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Abstract

In the present study we aim to introduce novel concepts of m-polar neutrosophic set (MPNS) and

m-polar neutrosophic topology. For this aim, we first investigate several characterizations of the notion

of m-polar neutrosophic set and discuss its fundamental properties. We establish some operations on m-

polar neutrosophic set. We propose score functions for the comparison of m-polar neutrosophic numbers

(MPNNs). Then we introduce m-polar neutrosophic topology and define interior, closure, exterior and

frontier for m-polar neutrosophic sets (MPNSs) with illustrative examples. We discuss some results which

holds for classical set theory but do not hold for m-polar neutrosophic set theory. We introduce cosine

similarity measure and set theoretic similarity measures for MPNSs. Furthermore, we present two algo-

rithms for multi-criteria decision-making (MCDM) in medical diagnosis by using m-polar neutrosophic

set (MPNS) and m-polar neutrosophic topology.

Keywords: m-polar neutrosphic set, score functions for MPNNs, m-polar neutrosphic topological space,

similarity measures for MPNSs, multi-criteria decision-making for medical diagnosis.

1 Introduction and background

A number of useful mathematical tools such as fuzzy sets, m-polar fuzzy sets, neutrosophic sets and soft sets

have been developed to deal with uncertainties. These theories have been found to be particularly useful

in decision making under uncertainty. Multi-criteria decision-making (MCDM) is a process that explicitly

evaluates best alternative(s) among the feasible options. In primitive times, decisions were framed without

handling the uncertainties in the data, which may lead to inadequate results toward the real-life operating

situations. If we amass the data and deduce the result without handling uncertainties, then given results

will be undecided, indefinite or equivocal. Since all these facilitate the uncertainties to a great extent, they

cannot withstand situations where the decision maker has to consider the falsity corresponding to the truth

value ranging over an interval. MCDM is an integral part in modern management, business, medical diag-

nosis and many other real wold problems. Essentially, rational or sound decision is necessary for a decision
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maker. Every decision maker takes hundreds of decisions subconsciously or consciously making it as the

key component of his performance. Medical diagnosis with MCDM provides solutions for the doctors to

determine symptoms of disease and kind of illness.

Zadeh introduced fuzzy set [60] as a significant mathematical model to characterize and assembling of the

objects whose boundary is obscure. A fuzzy set F on the set of objects Q is a mathematical mapping

σ : Q → [0, 1]. After Zadeh, many extensions of fuzzy sets have been presented and investigated such as,

intuitionistic fuzzy set (IFS) [4], single valued neutrosophic set (SVNS) [38, 39], picture fuzzy set [11], bipolar

fuzzy sets [62]-[64], m-polar fuzzy set (MPFS) [8], interval valued fuzzy set (IVFS) [61] and Pythagorean

fuzzy set (PFS) [53]-[55]. A fuzzy neutrosophic set N is defined by N = {〈ς,A(ς),S(ς),Y(ς)〉, ς ∈ Q}, where
A,S,Y : Q →]−0, 1+[ and −0 ≤ A(ς) +S(ς) +Y(ς) ≤ 3+ The neutrosophic set yields the value from real

standard or non-standard subsets of ]−0, 1+[. It is difficult to utilize these values in daily life science and

technology problems. Consequently, the neutrosophic set which takes the value from the subset of [0, 1] is

to be regarded here. An abstraction of bipolar fuzzy set was inaugurated by Chen [8] named as MPFS.

An MPFS C on a non-empty universal set Q is a mathematical function C : Q → [0, 1]m, symbolized by

C = {〈ς, PioΛ(ς)〉 : ς ∈ Q; i = 1, 2, 3, ...,m} where and Pi : [0, 1]
m → [0, 1] is the i-th projection mathematical

function (i ∈ m). Cφ(ς) = (0, 0, ..., 0) is the smallest value in [0, 1]m and C
X̃
(ς) = (1, 1, ..., 1) is the greatest

value in [0, 1]m.

