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Abstract: Linguistic neutrosophic numbers (LNNs) include single-value neutrosophic numbers and 
linguistic variable numbers, which have been proposed by Fang and Ye. In this paper, we define 
the linguistic neutrosophic number Einstein sum, linguistic neutrosophic number Einstein product, 
and linguistic neutrosophic number Einstein exponentiation operations based on the Einstein 
operation. Then, we analyze some of the relationships between these operations. For LNN 
aggregation problems, we put forward two kinds of LNN aggregation operators, one is the LNN 
Einstein weighted average operator and the other is the LNN Einstein geometry (LNNEWG) 
operator. Then we present a method for solving decision-making problems based on LNNEWA and 
LNNEWG operators in the linguistic neutrosophic environment. Finally, we apply an example to 
verify the feasibility of these two methods. 

Keywords: multiple attribute group decision making (MAGDM); Linguistic neutrosophic; LNN 
Einstein weighted-average operator; LNN Einstein weighted-geometry (LNNEWG) operator 

 

1. Introduction 

Smarandache [1] proposed the neutrosophic set (NS) in 1998. Compared with the intuitionistic 
fuzzy sets (IFSs), the NS increases the uncertainty measurement, from which decision makers can use 
the truth, uncertainty and falsity degrees to describe evaluation, respectively. In the NS, the degree 
of uncertainty is quantified, and these three degrees are completely independent of each other, so, 
the NS is a generalization set with more capacity to express and deal with the fuzzy data. At present, 
the study of NS theory has been a part of research that mainly includes the research of the basic theory 
of NS, the fuzzy decision of NS, and the extension of NS, etc. [2–14]. Recently, Fang and Ye [15] 
presented the linguistic neutrosophic number (LNN). Soon afterwards, many research topics about 
LNN were proposed [16–18]. 

Information aggregation operators have become an important research topic and obtained a 
wide range of research results. Yager [19] put forward the ordered weighted average (OWA) operator 
considering the data sorting position. Xu [20] presented the arithmetic aggregation (AA) of IFS. Xu 
and Yager [21] presented the geometry aggregation (GA) operator of IFS. Zhao [22] proposed 
generalized aggregation operators based on IFS and proved that AA and GA were special cases of 
generalized aggregation operator. The operators mentioned above are established based on the 
algebraic sum and the algebraic product of number sets. They are respectively referred to as a special 
case of Archimedes t-conorm and t-norm to establish union or intersection operation of the number 
set. The union and intersection of Einstein operation is a kind of Archimedes t-conorm and t-norm 
with good smooth characteristics [23]. Wang and Liu [24] built some IF Einstein aggregation 
operators and proved that the Einstein aggregation operator has better smoothness than the 
arithmetic aggregation operator. Zhao and Wei [25] put forward the IF Einstein hybrid-average 
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(IFEHA) operator and IF Einstein hybrid-geometry (IFEHG) operator. Further, Guo etc. [26] applied 
the Einstein operation to a hesitate fuzzy set. Lihua Yang etc. [27] put forward novel power 
aggregation operators based on Einstein operations for interval neutrosophic linguistic sets. However, 
neutrosophic linguistic sets are different from linguistic neutrosophic sets. The former still use two 
values to describe the evaluation value, while the latter can use a pure language value to describe the 
evaluation value. As far as we know, this is the first work on Einstein aggregation operators for LNN. 
It must be noticed that the aggregation operators in References [15–18] are almost based on the most 
commonly used algebraic product and algebraic sum of LNNs for carrying the combination process, 
which is not the only operation law that can be chosen to model the intersection and union on LNNs. 
Thus, we establish the operation rules of LNN based on Einstein operation and put forward the LNN 
Einstein weighted-average (LNNEWA) operator and LNN Einstein weighted-geometry (LNNEWG) 
operator. These operators are finally utilized to solve some relevant problems. 

The other organizations: in Section 2, concepts of LNN and Einstein are described, operational 
laws of LNNs based on Einstein operation are defined, and their performance is analyzed. In Section 
3, LNNEWA and LNNEWG operators are proposed. In Section 4, multiple attribute group decision 
making (MAGDM) methods are built based on LNNEWA and LNNEWG operators. In Section 5, an 
instance is given. In Section 6, conclusions and future research are given. 

2. Basic theories 

2.1. LNN and Its Operational laws 

Definition 1. [15] Set a finite language set 𝛹 = {𝜓௧|𝑡 ∈ [0, 𝑘]|}, where 𝜓௧ is a linguistic variable, k +1 is the 
cardinality of  𝛹 . Then, we define  𝑢 = 〈𝜓ఉ , 𝜓ఊ , 𝜓ఋ〉 , in which 𝜓ఉ , 𝜓ఊ , 𝜓ఋ ∈ 𝛹  and 𝛽, 𝛾, 𝛿 ∈  [0, k], 
𝜓ఉ , 𝜓ఋ  𝑎𝑛𝑑 𝜓ఊ expresse truth, falsity and indeterminacy degree, respectively, we call 𝑢 an LNN.  

Definition 2. [15] Set three LNNs  𝑢 = 〈𝜓ఉ , 𝜓ఊ , 𝜓ఋ〉 , 𝑢ଵ  = 〈𝜓ఉభ
, 𝜓ఊభ

, 𝜓ఋభ
〉  and  𝑢ଶ  = 〈𝜓ఉమ

, 𝜓ఊమ
, 𝜓ఋమ

〉 
in 𝛹 and 𝜆 ≥ 0, then, the operational rules are as following: 

⊕ uଶ = 〈ψஒభ
, ψஓభ

, ψஔభ
〉 ⊕  〈ψஒమ

, ψஓమ
, ψஔమ

〉 = 〈ψ
ஒభାஒమି

ಊభಊమ
ౡ

, ψಋభಋమ
ౡ

, ψಌభಌమ
ౡ

〉; (1) 

uଵ ⊗ uଶ = 〈ψஒభ
, ψஓభ

, ψஔభ
〉 ⊗ 〈ψஒమ

, ψஓమ
, ψஔమ

〉 = 〈ψಊభಊమ
ౡ

, ψ
ஓభାஓమି

ಋభಋమ
ౡ

, ψ
ஔభାஔమି

ಌభಌమ
ౡ

〉;                  (2) 

𝜆𝑢 = 𝜆〈𝜓ఉభ
, 𝜓ఊభ

, 𝜓ఋభ
〉 = 〈𝜓

௞ି௞(ଵି
ഁ

ೖ
)ഊ , 𝜓

௞(
ം

ೖ
)ഊ , 𝜓

௞(
ഃ

ೖ
)ഊ〉;                                        (3) 

𝑢ఒ = 〈𝜓ఉభ
, 𝜓ఊభ

, 𝜓ఋభ
〉ఒ = 〈𝜓

௞(
ഁ

ೖ
)ഊ , 𝜓

௞ି௞(ଵି
ം

ೖ
)ഊ , 𝜓

௞ି௞(ଵି
ഃ

ೖ
)ഊ〉.       (4) 

Definition 3. [15] Set an LNN 𝑢 = 〈𝜓ఉ , 𝜓ఊ , 𝜓ఋ〉 in 𝛹, we define 𝜁(𝑢) as the expectation and 𝜂(𝑢) as the 
accuracy: 

ζ(u)= (2k+ β - γ - δ)/3k  (5) 

𝜂(𝑢)= (𝛽 - 𝛿)/k  (6) 

Definition 4. [15]: Set two LNNs 𝑢ଵ  = 〈𝜓ఉభ
, 𝜓ఊభ

, 𝜓ఋభ
〉 and  𝑢ଶ  = 〈𝜓ఉమ

, 𝜓ఊమ
, 𝜓ఋమ

〉 in 𝛹, then 

If 𝜁(𝑢ଵ) > 𝜁(𝑢ଶ), then 𝑢ଵ ≻ 𝑢ଶ; 

If 𝜁(𝑢ଵ) = 𝜁(𝑢ଶ) then  

If 𝜂(𝑢ଵ) >  𝜂(𝑢ଶ), then 𝑢ଵ ≻ 𝑢ଶ; 

If 𝜂(𝑢ଵ) =  𝜂(𝑢ଶ), then 𝑢ଵ ∼ 𝑢ଶ. 

