

Theorem 2. Set a collection u; = (wﬁi,wyi,wgi) in ¥, for i=1,2,...,z, then according to the LNNEWA

aggregation operator, we can get the following result:

z
LNNEWA(uq, uy, ... u,) = P, €u;
i=1
17)
- (l/) H 1(k+ﬁ) ‘ -TIE (k /3) hl/) 2T, v 5 '1/),( 2[T, 6,58 ')‘
HZ 1(k+/3) l+HZ 1(k ﬂ) ¢ Hle(Zk—yi)€i+Hf:1yi5i [T, @k=50) H'Hz:l &6t

with the relative weight vector € = (€y, €5, ..., €,)" , Ni—1€; = 1 and €; € [0,1].
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Proof.

@ €iui=(¢k (et Si—(k—p) 00 W 2 W e )

(k+8)Ci+(k—p) €L (2k—y)CitySi (2k-5)€i+5, i

2
@ z=2 ,LNNEWA(u;,uy) = @, €u;
i=1

= kz(, (et B =(k=B1)1 (et )52—(R—Bz>52) Y k(, 2y, €1 )( 2y,€2 ) W k(, 26,61 )( 26,2 ) )

(k4B +(k=B1)L" "~ (k+B2)2+(k—p2)2 (2k=y1)1+y1€1)\" (2k—y2)“2+y,€2 (2k=81)€1+8,1)\" (2k—62)€2+5,°2

0t B (= p1)F1\ (o (It ) 2—(k=B3)¢2 G 21,2 c .
"2"(( Gespoyerric e (sz)fu(k—tfz)fz)) "Z"("‘( (zk—n)lfunfl))("'( (zk—n)zfuvfz)> k“(k*(k 2 )) k*(k 20, 2 ))

(2k—-81)€1+6,€1 (2k—52)€2+5,°2

(l»b (k+B1) 1 (et B2) 2~ (=)L (k= Bz)ez’lpk 2y, 1y, 2 ’l/)k 26116,°2 )
K et B (et 6202 )L (e )%2 2k=yD)1(@k-y2) 2+y1 1y, 2 (2k—61)1 (2k-61)2+61 16,2

=(‘/’k n%=1(k+ai)fi—n%=1(k—ai)€i"/’k oty oW a0 )i
T (o B) T2 (k)T Ty oy THTTE v M, k=6 L+ T 6,1

Suppose z=m, according t formula (17), we can get

m
LNNEWA(uq, Uy, ... Uy) = D, €1,
i=1

. 18
- (w Hz () ST (- ﬁ)si'lpk 2012 7,6 W 2[112 661 2 (18)

m €. rm €] m €. €
Iy (i) ST (k) [T @h—yp “E+TTR 1 v 121@k=6) L+ 678

Then z=m + 1, the following can be found:
m
LNNEWA(ull Uy, e Uy um+1) = (@e Eiui) ®e Em+1Um+1
i=1

l/) m €i_m
H 1(k+Bl)ez Mliz, (k= B)ez’ 1»0 (R+Bm+1)m+1=(k—Bm+1)m+1)
24 (ke By) T2 4 (k—By) (et B 1)+ L+ (k=Bom4 1)+

~ i V@ Vgt )

I, k—y i+, ¥ (2k=ym4+1) M+ +ym4q mtl

' 21, 8 ¥ 28m 41+ —
Z € +
T, @0+ T, 577 (Gl Bme )T O

kzl(k+ﬁi)€i+l'[{-(:1(k—ﬁi)€i (k+Bma )1+ (k=Bme1)em+1

2+l k e+ By) T (k=By)"! (k (k+Bm+1)em+1—(k—Bm+1)€”‘+1)
M (k4 By) THIT (k=) )N (Rt B ) L+ (k=B 1) MH1