Multi-criteria decision making is used in solving problems that contain complex and multiple criteria. In

MCDM, we have to identify the problem by determining the possible alternatives, evaluate each alternative

based upon the criteria given by the decision maker or group of decision makers and lastly select the best

alternative. MCDM is a very efficient tool in handling complex problems. In the problems, it is useful to

find the best alternative. MCDM allows us to focus on what is easy to use, consistent and reliable. MCDM

problems are applied in many disciplines, including software engineering, medical sciences, information sys-

tems, social sciences and economics. MCDM problems under fuzzy environment were first introduced by

Bellman and Zadeh in (1970) [7].

In the last few decades, many mathematicians worked on similarity measures and correlation coefficients.

These measures have different formulae according to the different sets and give better solution to decision-

making problems. It has numerous applications in the field of pattern recognition, medical diagnosis, artificial

intelligence, social sciences, business and multi-attribute decision-making problems.

Akram et al. [1, 2],[26] presented certain applications of m-polar fuzzy set and neutrosophic incidence fuzzy

graphs in decision making problems. Ali et al. [3] presented various properties of soft sets and rough sets

with fuzzy soft set. Garg [12] introduced new generalized Pythagorean fuzzy information aggregation using

Einstein operations and its application to decision making. Garg [13] introduced generalized intuitionistic

fuzzy interactive geometric interaction operators using Einstein t-norm and t-conorm and their application

to decision making. Kaur and Garg [17] introduced cubic intuitionistic fuzzy aggregation operators. Ku-

mar and Garg [18] introduced TOPSIS method based on the connection number of set pair analysis under

interval-valued intuitionistic fuzzy set environment. Karaaslan [19] introduced neutrosophic Soft Set with

applications in Decision Making. Xu et al. [47, 48, 49, 50] introduced some results on hesitant fuzzy set

theory and weighted averaging operators, geometric operators and induced generalized operators based on

intuitionistic fuzzy set (IFS). Jose and Kuriaskose [16] investigated aggregation operators with the corre-

sponding score function for MCDM in the context of IFNs. Mahmood et al. [23] established generalized

aggregation operators for CHFNs and use it into MCDM. After fuzzy topology many researchers have been
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introduced topologies and their properties on different hybrid structures of fuzzy set theory. In 1968, Chang

[10] interpreted fuzzy topology on fuzzy set. Pao-Ming and Ying-Ming [24, 25] introduced the structure

of neighborhood of fuzzy-point. They provided the concept of fuzzy quasi-coincident and Q-neighborhood.

They also discussed important properties of fuzzy topology by using fuzzy Q-neighborhood. Shabir and

Naz [40] established soft topological spaces. Riaz and Hashmi [28, 29, 30, 31, 32] investigated certain ap-

plications of FPFS-sets, FPFS-topology and FPFS-compact spaces. They developed fixed point theorems

of FNS-mapping with its decision-making. Riaz et al. [33, 34] introduced soft rough topology with multi-

attribute group decision making problems (MAGDM). Riaz and Tahrim [35, 36, 37] established the idea of

bipolar fuzzy soft topology and cubic bipolar fuzzy ordered weighted geometric aggregation operators and

their application using internal and external cubic bipolar fuzzy data. They presented various illustrations

and decision-making applications of these concepts by using different algorithms.

Qurashi and Shabir [27] presented generalized approximations of (∈,∈ ∨q)-fuzzy ideals in quantales. Feng

et al. [14, 15] introduced properties of soft sets combined with fuzzy soft set and MADM models in the

environment of generalized IF soft set and fuzzy soft set. Boran et al. [5] use TOPSIS decision-making

method for the supplier selection in the context of IFS. Liu et al. [20] worked on hesitant IF linguistic oper-

ators and presented its MAGDM problem. Wei et al. [44] established hesitant triangular fuzzy operators in

MADGDM problems. Wei et al. [45, 46] worked on similarity measures on picture fuzzy set and correlation

coefficient to interval-valued intuitionistic fuzzy set with application in decision-making. Ye [56, 57, 58, 59]

introduced prioritized aggregation operators in the context of IVHFS and worked on its MAGDM. He also

established MCDM methods for interval neutrosophic sets and correlation coefficient under single-value neu-

trosophic environment. He established cosine similarity measures for intuitionistic fuzzy sets with application

in decision-making problems. Zhang et al. [65] introduced aggregation operators with MCDM by using in-

terval valued FNS (IVFNS). An extended TOPSIS method for decision-making was developed by Chi and

Lui [9] on IVFNS. Zhao [66] et al. worked on generalized aggregation operators in the context of IFS.