2.2. Einstein Operation 
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Definition 5. [28,29] For any two real Numbers a, b∈ [0,1], Einstein ⨁௘  is an Archimedes t-conorms, 

Einstein ⨂௘  is an Archimedes t-norms, then 

a ⨁௘b= ௔ା௕

ଵା௔௕
, a⨂௘b= ௔௕

ଵା(ଵି௔)(ଵି௕)
. (7) 

2.3. Einstein Operation Under the Linguistic Neutrosophic Number 

Definition 6. Set  𝑢 = 〈𝜓ఉ , 𝜓ఊ , 𝜓ఋ〉 , 𝑢ଵ  = 〈𝜓ఉభ
, 𝜓ఊభ

, 𝜓ఋభ
〉  and  𝑢ଶ  = 〈𝜓ఉమ

, 𝜓ఊమ
, 𝜓ఋమ

〉  as three LNNs in 
𝛹, 𝜆 ≥ 0, the operation of Einstein ⨁𝑒 and Einstein ⨂௘  under the linguistic neutrosophic number are 
defined as follows: 

𝑢ଵ⨁௘𝑢ଶ=〈𝜓ೖమ(ഁభశഁమ)

ೖమశഁభഁమ

, 𝜓 ೖംభംమ
ೖమశ(ೖషംభ)(ೖషംమ)

, 𝜓 ೖഃభഃమ
ೖమశ(ೖషഃభ)(ೖషഃమ)

〉;  (8) 

𝑢ଵ⨂௘𝑢ଶ=〈𝜓 ೖഁభഁమ
ೖమశ(ೖషഁభ)(ೖషഁమ)

, 𝜓ೖమ(ംభశംమ)

ೖమశംభംమ

, 𝜓ೖమ(ഃభశഃమ)

ೖమశഃభഃమ

〉;  (9) 

𝜆𝑢=〈𝜓
௞∗

(ೖశഁ)ഊష(ೖషഁ)ഊ

(ೖశഁ)ഊశ(ೖషഁ)ഊ

, 𝜓
௞∗

మംഊ

(మೖషം)ഊశംഊ

, 𝜓
௞∗

మഃഊ

(మೖషഃ)ഊశഃഊ

〉; (10) 

𝑢ఒ = 〈𝜓
௞∗

మഁഊ

(మೖషഁ)ഊశഁഊ

, 𝜓
௞∗

(ೖశം)ഊష(ೖషം)ഊ

(ೖశം)ഊశ(ೖషം)ഊ

, 𝜓
௞∗

(ೖశഃ)ഊష(ೖషഃ)ഊ

(ೖశഃ)ഊశ(ೖషഃ)ഊ

〉.  (11) 

Theorem 1. Set  𝑢 = 〈𝜓ఉ , 𝜓ఊ , 𝜓ఋ〉 , 𝑢ଵ  = 〈𝜓ఉభ
, 𝜓ఊభ

, 𝜓ఋభ
〉  and  𝑢ଶ  = 〈𝜓ఉమ

, 𝜓ఊమ
, 𝜓ఋమ

〉  as three LNNs 
in  𝛹, 𝜆 ≥ 0, then, the operation of Einstein ⨁௘ and Einstein ⨂௘ have the following performance: 

𝑢ଵ⨁௘𝑢ଶ = 𝑢ଶ⨁௘𝑢ଵ; (12) 

𝑢ଵ⨂௘𝑢ଶ = 𝑢ଶ⨂௘𝑢ଵ; (13) 

𝜆(𝑢ଵ⨁௘𝑢ଶ) = 𝜆𝑢ଵ⨁௘𝜆𝑢ଶ; (14) 

(𝑢ଵ⨂௘𝑢ଶ)ఒ = 𝑢ଵ
ఒ⨂௘𝑢ଶ

ఒ; (15) 

Proof. Performance (1) and (2) are easy to be obtained, so we omit it; Now we prove the 
performance (3): 

According to Definition 6, we can get 

① 𝑢ଵ⨁௘𝑢ଶ= 〈𝜓ೖమ(ഁభశഁమ)

ೖమశഁభഁమ

, 𝜓 ೖംభംమ
ೖమశ(ೖషംభ)(ೖషംమ)

, 𝜓 ೖഃభഃమ
ೖమశ(ೖషഃభ)(ೖషഃమ)

〉 ; 

② λ(𝑢ଵ⨁௘𝑢ଶ) 
= 〈𝜓

𝑘∗

(𝑘+
𝑘2൫𝛽

1
+𝛽

2
൯

𝑘2+𝛽
1

𝛽
2

)

𝜆

−(𝑘−
𝑘2൫𝛽

1
+𝛽

2
൯

𝑘2+𝛽
1

𝛽
2

)

𝜆

(𝑘+
𝑘2൫𝛽

1
+𝛽

2
൯

𝑘2+𝛽
1

𝛽
2

)

𝜆

+(𝑘−
𝑘2൫𝛽

1
+𝛽

2
൯

𝑘2+𝛽
1

𝛽
2

)

𝜆

, 𝜓

𝑘∗

2ቆ
𝑘𝛾1𝛾2

𝑘2+(𝑘−𝛾1)(𝑘−𝛾2)
ቇ

𝜆

(2𝑘−
𝑘𝛾1𝛾2

𝑘2+(𝑘−𝛾1)(𝑘−𝛾2)
)

𝜆

+ቆ
𝑘𝛾1𝛾2

𝑘2+(𝑘−𝛾1)(𝑘−𝛾2)
ቇ

𝜆

, 𝜓

𝑘∗

2൬
𝑘𝛿1𝛿2

𝑘2+(𝑘−𝛿1)(𝑘−𝛿2)
൰

𝜆

(2𝑘−
𝑘𝛿1𝛿2

𝑘2+(𝑘−𝛿1)(𝑘−𝛿2)
)

𝜆

+൬
𝑘𝛿1𝛿2

𝑘2+(𝑘−𝛿1)(𝑘−𝛿2)
൰

𝜆

〉

        =〈𝜓
௞∗

(ೖశഁభ)ഊ(ೖశഁమ)ഊష(ೖషഁభ)ഊ(ೖషഁమ)ഊ

(ೖశഁభ)ഊ(ೖశഁమ)ഊశ(ೖషഁభ)ഊ(ೖషഁమ)ഊ

, 𝜓
௞∗

మ(ംభംమ)ഊ

ቀ(మೖషംభ)ഊ(మೖషംమ)ഊቁశ(ംభംమ)ഊ

, 𝜓
௞∗

మ(ഃభഃమ)ഊ

ቀ(మೖషഃభ)ഊ(మೖషഃమ)ഊቁశ(ഃభഃమ)ഊ

〉 ; 

③ 𝜆𝑢ଵ = 〈𝜓
௞∗

(ೖశഁభ)ഊష(ೖషഁభ)ഊ

(ೖశഁభ)ഊశ(ೖషഁభ)ഊ

, 𝜓
௞∗

మംభ
ഊ

(మೖషംభ)ഊశംభ
ഊ

, 𝜓
௞∗

మഃభ
ഊ

(మೖషഃభ)ഊశഃభ
ഊ

〉; 

④ 𝜆𝑢ଶ = 〈𝜓
௞∗

(ೖశഁమ)ഊష(ೖషഁమ)ഊ

(ೖశഁమ)ഊశ(ೖషഁమ)ഊ

, 𝜓
௞∗

మംమ
ഊ

(మೖషംమ)ഊశംమ
ഊ

, 𝜓
௞∗

మഃమ
ഊ

(మೖషഃమ)ഊశഃమ
ഊ

〉; 

⑤  𝜆𝑢ଵ⨁௘𝜆𝑢ଶ 
= 〈𝜓

௞మቆ௞∗
(௞ାఉభ)ഊି(௞ିఉభ)ഊ

(௞ାఉభ)ഊା(௞ିఉభ)ഊ
ା௞∗

(௞ାఉమ)ഊି(௞ିఉమ)ഊ

(௞ାఉమ)ഊା(௞ିఉమ)ഊ
ቇ

௞మା൭൬௞∗
(௞ାఉభ)ഊି(௞ିఉభ)ഊ

(௞ାఉభ)ഊା(௞ିఉభ)ഊ
൰൬௞∗

(௞ାఉమ)ഊି(௞ିఉమ)ഊ

(௞ାఉమ)ഊା(௞ିఉమ)ഊ
൰൱

, 𝜓
௞ቆ௞∗

ଶఊభ
ഊ

(ଶ௞ିఊభ)ഊାఊభ
ഊ

ቇቆ௞∗
ଶఊమ

ഊ

(ଶ௞ିఊమ)ഊାఊమ
ഊ

ቇ

௞మା൭௞ି൬௞∗
ଶఊభ

ഊ

(ଶ௞ିఊభ)ഊାఊభ
ഊ

൰൱൭௞ି൬௞∗
ଶఊమ

ഊ

(ଶ௞ିఊమ)ഊାఊమ
ഊ

൰൱

, 𝜓
௞ቆ௞∗

ଶఋభ
ഊ

(ଶ௞ିఋభ)ഊାఋభ
ഊ

ቇቆ௞∗
ଶఋమ

ഊ

(ଶ௞ିఋమ)ഊାఋమ
ഊ

ቇ

௞మାቌ௞ିቆ௞∗
ଶఋభ

ഊ

(ଶ௞ିఋభ)ഊାఋభ
ഊ

ቇቍቌ௞ିቆ௞∗
ଶఋమ

ഊ

(ଶ௞ିఋమ)ഊାఋమ
ഊ

ቇቍ

〉

  =〈𝜓
௞∗

(ೖశഁభ)ഊ(ೖశഁమ)ഊష(ೖషഁభ)ഊ(ೖషഁమ)ഊ

(ೖశഁభ)ഊ(ೖశഁమ)ഊశ(ೖషഁభ)ഊ(ೖషഁమ)ഊ

, 𝜓
௞∗

మ(ംభംమ)ഊ

ቀ(మೖషംభ)ഊ(మೖషംమ)ഊቁశ(ംభംమ)ഊ

, 𝜓
௞∗

మ(ംభഃమ)ഊ

ቀ(మೖషഃభ)ഊ(మೖషഃమ)ഊቁశ(ഃభഃమ)ഊ

〉 

So, we can get  λ(uଵ⨁ୣuଶ) = λuଵ⨁ୣλuଶ. 
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Now, we prove the performance (4): 