lpk2<(k Hgl(kﬁgi)q—ngl(k_m)q>+(k (k+b’m+1)e’"+1—(k—3m+1)€m+1)>,

%

ZHL 1 Vi
k- yl)fl+Hl 1Yi

(

k| k

k 2ym+1°mt1 ) ’
@k=Ym+1) M 1+ympqmtl

K 2Ym41“mt1 )
(Zk Ym+1) M +ymy1 S+l

)

k
M2, (2k— yl)fl +l'Im RZs

o
)
|
)

el k x 25m+1 fm+1 )
IMi= 1(zk 6 )Ez+nm 8\ 2k=8m+1)m+1+8m 411
k2+<k—<k 212, 57 )( 2841+ ))
m . (2k=5; )ft+n’" 8; (2k=8m 1) M+ 148 41T+
—<l,b Hm+1(k+l? )fz Hm+1(k Bi )fz, wk H:n i ) lp l—[m+15 € )
m+1(k+[? ) m+1(k B ) Hm+1(2k i )el+nm+1 Hm+1(2k S5: )el+l-[m+15 3]

So, Equation (17) is satisfied for any z according to the above results.
This proves Theorem 1. (I

Theorem 3. (Idempotency). Set an LNN w = (3,9, 95) in ¥, forevery u; in u isequal to u, we can

get:

LNNEWA(uy,uy, ...u;) = LNNEWA(w,u...u) = u
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Proof For u; = u,then B; =f; v; =v; 6; = 6=(i=1, 2, ...,z), the following result can be found:
z
LNNEWA(uq,uy,...u,) = LNNEWA (w,u...u) = (@e eiu)
i=1

=W 7 wepionr,w-po ¥ 212 yFi ﬂl’k a6 )
TZ; (et B) SLHTTE (= B) i 7, k- i+, v©L M7, (2k-8)“i+IT7_ 65

=W, trp-te-p, W, v Y, 25 )
(k+B)+(k—p) k- +y (2k-8)+8

=(¢B! l/)]/! lpé‘ )=u

Theorem 4. (Monotonicity) set two collections of LNNs w; = (Y, ¥y, ¥s,) and w;' = (wﬁiulpyi/.tpa/) (i=1,
2,..,2)in'¥, if u; < ;' then

LNNEWA(uq,uy, ...u;) < LNNEWA(u", u,’, ...u;").

Proof. For u; < u;’, then €u; < €;u;’

So, we can easily obtain:
z z

D, €u; <D, uy’
; i=1 i=1 ;
For LNNEWA(uy,uy, ...u,) = @, €;u; and LNNEWA(u,',u,’, ... u,") =@, €;u;’, then we can get:
i=1 i=1
LNNEWA(uy, Uy, ... u,) < LNNEWAu,', u,', ...u,"). O
Theorem 5. (Boundedness) Let a collection —w; =Yg, Py, ¥s) in ¥ u” =

(min(lpﬁ_), max(t,l)y_), max(l,l)ai)) and u* = (max(l,l)ﬂ_), min(l,l)y_), min(l,l)ai)), we can get:

u” < LNNEWA(u4,uy, ..u,) < u.

Proof. The following can be obtained by using Theorem 3:

u” = LNNEWA(u~,u™ ..u”) , ut = LNNEWA(u*,ut*..ut*).
The following can be obtained by using Theorem 4:
LNNEWA (u™,u™ ...u”) < LNNEWA(uq, u,, ...u,) < LNNEWA(u*,u* ...ut).
Above all, we can get:
u” < LNNEWA(uy,uy,...u,) <u*. 0O

3.2. LNNEWG Operators

Definition 8. Set a collection u; = W’Bi' Yy 11;51.) in¥, fori=l, 2, ..., z, we define the LNNEWG operator:

z
LNNEWG (uy, Uy, .. u;) = ®, (u;)5, (19)
i=1

with the relative weight vector € = (€y, €5, ...,€,)" , 2i—1 €, = 1 ande; € [0,1].