Zhang et al. [67, 68] introduced fuzzy soft β-covering based fuzzy rough sets, covering-based generalized IF

rough sets and novel classes of fuzzy soft with corresponding decision-making applications. Li and Cheng

[21] established new similarity measures of IFSs and its applications to pattern recognition. Lin et al. [22]

worked on hesitant fuzzy linguistic information and its application to models of selecting an ERP system.

Bhattachayra [6] worked on measure on divergence of two multinomial populations. Salton and McGill [41]

introduced modern information retrieval. Singh [42] introduced correlation coefficients of picture fuzzy sets.

Son [43] inaugurated a novel distributed picture fuzzy clustering method on picture fuzzy sets. Xu and Chen

[51, 52] established correlation, distance and similarity measures on intuitionistic fuzzy sets.

In this era, experts believe that the world is moving towards multi-polarity. Therefore it comes as no surprise

that multi-polarity in data and information plays a vital role in various fields of science and technology. In

neurobiology, multipolar neurons in brain gather a great deal of information from other neurons. In infor-

mation technology, multipolar technology can be exploited to operate large scale systems. The motivation

of this extended and hybrid work is given step by step in the whole manuscript. We show that other hybrid

structures of fuzzy sets become special cases of MPNS under some suitable conditions. We discuss about

the validity, flexibility, simplicity and superiority of our proposed model and algorithms. This model is most

generalized form and use to collect data at a large scale and applicable in medical, engineering, artificial

intelligence, agriculture and other daily life problems. In future, this work can be gone easily for other

approaches and different types of hybrid structures.
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The layout of this paper is systematized as follows. Section 2, implies a novel idea of m-polar neutrosophic

set (MPNS). We establish some of its operations, score function and improved score function. In section 3,

we use MPNS to establish m-polar neutrosophic topological space. We define various topological structures

such as interior, closure, exterior and frontier for MPNSs with the help of illustrations. We establish var-

ious results with their counter examples, which holds for classical set theory, but do not hold for m-polar

neutrosophic set theory. We introduce cosine and set theoretic similarity measures for MPNSs. In section

4, we establish a method for the solution of MCDM problem based on medical diagnosis using MPNTS

and MPNSs. We proposed two algorithms with linguistic information based on m-polar neutrosophic data

using MPNTS and similarity measures. It is interesting to note that both algorithms yields the same result.

Furthermore, we present advantages, simplicity, flexibility and validity of the proposed algorithms. We give

a brief discussion and comparative analysis of our proposed approach with some existing methodologies.

Finally, the conclusion of this research is summarized in section 5.

2 m-polar Neutrosophic Set (MPNS)

Chen et al. [8] have proposed the concept of m-polar fuzzy set (MPFS) in 2014, which have the capability

to deal with the data having vagueness and uncertainty under multi-criteria, multi-source, multi-sensor and

multipolar information. The membership grades of m-polar fuzzy sets range over the interval [0, 1]m, which

represent m attributes of the object, but it cannot deal with the falsity and indeterminacy part of the object.

Neutrosophic set (NS) deals with truth, falsity and indeterminacy for one criteria of the attribute, but cannot

deal with the multi-criteria, multi-source, multi-process information fusion of the attribute. To overcome

this problem, we introduce a new model of m-polar neutrosophic set (MPNS) by combining the concepts of

m-polar fuzzy set (MPFS) and neutrosophic set (NS). MPNS has the ability to deal with the m attributes

and to deal with the truth, falsity and indeterminacy grades for each attribute. In fact, m-polar neutrosophic

set is the extension of bipolar neutrosophic set. We establish various properties and operations on m-polar

neutrosophic set. We propose score functions for the comparison of m-polar neutrosophic numbers (MPNNs).

In the whole manuscript, we use Q as a fixed sample space and ∆ as an indexing set.