①  𝑢ଵ
ఒ = 〈𝜓

௞∗
మ𝛽1

ഊ

(మೖష𝛽1)ഊశ𝛽1
ഊ

, 𝜓
௞∗

(ೖశ𝛾1)ഊష(ೖష𝛾1)ഊ

(ೖశ𝛾1)ഊశ(ೖష𝛾1)ഊ

, 𝜓
௞∗

(ೖశ𝛿1)ഊష(ೖష𝛿1)ഊ

(ೖశ𝛿1)ഊశ(ೖష𝛿1)ഊ

〉; 

② 𝑢ଶ
஛ = 〈𝜓

௞∗
మ𝛽2

ಓ

(మೖష𝛽2)ಓశ𝛽2
ಓ

, 𝜓
௞∗

(ೖశ𝛾2)ಓష(ೖష𝛾2)ಓ

(ೖశ𝛾2)ಓశ(ೖష𝛾2)ಓ

, 𝜓
௞∗

(ೖశഃమ)ಓష(ೖషഃమ)ಓ

(ೖశഃమ)ಓశ(ೖషഃమ)ಓ

〉 ; 

③  𝑢ଵ
஛⨂௘𝑢ଶ

஛ = 〈

𝜓
௞ቆ௞∗

ଶఉభ
ഊ

(ଶ௞ିఉభ)ഊାఉభ
ഊቇቆ௞∗

ଶఉమ
ഊ

(ଶ௞ିఉమ)ഊାఉమ
ഊቇ

௞మାቌ௞ିቆ௞∗
ଶఉభ

ഊ

(ଶ௞ିఉభ)ഊାఉభ
ഊቇቍቌ௞ିቆ௞∗

ଶఉమ
ഊ

(ଶ௞ିఉమ)ഊାఉమ
ഊቇቍ

,

𝜓
௞మቌቆ௞∗

(௞ାఊభ)ഊି(௞ିఊభ)ഊ

(௞ାఊభ)ഊା(௞ିఊభ)ഊቇାቆ௞∗
ଶఉమ

ഊ

(ଶ௞ିఉమ)ഊାఉమ
ഊቇቍ

௞మା൬௞∗
(௞ାఊభ)ഊି(௞ିఊభ)ഊ

(௞ାఊభ)ഊା(௞ିఊభ)ഊ൰ቆ௞∗
ଶఉమ

ഊ

(ଶ௞ିఉమ)ഊାఉమ
ഊቇ

,

𝜓
௞మ൭ቆ௞∗

(௞ାఋభ)ഊି(௞ିఋభ)ഊ

(௞ାఋభ)ഊା(௞ିఋభ)ഊቇାቆ௞∗
(௞ାఋమ)ഊି(௞ିఋమ)ഊ

(௞ାఋమ)ഊା(௞ିఋమ)ഊቇ൱

௞మା൬௞∗
(௞ାఋభ)ഊି(௞ିఋభ)ഊ

(௞ାఋభ)ഊା(௞ିఋభ)ഊ൰൬௞∗
(௞ାఋమ)ഊି(௞ିఋమ)ഊ

(௞ାఋమ)ഊା(௞ିఋమ)ഊ൰

〉 

=〈𝜓
௞∗

మ(ഁభഁమ)ഊ

ቀ(మೖషഁభ)ഊ(మೖషഁమ)ഊቁశ(ഁభഁమ)ഊ

, 𝜓
௞∗

(ೖశംభ)ഊ(ೖశംమ)ഊష(ೖషംభ)ഊ(ೖషംమ)ഊ

(ೖశംభ)ഊ(ೖశംమ)ഊశ(ೖషംభ)ഊ(ೖషംమ)ഊ

, 𝜓
௞∗

(ೖశഃభ)ഊ(ೖశഃమ)ഊష(ೖషഃభ)ഊ(ೖషഃమ)ഊ

(ೖశഃభ)ഊ(ೖశഃమ)ഊశ(ೖషഃభ)ഊ(ೖషഃమ)ഊ

〉 ;

④ 𝑢ଵ⨂௘𝑢ଶ=〈𝜓 ೖഁభഁమ
ೖమశ(ೖషഁభ)(ೖషഁమ)

, 𝜓ೖమ(ംభశംమ)

ೖమశംభംమ

, 𝜓ೖమ(ഃభశഃమ)

ೖమశഃభഃమ

〉; 

⑤ (𝑢ଵ⨂௘𝑢ଶ)ఒ=〈𝜓

௞∗
మቆ

ೖഁభഁమ
ೖమశ(ೖషഁభ)(ೖషഁమ)

ቇ

ഊ

(మೖష
ೖഁభഁమ

ೖమశ(ೖషഁభ)(ೖషഁమ)
)ഊశቆ

ೖഁభഁమ
ೖమశ(ೖషഁభ)(ೖషഁమ)

ቇ

ഊ

, 𝜓

௞∗
(ೖశ

ೖమ(ംభశംమ)

ೖమశംభംమ
)ഊష(ೖష

ೖమ(ംభశംమ)

ೖమశംభംమ
)ഊ

(ೖశ
ೖమ(ംభశംమ)

ೖమశംభംమ
)ഊశ(ೖష

ೖమ(ംభశംమ)
ೖశംభംమ

)ഊ

, 𝜓

௞∗
(ೖశ

ೖమ(ഃభశഃమ)

ೖమశഃభഃమ
)ഊష(ೖష

ೖమ(ഃభశഃమ)

ೖమశഃభഃమ
)ഊ

(ೖశ
ೖమ(ഃభశഃమ)

ೖమశഃభഃమ
)ഊశ(ೖష

ೖమ(ഃభశഃమ)

ೖమశഃభഃమ
)ഊ

〉 

=〈𝜓
௞∗

మ(ഁభഁమ)ഊ

ቀ(మೖషഁభ)ഊ(మೖషഁమ)ഊቁశ(ഁభഁమ)ഊ

, 𝜓
௞∗

(ೖశംభ)ഊ(ೖశംమ)ഊష(ೖషംభ)ഊ(ೖషംమ)ഊ

(ೖశംభ)ഊ(ೖశംమ)ഊశ(ೖషംభ)ഊ(ೖషംమ)ഊ

, 𝜓
௞∗

(ೖశഃభ)ഊ(ೖశഃమ)ഊష(ೖషഃభ)ഊ(ೖషഃమ)ഊ

(ೖశഃభ)ഊ(ೖశഃమ)ഊశ(ೖషഃభ)ഊ(ೖషഃమ)ഊ

〉; 

So, we can get  (𝑢ଵ⨂௘𝑢ଶ)ఒ=𝑢ଵ
ఒ⨂௘𝑢ଶ

ఒ.☐ 

3. Einstein Aggregation Operators 

3.1. LNNEWA Operator 

Definition 7. Set a LNN 𝑢௜  = 〈𝜓ఉ೔
, 𝜓ఊ೔

, 𝜓ఋ೔
〉 in 𝛹, for i=1,2, …, z, we define the LNNEWA operator:  

𝐿𝑁𝑁𝐸𝑊𝐴(𝑢ଵ, 𝑢ଶ, … 𝑢௭) =  ⊕௘

௭

௜ୀଵ
𝜖௜𝑢௜,                                          (16) 

with the relative weight vector 𝜖 = (𝜖ଵ, 𝜖ଶ, … , 𝜖௭)் , ∑ 𝜖௜
௭
௜ୀଵ = 1 and 𝜖௜ ∈ [0,1]. 

Theorem 2. Set a collection 𝑢௜  = 〈𝜓ఉ೔
, 𝜓ఊ೔

, 𝜓ఋ೔
〉  in  𝛹 , for i=1,2,…,z, then according to the LNNEWA 

aggregation operator, we can get the following result: 

  𝐿𝑁𝑁𝐸𝑊𝐴(𝑢ଵ, 𝑢ଶ, … 𝑢௭) =  ⊕௘

௭

௜ୀଵ
𝜖௜𝑢௜ 

= 〈𝜓
𝑘∗

∏ ൫𝑘+𝛽
𝑖
൯

ച೔𝑧
𝑖=1 −∏ ൫𝑘−𝛽

𝑖
൯

ച೔𝑧
𝑖=1

∏ ൫𝑘+𝛽
𝑖
൯

ച೔𝑧
𝑖=1 +∏ ൫𝑘−𝛽

𝑖
൯

ച೔𝑧
𝑖=1

, 𝜓
𝑘∗

2 ∏ 𝛾𝑖
ച೔𝑧

𝑖=1

∏ (2𝑘−𝛾
𝑖
)ച೔𝑧

𝑖=1 +∏ 𝛾
𝑖
ച೔𝑧

𝑖=1

, 𝜓
𝑘∗

2 ∏ 𝛿𝑖
ച೔𝑧

𝑖=1

∏ (2𝑘−𝛿𝑖)
ച೔𝑧

𝑖=1 +∏ 𝛿𝑖
ച೔𝑧

𝑖=1

〉,
(17) 

with the relative weight vector 𝜖 = (𝜖ଵ, 𝜖ଶ, … , 𝜖௭)் , ∑ 𝜖௜
௭
௜ୀଵ = 1 and 𝜖௜ ∈ [0,1]. 
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Proof. 