Theorem 6. Set a collection w; = (Yg, Yy, ¥s) in ¥, for i=1,2,...,z, then according to the LNNEWG
aggregation operator, we can get the following result:

z
LNNEWG (uy, uy, ) = ®, (u)
i=1
= Wk 21T, B 'lpk Hf=1(k+n)5i—H?=1(k—yi)5i'wk T2z, (o8- T2, (k=5 ) (20)
M7y @k, BT T Gty )T+, Gy T, Uet 0) T+, (k=8

with the relative weight vector € = (€y, €5, ..., €,)" , Xi—1 € = 1 ande; € [0,1].

Theorem 7. (Idempotency) Set a collection u; = Wp, Wy ¥s,) in¥, for i=1,2,...,z, for every u; in u is equal
to u, we can get
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LNNEWG (uq,uy, ...u;) = LNNEWG (u,u ...u) = u.

Theorem 8. (Monotonicity). Set two collections of LNNs u; = (g, ¥y, s,) and u;' = (1/)Bir,1/)yir,1/)6ir)
(i=1,2,...,2)in ¥, if u; < u; then

LNNEWG (uy, Uy, .. u;) < LNNEWG(uq ,uy, ... uy).

Theorem 9. (Boundedness) Let a collection w; =Yg, Py, ¥s) in ¥ u” =
(min(l/)ﬁ}),max(ll)y}), max(t/)si)) and ut = (max(l/)ﬂl), min(l/)y‘), min(l/)(si)), we can get:

u” < LNNEWG(uq,uy, ..u,) < ut

We omit the proof here because it is similar to Theorems 2-5.

4. Methods with LNNEWA or LNNEWG Operator

We introduce two MAGDM methods with the LNNEWA or LNNEWG operator in LNN
information.

Now, we suppose that a collection of alternatives is expressed 0 = {0,,0,,...,0,} and a
collection of attributes is expressed E = {Ey, Es, ..., E,}. Then, €= (€1, €, ...,€,)T with YL =1
and €; € [0,1] is the weight vector of E;(i =1,2,..,n) . Establishing a set of experts D =
{D:,D,,...,D:}, u= (/11_112' ...,/,tt)T with 1> p; >0 and Z§=1 uj =1 is the weight vector of D;(i =
1,2, ...,t). Assuming that the expert D,(y = 1,2,...,t) uses the LNNs to give out the assessed value

Gi(].y ) for alternative 0; with the attribute E;, the value Gi(jy ) can be written as Gi(jy ) =<
IIJ%U,IIJ]XU,LD%}U >@y=12,..,t;i=12,...m;j=12,..,n), Lb%ij,llJlj,/ij,Lngij €Y . Then, the decision

evaluation matrix can be found. Table 1 is the decision matrix.

Table 1. The decision matrix using linguistic neutrosophic numbers (LNN).

E, E,
6, Wp,, ¥y 3, Wp Yy Vs, )
y y y y y y
02 (lp321: l/JV21’ lpgzl) s (lpﬁz_n; lp}/Zni lpé‘zn)
O, W Vo Yo, Wp Yy ¥,

The decision steps are described as follows:
Step 1: the integrated matrix can be obtained by the LNNEWA operator:
t
By = (Wayy Wy, Ws,) = LNNEWA(6;, 6, .., 0) = @, 0,6

= ) ) 21
w ¥ embad® ¥ ena @D

i (k+BY) " -1k (k-81)"" vl .
My (ke BY) T, (k-5) ™ s @k-yipHiaTIi, v My k-sl Rl 8
Step 2: the total collective LNN 6; (i = 1,2,...,m) canbe obtained by the LNNWEA or LNNEWG

operator.

n
0; = LNNEWA(8;1,0;3,...,0in) = ng €0,
e

) (lpk H?=1(k+ﬁi/)eij_H?=1(k_ﬁi/)eij’ 4 20 vy i 211 85V )(22)
My (k) 4Ty (k) My @hoy ) T+ vy Ty @6 VT 857

Or
n L
0, = LNNEWG(8:1,015, ..., 0i) =R, (8;)7
j=1

=W 2Ty Y ey ) I o) 00 T () ()0 (23)

J
€ GT €7 € € €5
[T7=1(2k=Bij) I +ITj=q Bij Y Ty (ety) Y+ (k=vi) Y Tl (et8) Y+ (k=655) Y




Mathematics 2019, 7, 389 8of 11

Step 3: according to Definition 3, we can calculate {(6;) and 7(0;) of every LNN 0;(i =
1,2,..,m).