Definition 2.1. An object MN on the reference set Q is called m-polar neutrosophic set (MPNS), if it can

be expressed as

MN = {
(

ς, 〈Aα(ς),Sα(ς),Yα(ς)〉
)

: ς ∈ Q, α = 1, 2, 3, ...,m}

where Aα,Sα,Yα : Q → [0, 1] and 0 ≤ Aα(ς) +Sα(ς) +Yα(ς) ≤ 3; α = 1, 2, 3, ...,m. This condition shows

that all the three grades Aα,Sα and Yα; (α = 1, 2, 3, ...,m) are independent and represents the truth,

indeterminacy and falsity of the considered object or attribute for multiple criteria respectively. Simply an

m-polar neutrosophic number (MPNN) can be represented as ℑ =
(

〈Aα,Sα,Yα〉
)

, where 0 ≤ Aα+Sα+Yα ≤
3; α = 1, 2, 3, ...,m. In tabular form the MPNS can be represented as Table 1.
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Table 1: m-polar neutrosophic set

MN MPNS

ς1
(
〈A1(ς1),S1(ς1),Y1(ς1)〉, 〈A2(ς1),S2(ς1),Y2(ς1)〉, ..., 〈Am(ς1),Sm(ς1),Ym(ς1)〉

)

ς2
(
〈A1(ς2),S1(ς2),Y1(ς2)〉, 〈A2(ς2),S2(ς2),Y2(ς2)〉, ..., 〈Am(ς2),Sm(ς2),Ym(ς2)〉

)

... ... ... ... ... ... ... ...

ςN
(
〈A1(ςN),S1(ςN),Y1(ςN)〉, 〈A2(ςN),S2(ςN),Y2(ςN)〉, ..., 〈Am(ςN),Sm(ςN),Ym(ςN)〉

)

Example 2.2. Let Q = {ς1, ς2, ς3} be the collection of some well-known mobile phones. Then 4-polar

neutrosophic set over Q can be written as

MN = {(ς1, 〈0.512, 0.231, 0.321〉, 〈0.653, 0.223, 0.116〉, 〈0.875, 0.114, 0.243〉, 〈0.961, 0.115, 0.431〉),
(ς2, 〈0.657, 0.114, 0.226〉, 〈0.765, 0.224, 0.245〉, 〈0.875, 0.465, 0.213〉, 〈0.961, 0.141, 0.212〉),
(ς3, 〈0.876, 0.221, 0.321〉, 〈0.657, 0.115, 0.116〉, 〈0.987, 0.114, 0.322〉, 〈0.675, 0.221, 0.423〉)}.
In this set multi-polarity of each attribute ς shows its characteristic or qualities according to the considered

criteria such as ”affordable”, ”long lasting battery”, ”extra storage” and ”good camera quality”. For each

ς and each of its criteria, we have neutrosophic values to represent the truth, indeterminacy and falsity of

corresponding attribute according to the considered criteria under the influence of expert’s opinion. In the

set MN for ς1 the first triplet 〈0.512, 0.231, 0.321〉 shows that the mobile phone ς1 has 51.2% truth value,

23.1% indeterminacy and 32.1% falsity value for the criteria ”affordable”. Similarly we can see the next

values for all attributes and corresponding criteria.

There is a relationship between MPNS and other hybrid structures of fuzzy set. This relationship can be

elaborated in the given flow chart diagram of Figure 1, where α = 1, 2, 3, ..,m.

m-polar neutrosophic set

M = 1

Fuzzy neutrosophic set

Sα = 0

0 ≤ Aα +Yα ≤ 1

m-polar intuitionistic fuzzy set

Yα = 0

Aα ⊆ [0, 1]

Interval valued m-polar fuzzy set inf[A−
α ,A+

α ] = sup[A−
α ,A+

α ]

m-polar fuzzy set

Fuzzy set

m = 1

Figure 1: Relationship between MPNS and other hybrid fuzzy sets

Definition 2.3. An MPNS MN is said to be an empty MPNS, if Aα(ς) = 0,Sα(ς) = 1 and Yα(ς) = 1, ∀α =
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1, 2, 3, ...,m and it can be scripted as

0MN = {ς, (〈0, 1, 1〉, 〈0, 1, 1〉, ..., 〈0, 1, 1〉) : ς ∈ Q}

and for absolute MPNS we have Aα(ς) = 1,Sα(ς) = 0 and Yα(ς) = 0, ∀α = 1, 2, 3, ...,m and it can be

written as
1MN = {ς, (〈1, 0, 0〉, 〈1, 0, 0〉, ..., 〈1, 0, 0〉) : ς ∈ Q}

The assembling of all MPNSs over 1MN is represented as mpn(1MN).