① 𝜖௜𝑢௜ = 〈𝜓
௞∗

(ೖశ𝛽𝑖)
ച೔ష(ೖష𝛽𝑖)

ച೔

(ೖశ𝛽𝑖)
ച೔శ(ೖష𝛽𝑖)

ച೔

, 𝜓
௞∗

మ𝛾𝑖
ച೔

(మೖష𝛾𝑖)
ച೔శ𝛾𝑖

ച೔

, 𝜓
௞∗

మ𝛿𝑖
ച೔

(మೖష𝛿𝑖)
ച೔శ𝛿𝑖

ച೔

〉; 

② z=2 ,𝐿𝑁𝑁𝐸𝑊𝐴(𝑢ଵ, 𝑢ଶ) =  ⊕௘

ଶ

௜ୀଵ
𝜖௜𝑢௜ 

=〈𝜓
ೖమቆೖ∗

(ೖశഁభ)ചభష(ೖషഁభ)ചభ

(ೖశഁభ)ചభశ(ೖషഁభ)ചభ
శೖ∗

(ೖశഁమ)ചమష(ೖషഁమ)ചమ

(ೖశഁమ)ചమశ(ೖషഁమ)ചమ
ቇ

ೖమశ൭൬ೖ∗
(ೖశഁభ)ചభష(ೖషഁభ)ചభ

(ೖశഁభ)ചభశ(ೖషഁభ)ചభ
൰൬ೖ∗

(ೖశഁమ)ചమష(ೖషഁమ)ചమ

(ೖశഁమ)ചమశ(ೖషഁమ)ചమ
൰൱

, 𝜓
ೖቆೖ∗

మംభ
ചభ

(మೖషംభ)ചభశംభ
ചభ

ቇቆೖ∗
మംమ

ചమ

(మೖషംమ)ചమశംమ
ചమ

ቇ

ೖమశ൭ೖష൬ೖ∗
మംభ

ചభ

(మೖషംభ)ചభశംభ
ചభ

൰൱൭ೖష൬ೖ∗
మംమ

ചమ

(మೖషംమ)ചమశംమ
ചమ

൰൱

, 𝜓
ೖቆೖ∗

మഃభ
ചభ

(మೖషഃభ)ചభశഃభ
ചభ

ቇቆೖ∗
మഃమ

ചమ

(మೖషഃమ)ചమశഃమ
ചమ

ቇ

ೖమశ൭ೖషቆೖ∗
మഃభ

ചభ

(మೖషഃభ)ചభశഃభ
ചభ

ቇ൱ቌೖషቆೖ∗
మഃమ

ചమ

(మೖషഃమ)ചమశഃమ
ചమ

ቇቍ

〉 

=〈𝜓
௞∗

(ೖశഁభ)
𝜖1(ೖశഁమ)

𝜖2ష(ೖషഁభ)
𝜖1(ೖషഁమ)

𝜖2

(ೖశഁభ)
𝜖1(ೖశഁమ)

𝜖2శ(ೖషഁభ)
𝜖1(ೖషഁమ)

𝜖2

, 𝜓
௞∗

మംభ
𝜖1ംమ

𝜖2

(మೖషംభ)
𝜖1(మೖషംమ)

𝜖2శംభ
𝜖1ംమ

𝜖2

, 𝜓
௞∗

మഃభ
𝜖1ഃమ

𝜖2

(మೖషഃభ)
𝜖1(మೖషഃభ)

𝜖2శഃభ
𝜖1ഃమ

𝜖2

〉 

=〈𝜓
௞∗

∏ ൫ೖశഁ೔൯
𝜖𝑖మ

೔సభ ష∏ ൫ೖషഁ೔൯
𝜖𝑖మ

೔సభ

∏ ൫ೖశഁ೔൯
𝜖𝑖మ

೔సభ శ∏ ൫ೖషഁ೔൯
𝜖𝑖మ

೔సభ

, 𝜓
௞∗

మ ∏ ം೔
𝜖𝑖మ

೔సభ

∏ (మೖషം೔)
𝜖𝑖మ

೔సభ శ∏ ം೔
𝜖𝑖మ

೔సభ

, 𝜓
௞∗

మ ∏ ഃ೔
𝜖𝑖మ

೔సభ

∏ (మೖషഃ೔)
𝜖𝑖మ

೔సభ శ∏ ഃ೔
𝜖𝑖మ

೔సభ

〉 ;; 

Suppose z=m, according t formula (17), we can get  

𝐿𝑁𝑁𝐸𝑊𝐴(𝑢ଵ, 𝑢ଶ, … 𝑢௠) =  ⊕௘

௠

௜ୀଵ
𝜖௜𝑢௜ 

                 = 〈𝜓
𝑘∗

∏ ൫𝑘+𝛽𝑖൯
ച೔𝑚

𝑖=1 −∏ ൫𝑘−𝛽𝑖൯
ച೔𝑚

𝑖=1

∏ ൫𝑘+𝛽𝑖൯
ച೔𝑚

𝑖=1 +∏ ൫𝑘−𝛽𝑖൯
ച೔𝑚

𝑖=1

, 𝜓
𝑘∗

2 ∏ 𝛾𝑖
ച೔𝑚

𝑖=1

∏ (2𝑘−𝛾𝑖)
ച೔𝑚

𝑖=1 +∏ 𝛾𝑖
ച೔𝑚

𝑖=1

, 𝜓
𝑘∗

2 ∏ 𝛿𝑖
ച೔𝑚

𝑖=1

∏ (2𝑘−𝛿𝑖)
ച೔𝑚

𝑖=1 +∏ 𝛿𝑖
ച೔𝑚

𝑖=1

〉;, (18) 

Then z = m + 1, the following can be found: 