Step 4: According to {(6;), then we can rank the alternatives and the best one can be chosen out.

Step 5: End.

5. Illustrative Examples

5.1. Numerical Example

Now, we adopt illustrative examples of the MAGDM problems to verify the proposed decision
methods. An investment company wants to find a company to invest. Now, there are four companies
0 = {04, 0,,03,0,} to be considered as candidates, the first is for selling cars (8,), the second is for
selling food (0,), the third is for selling computers (03), and the last is for selling arms (0,). Next,
three experts D = {DI_DZ_D3} are invited to evaluate these companies, their weight vector is u =
(0.37,0.33,0.3)7. The experts make evaluations of the alternatives according to three attributes E =
{E\,E; E3}, E; is the ability of risk, E, is the ability of growth, and E; is the ability of
environmental impact, the weight vector of themis € = (0.35,0.25,0.4)". Then, the experts use LNNs
to make the evaluation values with a linguistic set ¥ = {{, = extremely poor, {;; = very poor, ), =
poor, Y3 = slightly poor, {, = medium , 5 = slightly good, Y4 = good, {1, = very good, Y5 =
extremely good}. Then, the decision evaluation matrix can be established, Tables 2—4 show them.

Table 2. The decision matrix based on the data of D;.

E, E, E;
0, (e, ¥1,9%3) (W7, 93,91) (e, ¥3,9%2)
03 (e, ¥37,93) W7, 91, 91) (s, ¥3,92)
0, W7, 91, 93) W7, 97, ¥3) W7, ¥3,91)

Table 3. The decision matrix based on the data of D,.

E, E, E,
0, (W&, i, v3) (e, ¥i,yi) (Wi, ¥3,93)
03 Wg, i, ¥3) (WE, i, ¥3) (WE, 97, ¥3)
0, We vi vi) e i vi) (e, ¥3,¥3)

Table 4. The decision matrix based on the data of Ds.

. E, E, E,
0, W3, 93, 93) 3,93, 93) (Wi, 93, 92)
0, (W3, 3, 93) s, 93, 93) (W3, ¥3,93)
03 W3, 93, 93) (e, i, ¥3) W3, 93, 93)
0, W3, 93, 93) W3, ¥3, ¥3) W3, ¥, ¥i)

Now, the proposed method is applied to manage this MAGDM problem and the computational
procedures are as follows:

Step 1: the overall decision matrix can be obtained by the LNNEWA operator in Table 5.

Table 5. The overall decision matrix.

E, E, Es
@1 (¢6.3671' ¢1.4-116' ¢2.4888) (¢6.7366' ¢1.8191' ¢1.4116) <¢5.1343' lpZ.OOO' l/)3.0637)
@2 (¢6.7630' ¢1.7705' ¢2.2397) (lp6.2295' ¢1.5275' ¢1.5997) <¢6.0042' lpZ.OOO' lp2.0355)
@3 (¢6.1200' ¢1.5997' lp2.4888) (¢6.2067' lpl.OOOl ¢1.5564) (lpﬁ.lZOO' lp2.54—27' lp2.4888)
04 (¢6.7366' ¢1.2370' ¢1.8191) (¢5.9645' ¢1.5997' lpl.5275) (lp6.2067' lpl.6329' lpl.4602)
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Step 2: the total collective LNN 6; (i = 1,2,...,m) can be obtained by the LNNWEA operator:

01 = <¢6.0661' ¢1.7313' lp2.3644)/ 02 = (lp6.0961' ¢1.7929' ¢1.984-0)'