We define some operations for MPNSs.

Definition 2.4. Let MN,MN℘
∈ mpn(1MN), where MN = {

(

ς, 〈Aα(ς),Sα(ς),Yα(ς)〉
)

: ς ∈ Q, α =

1, 2, 3, ...,m} and MN℘
= {

(

ς, 〈℘Aα(ς),
℘Sα(ς),

℘Yα(ς)〉
)

: ς ∈ Q, ℘ ∈ ∆, α = 1, 2, 3, ...,m}, then:
(i): Mc

N = {
(

ς, 〈Yα(ς), 1 −Sα(ς),Aα(ς)〉
)

: ς ∈ Q, α = 1, 2, 3, ...,m}
(ii): MN1

= MN2
⇔ 〈1Aα(ς),

1Sα(ς),
1Yα(ς)〉 = 〈2Aα(ς),

2Sα(ς),
2Yα(ς)〉; ς ∈ Q, α = 1, 2, 3, ...,m

(iii): MN1
⊆ MN2

⇔ 1Aα(ς) ≤ 2Aα(ς),
1Sα(ς) ≥ 2Sα(ς),

1Yα(ς) ≥ 2Yα(ς); ς ∈ Q, α = 1, 2, 3, ...,m

(iv):
⋃

℘

MN℘
= {(ς,

〈

sup
℘

℘Aα(ς), inf
℘

℘Sα(ς), inf
℘

℘Yα(ς)
〉

); ς ∈ Q, ℘ ∈ ∆, α = 1, 2, 3, ...,m}

(v):
⋂

℘

MN℘
= {(ς,

〈

inf
℘

℘Aα(ς), sup
℘

℘Sα(ς), sup
℘

℘Yα(ς)
〉

); ς ∈ Q, ℘ ∈ ∆, α = 1, 2, 3, ...,m}

Example 2.5. Consider two 4-polar neutrosophic sets MN1
and MN2

given in tabular form as

Table 2: 4-polar neutrosophic sets

Q 4PNSs

MN1

(
〈0.611, 0.111, 0.251〉, 〈0.821, 0.631, 0.111〉, 〈0.721, 0.381, 0.591〉, 〈0.211, 0.321, 0.411〉

)

MN2

(
〈0.321, 0.621, 0.511〉, 〈0.831, 0.111, 0.921〉, 〈0.521, 0.431, 0.391〉, 〈0.181, 0.931, 0.821〉

)

Now we calculate complement, union and intersection by using Definition 2.4 and results can be seen in

tabular form as

Table 3: 4-polar neutrosophic sets

Q 4PNSs

Mc
N

(
〈0.251, 0.889, 0.611〉, 〈0.111, 0.369, 0.821〉, 〈0.591, 0.619, 0.721〉, 〈0.411, 0.679, 0.211〉

)

MN1
∪ MN2

(
〈0.611, 0.111, 0.251〉, 〈0.831, 0.111, 0.111〉, 〈0.721, 0.381, 0.391〉, 〈0.211, 0.321, 0.411〉

)

MN1
∩ MN2

(
〈0.321, 0.621, 0.511〉, 〈0.821, 0.631, 0.921〉, 〈0.521, 0.431, 0.591〉, 〈0.181, 0.931, 0.821〉

)

Definition 2.6. If we want to do mathematical modeling with m-polar fuzzy neutrosophic numbers (MPNNs)

to the decision-making problems or any application to multi-attribute decision-making, then it is neces-

sary to rank these numbers. For this we have to define some score functions corresponding to MPNN,

ℑ =
(

〈Aα,Sα,Yα〉;α = 1, 2, 3, ...,m
)

given as:

£1(ℑ) =
1

2m

(

m+
m
∑

α=1

(Aα − 2Sα −Yα)

)