𝐿𝑁𝑁𝐸𝑊𝐴(𝑢ଵ, 𝑢ଶ, … 𝑢௠, 𝑢௠ାଵ) =   ൬⊕௘

௠

௜ୀଵ
𝜖௜𝑢௜൰ ⊕௘ 𝜖௠ାଵ𝑢௠ାଵ 

=〈

𝜓
௞∗

∏ ൫ೖశഁ೔൯
𝜖𝑖೘

೔సభ ష∏ ൫ೖషഁ೔൯
𝜖𝑖೘

೔సభ

∏ ൫ೖశഁ೔൯
𝜖𝑖೘

೔సభ శ∏ ൫ೖషഁ೔൯
𝜖𝑖೘

೔సభ

,

𝜓
௞∗

మ ∏ ം೔
𝜖𝑖೘

೔సభ
∏ (మೖషം೔)𝜖𝑖೘

೔సభ శ∏ ം೔
𝜖𝑖೘

೔సభ

,

𝜓
௞∗

మ ∏ ഃ೔
𝜖𝑖೘

೔సభ
∏ (మೖషഃ೔)𝜖𝑖೘

೔సభ శ∏ ഃ೔
𝜖𝑖೘

೔సభ

〉 ⊕௘ 〈

𝜓
௞∗

(ೖశഁ೘శభ)𝜖𝑚+1ష(ೖషഁ೘శభ)𝜖𝑚+1

(ೖశഁ೘శభ)𝜖𝑚+1శ(ೖషഁ೘శభ)𝜖𝑚+1

,

𝜓
௞∗

మം೘శభ
𝜖𝑚+1

(మೖషം೘శభ)𝜖𝑚+1శം೘శభ
𝜖𝑚+1

,

𝜓
௞∗

మഃ೘శభ
𝜖𝑚+1

(మೖషഃ೘శభ)𝜖𝑚+1శഃ೘శభ
𝜖𝑚+1

〉 

           =〈

𝜓
ೖమቌ൭ೖ∗

∏ ൫ೖశഁ೔൯
𝜖𝑖೘

೔సభ ష∏ ൫ೖషഁ೔൯
𝜖𝑖೘

೔సభ

∏ ൫ೖశഁ೔൯
𝜖𝑖ೖ

೔సభ శ∏ ൫ೖషഁ೔൯
𝜖𝑖ೖ

೔సభ

൱శ൬ೖ∗
(ೖశഁ೘శభ)𝜖𝑚+1ష(ೖషഁ೘శభ)𝜖𝑚+1

(ೖశഁ೘శభ)𝜖𝑚+1శ(ೖషഁ೘శభ)𝜖𝑚+1
൰ቍ

ೖమశ൭ೖ∗
∏ ൫ೖశഁ೔൯

𝜖𝑖೘
೔సభ ష∏ ൫ೖషഁ೔൯

𝜖𝑖೘
೔సభ

∏ ൫ೖశഁ೔൯
𝜖𝑖೘

೔సభ శ∏ ൫ೖషഁ೔൯
𝜖𝑖೘

೔సభ

൱൬ೖ∗
(ೖశഁ೘శభ)𝜖𝑚+1ష(ೖషഁ೘శభ)𝜖𝑚+1

(ೖశഁ೘శభ)𝜖𝑚+1శ(ೖషഁ೘శభ)𝜖𝑚+1
൰

,

𝜓
ೖ൭ೖ∗

మ ∏ ം೔
𝜖𝑖೘

೔సభ
∏ (మೖషം೔)𝜖𝑖೘

೔సభ శ∏ ം೔
𝜖𝑖೘

೔సభ
൱൬ೖ∗

మം೘శభ
𝜖𝑚+1

(మೖషം೘శభ)𝜖𝑚+1శം೘శభ
𝜖𝑚+1

൰

ೖమశቌೖష൭ೖ∗
మ ∏ ം೔

𝜖𝑖೘
೔సభ

∏ (మೖషം೔)𝜖𝑖೘
೔సభ శ∏ ം೔

𝜖𝑖೘
೔సభ

൱ቍ൭ೖష൬ೖ∗
మം೘శభ

𝜖𝑚+1

(మೖషം೘శభ)𝜖𝑚+1శം೘శభ
𝜖𝑚+1

൰൱

,

𝜓
ೖ൭ೖ∗

మ ∏ ഃ೔
𝜖𝑖೘

೔సభ
∏ (మೖషഃ೔)𝜖𝑖೘

೔సభ శ∏ ഃ೔
𝜖𝑖೘

೔సభ
൱ቆೖ∗

మഃ೘శభ
𝜖𝑚+1

(మೖషഃ೘శభ)𝜖𝑚+1శഃ೘శభ
𝜖𝑚+1

ቇ

ೖమశቌೖష൭ೖ∗
మ ∏ ഃ೔

𝜖𝑖೘
೔సభ

∏ (మೖషഃ೔)𝜖𝑖೘
೔సభ శ∏ ഃ೔

𝜖𝑖೘
೔సభ

൱ቍ൭ೖషቆೖ∗
మഃ೘శభ

𝜖𝑚+1

(మೖషഃ೘శభ)𝜖𝑚+1శഃ೘శభ
𝜖𝑚+1

ቇ൱

〉 

 =〈𝜓
௞∗

∏ ൫ೖశഁ೔൯
𝜖𝑖೘శభ

೔సభ ష∏ ൫ೖషഁ೔൯
𝜖𝑖೘శభ

೔సభ

∏ ൫ೖశഁ೔൯
𝜖𝑖೘శభ

೔సభ శ∏ ൫ೖషഁ೔൯
𝜖𝑖೘శభ

೔సభ

, 𝜓
௞∗

మ ∏ ം೔
𝜖𝑖೘శభ

೔సభ
∏ (మೖషം೔)𝜖𝑖೘శభ

೔సభ శ∏ ം೔
𝜖𝑖೘శభ

೔సభ

, 𝜓
௞∗

మ ∏ ഃ೔
𝜖𝑖೘శభ

೔సభ
∏ (మೖషഃ೔)𝜖𝑖೘శభ

೔సభ శ∏ ഃ೔
𝜖𝑖೘శభ

೔సభ

〉.

So, Equation (17) is satisfied for any z according to the above results.  
This proves Theorem 1. ☐ 

Theorem 3. (Idempotency). Set an LNN 𝑢 = 〈𝜓ఉ , 𝜓ఊ , 𝜓ఋ〉 in 𝛹, for every 𝑢௜ in 𝑢 is equal to u, we can 

get:  

𝐿𝑁𝑁𝐸𝑊𝐴(𝑢ଵ, 𝑢ଶ, … 𝑢௭) = 𝐿𝑁𝑁𝐸𝑊𝐴(𝑢, 𝑢 … 𝑢) =  𝑢. 
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Proof For 𝑢௜ = 𝑢, 𝑡ℎ𝑒𝑛 𝛽௜ = 𝛽; 𝛾௜ = 𝛾; 𝛿௜ = 𝛿= ( i = 1, 2, …,z), the following result can be found: 

 𝐿𝑁𝑁𝐸𝑊𝐴(𝑢ଵ, 𝑢ଶ, … 𝑢௭) =  𝐿𝑁𝑁𝐸𝑊𝐴 (𝑢, 𝑢 … 𝑢)  = ൬⊕௘

௭

௜ୀଵ
𝜖௜𝑢൰ 

=〈𝜓
௞∗

∏ (ೖశഁ)ച೔೥
೔సభ ష∏ (ೖషഁ)ച೔೥

೔సభ
∏ (ೖశഁ)ച೔೥

೔సభ శ∏ (ೖషഁ)ച೔೥
೔సభ

, 𝜓
௞∗

మ ∏ ംച೔೥
೔సభ

∏ (మೖషം)ച೔೥
೔సభ శ∏ ംച೔೥

೔సభ

, 𝜓
௞∗

మ ∏ ഃച೔೥
೔సభ

∏ (మೖషഃ)ച೔೥
೔సభ శ∏ ഃച೔೥

೔సభ

〉 

=〈𝜓
௞∗

(ೖశഁ)ష(ೖషഁ)

(ೖశഁ)శ(ೖషഁ)

, 𝜓
௞∗

మം

(మೖషം)శം

, 𝜓
௞∗

మഃ

(మೖషഃ)శഃ

〉 

=〈𝜓ఉ , 𝜓ఊ , 𝜓ఋ〉=u 

Theorem 4. (Monotonicity) set two collections of LNNs 𝑢௜ = 〈𝜓ఉ೔
, 𝜓ఊ೔

, 𝜓ఋ೔
〉 and 𝑢௜

ᇱ  = 〈𝜓ఉ೔
ᇲ , 𝜓ఊ೔

ᇲ , 𝜓ఋ೔
ᇲ〉 (i=1, 

2,…, z) in 𝛹，if 𝑢௜ ≤ 𝑢௜
ᇱ then 

𝐿𝑁𝑁𝐸𝑊𝐴(𝑢ଵ, 𝑢ଶ, … 𝑢௭) ≤ 𝐿𝑁𝑁𝐸𝑊𝐴(𝑢ଵ
ᇱ, 𝑢ଶ

ᇱ, … 𝑢௭
ᇱ). 

Proof. For 𝑢௜ ≤ 𝑢௜
ᇱ, then 𝜖௜𝑢௜ ≤ 𝜖௜𝑢௜

ᇱ 

So, we can easily obtain: 

⊕௘

௭

௜ୀଵ
𝜖௜𝑢௜ ≤⊕௘

௭

௜ୀଵ
𝜖௜𝑢௜

ᇱ 

For 𝐿𝑁𝑁𝐸𝑊𝐴(𝑢ଵ, 𝑢ଶ, … 𝑢௭) = ⊕௘

௭

௜ୀଵ
𝜖௜𝑢௜ and 𝐿𝑁𝑁𝐸𝑊𝐴(𝑢ଵ

ᇱ, 𝑢ଶ
ᇱ, … 𝑢௭

ᇱ) =⊕௘

௭

௜ୀଵ
𝜖௜𝑢௜

ᇱ, then we can get: 

𝐿𝑁𝑁𝐸𝑊𝐴(𝑢ଵ, 𝑢ଶ, … 𝑢௭) ≤ 𝐿𝑁𝑁𝐸𝑊𝐴(𝑢ଵ
ᇱ, 𝑢ଶ

ᇱ, … 𝑢௭
ᇱ). ☐  

Theorem 5. (Boundedness) Let a collection 𝑢௜ = 〈𝜓ఉ೔
, 𝜓ఊ೔

, 𝜓ఋ೔
〉  in 𝛹 ，  𝑢ି =

〈𝑚𝑖𝑛 (𝜓𝛽𝑖
), 𝑚𝑎𝑥 (𝜓𝛾𝑖

), 𝑚𝑎𝑥 (𝜓𝛿𝑖
)〉  𝑎𝑛𝑑 𝑢ା = 〈𝑚𝑎𝑥 (𝜓𝛽𝑖

), 𝑚𝑖𝑛 (𝜓𝛾𝑖
), 𝑚𝑖𝑛 (𝜓𝛿𝑖

)〉, we can get: 

𝑢ି ≤ 𝐿𝑁𝑁𝐸𝑊𝐴(𝑢1, 𝑢2, … 𝑢𝑧) ≤ 𝑢ା. 

Proof. The following can be obtained by using Theorem 3: 

uି = LNNEWA(uି, uି … uି) ,  uା = LNNEWA(uା, uା … uା). 
The following can be obtained by using Theorem 4: 

LNNEWA (uି, uି … uି) ≤ LNNEWA(uଵ, uଶ, … u୸) ≤ LNNEWA(uା, uା … uା). 
Above all, we can get: 

uି ≤ LNNEWA(u1, u2, … uz) ≤ uା. ☐ 

3.2. LNNEWG Operators 

Definition 8. Set a collection 𝑢௜  = 〈𝜓ఉ೔
, 𝜓ఊ೔

, 𝜓ఋ೔
〉 in 𝛹, for i=1, 2, …, z, we define the LNNEWG operator:  

𝐿𝑁𝑁𝐸𝑊𝐺(𝑢ଵ, 𝑢ଶ, … 𝑢௭) =  ⊗௘

௭

௜ୀଵ
(𝑢௜)

ఢ೔ , (19) 

with the relative weight vector 𝜖 = (𝜖ଵ, 𝜖ଶ, … , 𝜖௭)் , ∑ 𝜖௜
௭
௜ୀଵ = 1 and𝜖௜ ∈ [0,1]. 