03 = (V57523 Y1.7260: W2.2199), and 64 = (Yg 4108, P1.4753, P1.5057)-
Step 3: according to Definition 3, the expected values of {(6;) for 6;(i = 1,2,3,4) can be

calculated:
0(6,) =0.7488,3(8,) =0.7633,3(03) =0.7419, and((6.,) =0.8062.
Based on the expected values, four alternatives can be ranked 8, > 0, > 0, > 03, thus, company
0, is the optimal choice.
Now, the LNNEWG operator was used to manage this MAGDM problem:

Step 1: the overall decision matrix can be obtained by the LNNEWA operator;
Step 2': the total collective LNN 6; (i = 1,2,...,m) can be obtained by the LNNEWG operator,

which are as following:

91 = <lp5.9491' lpl.7507' lp2.4660)/ 92 = (¢6.5864' ¢1.8026' I»DZ.OOOO)/ 93 = (lp6.8354' l)bl.8390' lp2.2614)ﬁ

and 0, = (Y4 3950, P1.4868 W1.6033)-

Step 3’ according to Definition 3, the expected values of ¢(0;) for 6;(i = 1,2,3,4) can be
calculated:
1(6,) =0.7389, 1(6,) =0.7827, {(63) =0.7806, andl(6,) =0.8043.

Based on the expected values, four alternatives can be ranked 8, > 6, > 0; > 0,, thus, company
0, is still the optimal choice.

Clearly, there exists a small difference in sorting between these two kinds of methods. However,
we can get the same optimal choice by using the LNNEWA and LNNEWG operators. The proposed
methods are effective ranking methods for the MCDM problem.

5.2. Comparative Analysis

Now, we do some comparisons with other related methods for LNN, all the results are shown
in Table 6.

Table 6. The ranking orders by utilizing three different methods.

Met};(r)i}}r:;siid N g(6,) = 07528, 3(82) = 0.7777, 0,>0,>0;,>0 0
averaging in [15] §(63) =0.7613, §(84) = 0.8060. 47 02> 05>0, 4
Meth(;iigfrsiid N 2(0y) =0.7397, §(8,) =0.7747, 0 >0 5058 .
avefaging inis] SO =07531 ¢(@,) =08035. T T s
g/cl)?f};foi:)f/:;ino; §(61) = 0.7298, £(6,) =0.7508, 0,>0,>0;>0, 0,
[16] (p=q=1) 3(83) = 0.7424 §(04) = 0.7864.
The proposed {(6,) = 0.7488, {(6;) =0.7633, 8, > 8, » 8, > 0, o
method $(85) =0.7419 £(6,) =0.8062.

As shown in Table 6, we can see that company 8, is the best choice for investing by using four
methods. Many methods such as arithmetic averaging, geometric averaging, and Bonferroni mean
can all be used in LNN to handle the multiple attribute decision-making problems and can get similar
results. Additionally, The Einstein aggregation operator is smoother than the algebra aggregation
operator, which is used in the literature [15,16]. Compared to the existing literature [2-14], LNNs can
express and manage pure linguistic evaluation values, while other literature [2-14] cannot do that. In
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this paper, a new MAGDM method was presented by using the LNNEWA or LNNEWG operator
based on LNN environment.

6. Conclusions

A new approach for solving MAGDM problems was proposed in this paper. First, we applied
the Einstein operation to a linguistic neutrosophic set and established the new operation rules of this
linguistic neutrosophic set based on the Einstein operator. Second, we combined some aggregation
operators with the linguistic neutrosophic set and defined the linguistic neutrosophic number
Einstein weight average operator and the linguistic neutrosophic number Einstein weight geometric
(LNNEWG) operator according the new operation rules. Finally, by using the LNNEWA and
LNNEWG operator, two methods for handling MADGM problem were presented. In addition, these
two methods were introduced into a concrete example to show the practicality and advantages of the
proposed approach. In future, we will further study the Einstein operation in other neutrosophic
environment just like the refined neutrosophic set [30]. At the same time, we will use these
aggregation operators in many actual fields, such as campaign management, decision making and
clustering analysis and so on [31-33].
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