; £1(ℑ) ∈ [0, 1]
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£2(ℑ) =
1

m

m
∑

α=1

(Aα − 2Sα −Yα); £2(ℑ) ∈ [−1, 1]

By using above score functions there must be a possibility when score of two MPNNs will be same. For this

purpose we define an improved score function for ranking of MPNNs scripted as

£3(ℑ) =
1

2m

(

m+

m
∑

α=1

(

(Aα − 2Sα −Yα)(2 − Aα −Yα)
)

)

; £3(ℑ) ∈ [−1, 1]

In some cases when Aα +Yα = 1; ∀ α = 1, 2, ...,m then £3(ℑ) reduces to £1(ℑ).

Definition 2.7. Let ℑ1 and ℑ2 be two MPNNs, then by using score function we can define an order relation

between these MPNNs given as:

(a): If £1(ℑ1) ≻ £1(ℑ2) then ℑ1 ≻ ℑ2.

(b): If £1(ℑ1) = £1(ℑ2) then

(1): If £2(ℑ1) ≻ £2(ℑ2) then ℑ1 ≻ ℑ2.

(2): If £2(ℑ1) = £2(ℑ2) then

(i): If £3(ℑ1) ≻ £3(ℑ2) then ℑ1 ≻ ℑ2.

(ii): If £3(ℑ1) ≺ £3(ℑ2) then ℑ1 ≺ ℑ2.

(iii): If £3(ℑ1) = £3(ℑ2) then ℑ1 ∼ ℑ2.

Example 2.8. Consider two 2-polar neutrosophic numbers ℑ1 and ℑ2 given in tabular form as

Table 4: 2-polar neutrosophic numbers

Q 2PNNs

ℑ1

(
〈0.5, 0.3, 0.4〉, 〈0.5, 0.1, 0.8〉

)

ℑ2

(
〈0.2, 0.3, 0.1〉, 〈0.2, 0.1, 0.5〉

)

Then by using Definition 2.6 £1(ℑ1) =
1

2(2) [2 + 0.5− 2(0.3)− 0.4 + 0.5− 2(0.1)− 0.8] = 0.25. Similarly,

£1(ℑ2) = 0.25. This shows that £1 fails to give the ranking between both 2PNNs. Now we will use second

score function £2. By using Definition 2.6 we obtain the score values £2(ℑ1) = −0.5 = £2(ℑ2). This shows

that £2 also fails to evaluate the ranking. Now we will use improved score function for the ranking of 2PNNs.

After calculations we get £3(ℑ1) = 0.275 and £3(ℑ2) = 0.125. Hence £3(ℑ1) ≻ £3(ℑ2), so ℑ1 ≻ ℑ2.

Remark. • For null MPNN 0ℑ we have £3(
0ℑ) = −1.

• For absolute MPNN 1ℑ we have £3(
1ℑ) = 1.

Proposition 2.9. Let MN ∈ mpn(1MN) and 0MN and 1MN are null and absolute MPNSs, respectively.

Then the following axioms holds:

(i): MN ⊆ MN ∪MN,

(ii): MN ∩MN ⊆ MN,

(iii): MN ∪ 0MN = MN,

(iv): MN ∩ 0MN = 0MN,

(v): MN ∪ 1MN = 1MN,

(vi): MN ∩ 1MN = MN
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Proof. The proof is obvious and can be easily done by using Definition 2.4.

Proposition 2.10. Let MN1
,MN1

,MN3
∈ mpn(1MN), then the following results holds:

(i): MN1
∪MN2

= MN2
∪MN1

,

(ii): MN1
∩MN2

= MN2
∩MN1

,

(iii): MN1
∪ (MN2

∪MN3
) = (MN1

∪MN2
) ∪MN3

,

(iv): MN1
∩ (MN2

∩MN3
) = (MN1

∩MN2
) ∩MN3

,

(v): (MN1
∪MN2

)c = Mc
N1

∩Mc
N2

,

(vi): (MN1
∩MN2

)c = Mc
N1

∪Mc
N2

Proof. The proof is obvious and can be easily done by using Definition 2.4.