Theorem 6. Set a collection 𝑢௜  = 〈𝜓ఉ೔
, 𝜓ఊ೔

, 𝜓ఋ೔
〉  in  𝛹 , for i=1,2,…,z, then according to the LNNEWG 

aggregation operator, we can get the following result: 

   𝐿𝑁𝑁𝐸𝑊𝐺൫𝑢1, 𝑢2, … 𝑢
𝑧
൯ =  ⊗𝑒

𝑧

𝑖=1

(𝑢𝑖)
ఢ೔  

= 〈𝜓
௞∗

ଶ ∏ ఉ೔
𝜖𝑖೥

೔సభ

∏ (ଶ௞ିఉ೔)𝜖𝑖೥
೔సభ ା∏ ఉ೔

𝜖𝑖೥
೔సభ

, 𝜓
௞∗

∏ (௞ାఊ೔)𝜖𝑖೥
೔సభ ି∏ (௞ିఊ೔)𝜖𝑖೥

೔సభ

∏ (௞ାఊ೔)𝜖𝑖೥
೔సభ ା∏ (௞ିఊ೔)𝜖𝑖೥

೔సభ

, 𝜓
௞∗

∏ (௞ାఋ೔)𝜖𝑖೥
೔సభ ି∏ (௞ିఋ೔)𝜖𝑖೥

೔సభ

∏ (௞ାఋ೔)𝜖𝑖೥
೔సభ ା∏ (௞ିఋ೔)𝜖𝑖೥

೔సభ

〉 (20) 

with the relative weight vector 𝜖 = (𝜖ଵ, 𝜖ଶ, … , 𝜖௭)் , ∑ 𝜖௜
௭
௜ୀଵ = 1 and𝜖௜ ∈ [0,1]. 

Theorem 7. (Idempotency) Set a collection 𝑢௜  = 〈𝜓ఉ೔
, 𝜓ఊ೔

, 𝜓ఋ೔
〉 in 𝛹, for i=1,2,…,z, for every 𝑢௜ in 𝑢 is equal 

to u, we can get  



Mathematics 2019, 7, 389 7 of 11 

  

𝐿𝑁𝑁𝐸𝑊𝐺(𝑢ଵ, 𝑢ଶ, … 𝑢௭) = 𝐿𝑁𝑁𝐸𝑊𝐺(𝑢, 𝑢 … 𝑢) =  𝑢. 

Theorem 8. (Monotonicity). Set two collections of LNNs 𝑢௜ = 〈𝜓ఉ೔
, 𝜓ఊ೔

, 𝜓ఋ೔
〉 and 𝑢௜

ᇱ  = 〈𝜓ఉ೔
ᇲ , 𝜓ఊ೔

ᇲ , 𝜓ఋ೔
ᇲ〉 

(i=1, 2,…, z) in 𝛹，if 𝑢௜ ≤ 𝑢௜
′ then 

𝐿𝑁𝑁𝐸𝑊𝐺(𝑢ଵ, 𝑢ଶ, … 𝑢௭) ≤ 𝐿𝑁𝑁𝐸𝑊𝐺(𝑢1
′, 𝑢2

′, … 𝑢𝑧
′). 

Theorem 9. (Boundedness) Let a collection 𝑢௜ = 〈𝜓ఉ೔
, 𝜓ఊ೔

, 𝜓ఋ೔
〉  in 𝛹 ，  𝑢ି =

〈𝑚𝑖𝑛 (𝜓𝛽𝑖
), 𝑚𝑎𝑥 (𝜓𝛾𝑖

), 𝑚𝑎𝑥 (𝜓𝛿𝑖
)〉  𝑎𝑛𝑑 𝑢ା = 〈𝑚𝑎𝑥 (𝜓𝛽𝑖

), 𝑚𝑖𝑛 (𝜓𝛾𝑖
), 𝑚𝑖𝑛 (𝜓𝛿𝑖

)〉, we can get:  

𝑢ି ≤ 𝐿𝑁𝑁𝐸𝑊𝐺(𝑢1, 𝑢2, … 𝑢𝑧) ≤ 𝑢ା 

We omit the proof here because it is similar to Theorems 2–5.  

4. Methods with LNNEWA or LNNEWG Operator 

We introduce two MAGDM methods with the LNNEWA or LNNEWG operator in LNN 
information. 

Now, we suppose that a collection of alternatives is expressed 𝛩 = {𝛩ଵ , 𝛩ଶ, … , 𝛩௠}  and a 
collection of attributes is expressed  𝛦 = {𝐸ଵ, 𝐸ଶ, … , 𝐸௡} . Then, ϵ = (ϵଵ, ϵଶ, … , ϵ୬)୘  with ∑ ϵ୧

୬
୧ୀଵ = 1 

and ϵ୧ ∈ [0,1] is the weight vector of  𝐸௜(𝑖 = 1,2, … , 𝑛) . Establishing a set of experts  𝐷 =

{𝐷ଵ, 𝐷ଶ, … , 𝐷௧} ,  𝜇 = ൫𝜇ଵ,𝜇ଶ, … , 𝜇௧൯
்  with 1 ≥ 𝜇௝ ≥ 0 and  ∑ 𝜇௝

௧
௝ୀଵ = 1  is the weight vector of  𝐷௜(𝑖 =

1,2, … , 𝑡). Assuming that the expert 𝐷௬(𝑦 = 1,2, … , 𝑡) uses the LNNs to give out the assessed value 
  𝜃௜௝

(௬)  for alternative 𝛩௜  with the attribute  Ε௝ , the value   𝜃௜௝
(௬)  can be written as   𝜃௜௝

(௬)
=<

ψఉ೔ೕ

௬
, ψఊ೔ೕ

௬
, ψఋ೔ೕ

௬
> (𝑦 = 1,2, … , 𝑡 ; 𝑖 = 1,2, … , 𝑚; 𝑗 = 1,2, … , 𝑛), ψఉ೔ೕ

௬
, ψఊ೔ೕ

௬
, ψఋ೔ೕ

௬
∈ 𝛹 . Then, the decision 

evaluation matrix can be found. Table 1 is the decision matrix. 

Table 1. The decision matrix using linguistic neutrosophic numbers (LNN). 

 𝜠𝟏 … 𝜠𝒏 
𝛩ଵ 〈𝜓ఉభభ

௬
, 𝜓ఊభభ

௬
, 𝜓ఋభభ

௬ 〉 … 〈𝜓ఉభ೙

௬
, 𝜓ఊభ೙

௬
, 𝜓ఋభ೙

௬
 〉 

𝛩ଶ 〈𝜓ఉమభ

௬
, 𝜓ఊమభ

௬
, 𝜓ఋమభ

௬ 〉 … 〈𝜓ఉమ೙

௬
, 𝜓ఊమ೙

௬
, 𝜓ఋమ೙

௬ 〉 
… … … … 
𝛩௠ 〈𝜓ఉ೘భ

௬
, 𝜓ఊ೘భ

௬
, 𝜓ఋ೘భ

௬ 〉 … 〈𝜓ఉ೘೙

௬
, 𝜓ఊ೘೙

௬
, 𝜓ఋ೘೙

௬ 〉 

The decision steps are described as follows: 

Step 1: the integrated matrix can be obtained by the LNNEWA operator: 

                    𝜃௜௝ = 〈ψఉ೔ೕ
, ψఊ೔ೕ

, ψఋ೔ೕ
〉 = 𝐿𝑁𝑁𝐸𝑊𝐴൫𝜃௜௝

ଵ , 𝜃௜௝
ଶ , … , 𝜃௜௝

௧ ൯ =  ⊕௘

௧

௟ୀଵ
𝜃௟𝜃௜௝

௟    

= 〈𝜓
௞∗

∏ ቀ௞ାఉ೔ೕ
೗ ቁ

ഋ೗೟
೗సభ ି∏ ቀ௞ିఉ೔ೕ

೗ ቁ
ഋ೗೟

೗సభ

∏ ቀ௞ାఉ೔ೕ
೗ ቁ

ഋ೗೟
೗సభ ା∏ ቀ௞ିఉ೔ೕ

೗ ቁ
ഋ೗೟

೗సభ

, 𝜓
௞∗

ଶ ∏ ఊ೔ೕ
೗ ഋ೗೟

೗సభ

∏ (ଶ௞ିఊ೔ೕ
೗ )ഋ೗೟

೗సభ ା∏ ఊ೔ೕ
೗ ഋ೗೟

೗సభ

, 𝜓
௞∗

ଶ ∏ ఋ೔ೕ
೗ ഋ೗೟

೗సభ

∏ (ଶ௞ିఋ೔ೕ
೗ )ഋ೗೟

೗సభ ା∏ ఋ೔ೕ
೗ ഋ೗೟

೗సభ

〉 (21) 

Step 2: the total collective LNN 𝜃௜ (𝑖 = 1,2, … , 𝑚) can be obtained by the LNNWEA or LNNEWG 
operator. 
                             𝜃௜ = 𝐿𝑁𝑁𝐸𝑊𝐴(𝜃௜ଵ, 𝜃௜ଶ, … , 𝜃௜௡) = ⊕𝑒