3 m-polar Neutrosophic Topology

In this section, we introduce the m-polar neutrosophic topology on m-polar neutrosophic set and discuss

interior, closure, exterior and frontier of MPNSs with the help of illustrations. We introduce various results

which holds for classical set theory but do not hold for MPN data. We present cosine similarity measure

and set theoretic similarity measures to find the similarity between MPNSs.

Definition 3.1. Let Q be the non-empty reference set and mpn(1MN) be the collection of all MPNSs over

Q. Then TMN
is the collection of MPN-subsets of mpn(1MN) is called m-polar neutrosophic topological

space (MPNTS) if it satisfies the following properties:

(i): 0MN, 1MN ∈ TMN
.

(ii): If (MN)℘ ∈ TMN
, ∀℘ ∈ ∆, then

⋃

℘∈∆

(MN)℘ ∈ TMN
.

(iii): If MN1
,MN2

∈ TMN
, then MN1

∩MN2
∈ TMN

.

Then the pair (Q, TMN
) is called MPNTS. The members of TMN

are called open MPNSs and their comple-

ments are called closed MPNSs.

Theorem 3.2. Let (Q, TMN
) be an MPNTS. Then the following conditions are satisfied:

(i): 0MN and 1MN are open MPNSs.

(ii): Union of any number of open MPNSs is open.

(iii): Intersection of finite number of closed MPNSs is closed.

Proof. The proof is obvious.

Example 3.3. Let Q = {ς1, ς2, ς3, ς4} be an assembling of books. Then mpn(1MN) be the collection of all

MPNSs over Q. We consider two 3-polar neutrosophic subsets of mpn(1MN) given as

MN1
= {(ς1, 〈0.871, 0.451, 0.412〉, 〈0.317, 0.412, 0.321〉, 〈0.187, 0.213, 0.118〉),

(ς2, 〈0.547, 0.158, 0.413〉, 〈0.518, 0.152, 0.118〉, 〈0.618, 0.418, 0.321〉),
(ς3, 〈0.618, 0.341, 0.231〉, 〈0.815, 0.118, 0.527〉, 〈0.511, 0.431, 0.215〉),
(ς4, 〈0.518, 0.391, 0.812〉, 〈0.815, 0.321, 0.415〉, 〈0.911, 0.321, 0.512〉)} and

MN2
= {(ς1, 〈0.611, 0.512, 0.611〉, 〈0.218, 0.531, 0.415〉, 〈0.035, 0.311, 0.211〉),
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(ς2, 〈0.212, 0.218, 0.513〉, 〈0.435, 0.218, 0.315〉, 〈0.519, 0.511, 0.438〉),
(ς3, 〈0.418, 0.432, 0.321〉, 〈0.639, 0.218, 0.357〉, 〈0.211, 0.531, 0.316〉),
(ς4, 〈0.219, 0.491, 0.815〉, 〈0.716, 0.421, 0.518〉, 〈0.712, 0.421, 0.618〉)}.
Then clearly the collection TMN

= {0MN, 1MN,MN1
,MN2

} is 3-polar neutrosophic topological space.

Definition 3.4. Let (Q, TMN
) and (Q, T ′

MN
) be two MPNTSs over Q. If TMN

⊆ T ′

MN
, then TMN

is courser

or weaker than T ′

MN
and T ′

MN
is stronger and finer than TMN

. Two MPNTSs are said to be comparable if

TMN
⊆ T ′

MN
or T ′

MN
⊆ TMN

.

Theorem 3.5. Let (Q, TMN
) be an MPNTS. Then the following conditions are satisfied:

(i): 0MN and 1MN are closed MPNSs.

(ii): Intersection of any number of closed MPNSs is closed.

(iii): Union of finite number od closed MPNSs is closed.

Proof. (i): (1MN)
c = 0MN and (0MN)c = 1MN are both open and closed MPNSs.

(ii): If {MNα
: Mc

Nα
∈ TMN

, α ∈ ∆} is an assembling of closed MPNSs then (
⋂

α∈∆

MNα
)c =

⋃

α∈∆

Mc
Nα

is

open. This shows that
⋂

α∈∆

MNα
is closed MPNS.

(iii): Since MNβ
is closed for β = 1, 2, ..., z, then (

z
⋃

β=1

MNβ
)c =

z
⋂

β=1

Mc
Nβ

is open MPNS. Thus
z
⋃

β=1

MNβ

is closed MPNS.