𝑛

𝑗=1
𝜖𝑖𝑗𝜃𝑖𝑗 

= 〈𝜓
𝑘∗

∏ ቀ𝑘+𝛽𝑖𝑗ቁ
𝜖𝑖𝑗𝑛

𝑗=1 −∏ ቀ𝑘−𝛽𝑖𝑗ቁ
𝜖𝑖𝑗𝑛

𝑗=1

∏ ቀ𝑘+𝛽𝑖𝑗ቁ
𝜖𝑖𝑗𝑛

𝑗=1 +∏ ቀ𝑘−𝛽𝑖𝑗ቁ
𝜖𝑖𝑗𝑛

𝑗=1

, 𝜓
𝑘∗

2 ∏ 𝛾𝑖𝑗
𝜖𝑖𝑗𝑛

𝑗=1

∏ (2𝑘−𝛾𝑖𝑗)
𝜖𝑖𝑗𝑛

𝑗=1 +∏ 𝛾𝑖𝑗
𝜖𝑖𝑗𝑛

𝑗=1

, 𝜓
𝑘∗

2 ∏ 𝛿𝑖𝑗
𝜖𝑖𝑗𝑛

𝑗=1

∏ (2𝑘−𝛿𝑖𝑗)
𝜖𝑖𝑗𝑛

𝑗=1 +∏ 𝛿𝑖𝑗
𝜖𝑖𝑗𝑛

𝑗=1

〉 (22) 

Or 

                            𝜃௜ = 𝐿𝑁𝑁𝐸𝑊𝐺(𝜃௜ଵ, 𝜃௜ଶ, … , 𝜃௜௡) =⊗𝑒

𝑛

𝑗=1
൫𝜃𝑖𝑗൯

𝜖𝑖𝑗 

= 〈𝜓
௞∗

ଶ ∏ ఉ೔ೕ
𝜖𝑖𝑗೙

ೕసభ

∏ (ଶ௞ିఉ೔ೕ)
𝜖𝑖𝑗೙

ೕసభ ା∏ ఉ೔ೕ
𝜖𝑖𝑗೙

ೕసభ

, 𝜓
௞∗

∏ ൫௞ାఊ೔ೕ൯
𝜖𝑖𝑗೙

ೕసభ ି∏ ൫௞ିఊ೔ೕ൯
𝜖𝑖𝑗೙

ೕసభ

∏ ൫௞ାఊ೔ೕ൯
𝜖𝑖𝑗೙

ೕసభ ା∏ ൫௞ିఊ೔ೕ൯
𝜖𝑖𝑗೙

ೕసభ

, 𝜓
௞∗

∏ ൫௞ାఋ೔ೕ൯
𝜖𝑖𝑗೙

ೕసభ ି∏ ൫௞ିఋ೔ೕ൯
𝜖𝑖𝑗೙

ೕసభ

∏ ൫௞ାఋ೔ೕ൯
𝜖𝑖𝑗೙

ೕసభ ା∏ ൫௞ିఋ೔ೕ൯
𝜖𝑖𝑗೙

ೕసభ

〉 (23) 
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Step 3: according to Definition 3, we can calculate  ζ(𝜃௜)  and 𝜂(𝜃௜)   of every LNN  𝛩௜(𝑖 =

1,2, … , 𝑚). 
Step 4: According to ζ(𝜃௜), then we can rank the alternatives and the best one can be chosen out. 
Step 5: End. 

5. Illustrative Examples 

5.1. Numerical Example 

Now, we adopt illustrative examples of the MAGDM problems to verify the proposed decision 
methods. An investment company wants to find a company to invest. Now, there are four companies 
𝛩 = {𝛩ଵ, 𝛩ଶ, 𝛩ଷ, 𝛩ସ} to be considered as candidates, the first is for selling cars (𝛩ଵ), the second is for 
selling food (𝛩ଶ), the third is for selling computers (𝛩ଷ), and the last is for selling arms (Θସ). Next, 
three experts 𝐷 = ൛𝐷ଵ,𝐷ଶ,𝐷ଷൟ are invited to evaluate these companies, their weight vector is  𝜇 =

(0.37,0.33,0.3)். The experts make evaluations of the alternatives according to three attributes 𝐸 =

{𝐸ଵ, 𝐸ଶ, 𝐸ଷ} ,  𝐸ଵ  is the ability of risk, 𝐸ଶ  is the ability of growth, and 𝐸ଷ  is the ability of 
environmental impact, the weight vector of them is  𝜖 = (0.35,0.25,0.4)் .  Then, the experts use LNNs 
to make the evaluation values with a linguistic set Ψ = {ψ଴ = extremely poor, ψଵ = very poor, ψଶ =

poor, ψଷ = slightly poor, ψସ = medium , ψହ = slightly good, ψ଺ =  good, ψ଻ =  very good, ψ଼ =

 extremely good}. Then, the decision evaluation matrix can be established, Tables 2–4 show them.  

Table 2. The decision matrix based on the data of 𝐷ଵ. 

 𝑬𝟏 𝑬𝟐 𝑬𝟑 
𝛩ଵ 〈𝜓଺

ଵ, 𝜓ଵ
ଵ , 𝜓ଶ

ଵ〉 〈𝜓଻
ଵ, 𝜓ଶ

ଵ, 𝜓ଵ
ଵ〉 〈𝜓଺

ଵ, 𝜓ଶ
ଵ, 𝜓ଶ

ଵ〉 
𝛩ଶ 〈𝜓଻

ଵ, 𝜓ଵ
ଵ , 𝜓ଵ

ଵ〉 〈𝜓଻
ଵ, 𝜓ଷ

ଵ, 𝜓ଶ
ଵ〉 〈𝜓଻

ଵ, 𝜓ଶ
ଵ, 𝜓ଵ

ଵ〉 
𝛩ଷ 〈𝜓଺

ଵ, 𝜓ଶ
ଵ , 𝜓ଶ

ଵ〉 〈𝜓଻
ଵ, 𝜓ଵ

ଵ, 𝜓ଵ
ଵ〉 〈𝜓଺

ଵ, 𝜓ଶ
ଵ, 𝜓ଶ

ଵ〉 
𝛩ସ 〈𝜓଻

ଵ, 𝜓ଵ
ଵ , 𝜓ଶ

ଵ〉 〈𝜓଻
ଵ, 𝜓ଶ

ଵ, 𝜓ଷ
ଵ〉 〈𝜓଻

ଵ, 𝜓ଶ
ଵ, 𝜓ଵ

ଵ〉 

Table 3. The decision matrix based on the data of 𝐷ଶ. 

 𝑬𝟏 𝑬𝟐 𝑬𝟑 
𝛩ଵ 〈𝜓଺

ଶ, 𝜓ଵ
ଶ, 𝜓ଶ

ଶ〉 〈𝜓଺
ଶ, 𝜓ଵ

ଶ, 𝜓ଵ
ଶ〉 〈𝜓ସ

ଶ, 𝜓ଶ
ଶ, 𝜓ଷ

ଶ〉 
𝛩ଶ 〈𝜓଻

ଶ, 𝜓ଶ
ଶ, 𝜓ଷ

ଶ〉 〈𝜓଺
ଶ, 𝜓ଵ

ଶ, 𝜓ଵ
ଶ〉 〈𝜓ସ

ଶ, 𝜓ଶ
ଶ, 𝜓ଷ

ଶ〉 
𝛩ଷ 〈𝜓ହ

ଶ, 𝜓ଵ
ଶ, 𝜓ଶ

ଶ〉 〈𝜓ହ
ଶ, 𝜓ଵ

ଶ, 𝜓ଶ
ଶ〉 〈𝜓ହ

ଶ, 𝜓ସ
ଶ, 𝜓ଶ

ଶ〉 
𝛩ସ 〈𝜓଺

ଶ, 𝜓ଵ
ଶ, 𝜓ଵ

ଶ〉 〈𝜓ହ
ଶ, 𝜓ଵ

ଶ, 𝜓ଵ
ଶ〉 〈𝜓ହ

ଶ, 𝜓ଶ
ଶ, 𝜓ଷ

ଶ〉 

Table 4. The decision matrix based on the data of 𝐷ଷ. 

. 𝑬𝟏 𝑬𝟐 𝑬𝟑 
𝛩ଵ 〈𝜓଻

ଷ, 𝜓ଷ
ଷ, 𝜓ସ

ଷ〉 〈𝜓଻
ଷ, 𝜓ଷ

ଷ, 𝜓ଷ
ଷ〉 〈𝜓ହ

ଷ, 𝜓ଶ
ଷ, 𝜓ହ

ଷ〉 
𝛩ଶ 〈𝜓଺

ଷ, 𝜓ଷ
ଷ, 𝜓ସ

ଷ〉 〈𝜓ହ
ଷ, 𝜓ଵ

ଷ, 𝜓ଶ
ଷ〉 〈𝜓଺

ଷ, 𝜓ଶ
ଷ, 𝜓ଷ

ଷ〉 
𝛩ଷ 〈𝜓଻

ଷ, 𝜓ଶ
ଷ, 𝜓ସ

ଷ〉 〈𝜓଺
ଷ, 𝜓ଵ

ଷ, 𝜓ଶ
ଷ〉 〈𝜓଻

ଷ, 𝜓ଶ
ଷ, 𝜓ସ

ଷ〉 
𝛩ସ 〈𝜓଻

ଷ, 𝜓ଶ
ଷ, 𝜓ଷ

ଷ〉 〈𝜓ହ
ଷ, 𝜓ଶ

ଷ, 𝜓ଵ
ଷ〉 〈𝜓଺

ଷ, 𝜓ଵ
ଷ, 𝜓ଵ

ଷ〉 

Now, the proposed method is applied to manage this MAGDM problem and the computational 
procedures are as follows: 

Step 1: the overall decision matrix can be obtained by the LNNEWA operator in Table 5. 

Table 5. The overall decision matrix. 

 𝑬𝟏 𝑬𝟐 𝑬𝟑 
𝛩ଵ 〈𝜓଺.ଷ଺଻ଵ, 𝜓ଵ.ସଵଵ଺, 𝜓ଶ.ସ଼଼଼〉 〈𝜓଺.଻ଷ଺଺, 𝜓ଵ.଼ଵଽଵ, 𝜓ଵ.ସଵଵ଺〉 〈𝜓ହ.ଵଷସଷ, 𝜓ଶ.଴଴଴, 𝜓ଷ.଴଺ଷ଻〉 
𝛩ଶ 〈𝜓଺.଻଺ଷ଴, 𝜓ଵ.଻଻଴ହ, 𝜓ଶ.ଶଷଽ଻〉 〈𝜓଺.ଶଶଽହ, 𝜓ଵ.ହଶ଻ହ, 𝜓ଵ.ହଽଽ଻〉 〈𝜓଺.଴଴ସଶ, 𝜓ଶ.଴଴଴, 𝜓ଶ.଴ଷହହ〉 
𝛩ଷ 〈𝜓଺.ଵଶ଴଴, 𝜓ଵ.ହଽଽ଻, 𝜓ଶ.ସ଼଼଼〉 〈𝜓଺.ଶ଴଺଻, 𝜓ଵ.଴଴଴, 𝜓ଵ.ହହ଺ସ〉 〈𝜓଺.ଵଶ଴଴, 𝜓ଶ.ହସଶ଻, 𝜓ଶ.ସ଼଼଼〉 
𝛩ସ 〈𝜓଺.଻ଷ଺଺, 𝜓ଵ.ଶଷ଻଴, 𝜓ଵ.଼ଵଽଵ〉 〈𝜓ହ.ଽ଺ସହ, 𝜓ଵ.ହଽଽ଻, 𝜓ଵ.ହଶ଻ହ〉 〈𝜓଺.ଶ଴଺଻, 𝜓ଵ.଺ଷଶଽ, 𝜓ଵ.ସ଺଴ଶ〉 
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Step 2：the total collective LNN 𝜃௜ (𝑖 = 1,2, … , 𝑚) can be obtained by the LNNWEA operator: 
𝜃ଵ = 〈𝜓଺.଴଺଺ଵ, 𝜓ଵ.଻ଷଵଷ, 𝜓ଶ.ଷ଺ସସ〉, 𝜃ଶ = 〈𝜓଺.଴ଽ଺ଵ, 𝜓ଵ.଻ଽଶଽ, 𝜓ଵ.ଽ଼ସ଴〉, 

 𝜃ଷ = 〈𝜓ହ.଻ହଶଷ, 𝜓ଵ.଻ଶ଺଴, 𝜓ଶ.ଶଵଽଽ〉, and 𝜃ସ = 〈𝜓଺.ସଵଽ଼, 𝜓ଵ.ସ଻ହଷ, 𝜓ଵ.ହଽହ଻〉. 
Step 3: according to Definition 3, the expected values of  ζ(𝜃௜) for   𝜃௜(𝑖 = 1,2,3,4)  can be 

calculated: 
ζ(𝜃ଵ) =0.7488,ζ(𝜃ଶ) =0.7633,ζ(𝜃ଷ) =0.7419, andζ(𝜃ସ) =0.8062. 

Based on the expected values, four alternatives can be ranked 𝛩ସ ≻ 𝛩ଶ ≻ 𝛩ଵ ≻ 𝛩ଷ, thus, company 
𝛩ସ is the optimal choice. 

Now, the LNNEWG operator was used to manage this MAGDM problem: 

Step 1’: the overall decision matrix can be obtained by the LNNEWA operator; 
Step 2’: the total collective LNN 𝜃௜ (𝑖 = 1,2, … , 𝑚) can be obtained by the LNNEWG operator, 

which are as following: 

𝜃ଵ = 〈𝜓ହ.ଽସଽଵ, 𝜓ଵ.଻ହ଴଻, 𝜓ଶ.ସ଺଺଴〉, 𝜃ଶ = 〈𝜓଺.ହ଼଺ସ, 𝜓ଵ.଼଴ଶ଺, 𝜓ଶ.଴଴଴଴〉, 𝜃ଷ = 〈𝜓଺.଼ଷହସ, 𝜓ଵ.଼ଷଽ଴, 𝜓ଶ.ଶ଺ଵସ〉,

and 𝜃ସ = 〈𝜓଺.ଷଽହ଴, 𝜓ଵ.ସ଼଺଼, 𝜓ଵ.଺଴ଷଷ〉. 

Step 3’: according to Definition 3, the expected values of  ζ(𝜃௜) for   𝜃௜(𝑖 = 1,2,3,4)  can be 
calculated: 

ζ(𝜃ଵ) =0.7389, ζ(𝜃ଶ) =0.7827, ζ(𝜃ଷ) =0.7806, andζ(𝜃ସ) =0.8043. 

Based on the expected values, four alternatives can be ranked 𝛩ସ ≻ 𝛩ଶ ≻ 𝛩ଷ ≻ 𝛩ଵ, thus, company 
𝛩ସ is still the optimal choice. 

Clearly, there exists a small difference in sorting between these two kinds of methods. However, 
we can get the same optimal choice by using the LNNEWA and LNNEWG operators. The proposed 
methods are effective ranking methods for the MCDM problem. 

5.2. Comparative Analysis 

Now, we do some comparisons with other related methods for LNN, all the results are shown 
in Table 6. 

Table 6. The ranking orders by utilizing three different methods. 

Method Result Ranking Order 
The Best 

Alternative 
Method 1 based on 

arithmetic 
averaging in [15] 

𝜻(𝜽𝟏) = 0.7528, 𝜻(𝜽𝟐) = 0 .7777, 
𝜻(𝜽𝟑) = 0.7613, 𝜻(𝜽𝟒)  = 0.8060. 

𝜽𝟒 ≻ 𝜽𝟐 ≻ 𝜽𝟑 ≻ 𝜽𝟏 𝜽𝟒 

Method 2 based on 
geometric 

averaging in [15] 

𝜻(𝜽𝟏) = 0.7397, 𝜻(𝜽𝟐) = 0.7747, 
𝜻(𝜽𝟑) = 0.7531, 𝜻(𝜽𝟒)  = 0.8035. 

𝜽𝟒 ≻ 𝜽𝟐 ≻ 𝜽𝟑 ≻ 𝜽𝟏 𝜽𝟒 

Method 3 based on 
Bonferroni Mean in 

[16] (p = q = 1) 

𝜻(𝜽𝟏) = 0.7298, 𝜻(𝜽𝟐) = 0.7508, 
𝜻(𝜽𝟑) = 0.7424 𝜻(𝜽𝟒) = 0.7864. 

𝜽𝟒 ≻ 𝜽𝟐 ≻ 𝜽𝟑 ≻ 𝜽𝟏 𝜽𝟒 

The proposed 
method 

𝜻(𝜽𝟏) = 0.7488, 𝜻(𝜽𝟐) = 0.7633, 
𝜻(𝜽𝟑) = 0.7419 𝜻(𝜽𝟒) = 0.8062. 

𝜽𝟒 ≻ 𝜽𝟐 ≻ 𝜽𝟏 ≻ 𝜽𝟑 𝜽𝟒 

As shown in Table 6, we can see that company 𝜃ସ is the best choice for investing by using four 
methods. Many methods such as arithmetic averaging, geometric averaging, and Bonferroni mean 
can all be used in LNN to handle the multiple attribute decision-making problems and can get similar 
results. Additionally, The Einstein aggregation operator is smoother than the algebra aggregation 
operator, which is used in the literature [15,16]. Compared to the existing literature [2–14], LNNs can 
express and manage pure linguistic evaluation values, while other literature [2–14] cannot do that. In 
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this paper, a new MAGDM method was presented by using the LNNEWA or LNNEWG operator 
based on LNN environment. 

6. Conclusions 

A new approach for solving MAGDM problems was proposed in this paper. First, we applied 
the Einstein operation to a linguistic neutrosophic set and established the new operation rules of this 
linguistic neutrosophic set based on the Einstein operator. Second, we combined some aggregation 
operators with the linguistic neutrosophic set and defined the linguistic neutrosophic number 
Einstein weight average operator and the linguistic neutrosophic number Einstein weight geometric 
(LNNEWG) operator according the new operation rules. Finally, by using the LNNEWA and 
LNNEWG operator, two methods for handling MADGM problem were presented. In addition, these 
two methods were introduced into a concrete example to show the practicality and advantages of the 
proposed approach. In future, we will further study the Einstein operation in other neutrosophic 
environment just like the refined neutrosophic set [30]. At the same time, we will use these 
aggregation operators in many actual fields, such as campaign management, decision making and 
clustering analysis and so on [31–33]. 
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