Definition 3.6. Let (Q, TMN
) be MPNTS and MN ∈ mpn(1MN), then interior of MN is denoted as Mo

N

and defined as the union of all open MPN subsets contained in MN. It is the greatest open MPNS contained

in MN.

Example 3.7. We consider the 3-polar neutrosophic topological space constructed in Example 3.3 and let

MN3
∈ mpn(1MN) given as

MN3
= {(ς1, 〈0.713, 0.412, 0.311〉, 〈0.318, 0.418, 0.311〉, 〈0.451, 0.211, 0.218〉),

(ς2, 〈0.312, 0.117, 0.418〉, 〈0.513, 0.212, 0.218〉, 〈0.613, 0.411, 0.438〉),
(ς3, 〈0.518, 0.321, 0.311〉, 〈0.718, 0.118, 0.257〉, 〈0.317, 0.461, 0.217〉),
(ς1, 〈0.319, 0.219, 0.615〉, 〈0.719, 0.321, 0.418〉, 〈0.811, 0.321, 0.417〉)}.
Then Mo

N3
= oMN ∪MN2

= MN2
is open MPNS.

Theorem 3.8. Let (Q, TMN
) be MPNTS and MN ∈ mpn(1MN). MN is open MPNS iff Mo

N = MN.

Proof. If MN is open MPNS then greatest open MPNS contained in MN is itself MN. Thus Mo
N = MN.

Conversely, if Mo
N = MN then Mo

N is open MPNS. This implies that MN is open MPNS.

Theorem 3.9. Let (Q, TMN
) be MPNTS and MN1

,MN2
∈ mpn(1MN), then

(i): (Mo
N1

)o = Mo
N1

,

(ii): MN1
⊆ MN2

⇒ Mo
N1

⊆ Mo
N2

,

(iii): (MN1
∩MN2

)o = Mo
N1

∩Mo
N2

,

(iv): (MN1
∪MN2

)o ⊇ Mo
N1

∪Mo
N2

.

Proof. The proof is obvious.
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Definition 3.10. Let (Q, TMN
) be MPNTS and MN ∈ mpn(1MN), then closure of MN is denoted as MN

and defined as the intersection of all closed MPN supersets of MN. It is the smallest closed MPN superset

of MN.

Example 3.11. We consider the 3-polar neutrosophic topological space constructed in Example 3.3, then

closed MPNSs are given as,
oMc

N = 1MN, 1Mc

N = oMN,

Mc
N1

= {(ς1, 〈0.412, 0.549, 0.871〉, 〈0.321, 0.588, 0.317〉, 〈0.118, 0.787, 0.187〉),
(ς2, 〈0.413, 0.842, 0.547〉, 〈0.118, 0.848, 0.518〉, 〈0.321, 0.582, 0.618〉),
(ς3, 〈0.231, 0.659, 0.618〉, 〈0.257, 0.882, 0.815〉, 〈0.215, 0.569, 0.511〉),
(ς4, 〈0.812, 0.609, 0.518〉, 〈0.415, 0.679, 0.815〉, 〈0.512, 0.679, 0.911〉)} and

Mc
N2

= {(ς1, 〈0.611, 0.488, 0.611〉, 〈0.415, 0.487, 0.218〉, 〈0.211, 0.689, 0.035〉),
(ς2, 〈0.513, 0.782, 0.212〉, 〈0.315, 0.782, 0.435〉, 〈0.438, 0.489, 0.519〉),
(ς3, 〈0.321, 0.568, 0.418〉, 〈0.357, 0.782, 0.639〉, 〈0.316, 0.469, 0.211〉),
(ς4, 〈0.815, 0.509, 0.219〉, 〈0.518, 0.579, 0.716〉, 〈0.618, 0.579, 0.712〉)}.
Let MN4

∈ mpn(1MN) given as

MN4
= {(ς1, 〈0.319, 0.615, 0.888〉, 〈0.217, 0.618, 0.411〉, 〈0.115, 0.817, 0.345〉),

(ς2, 〈0.312, 0.888, 0.617〉, 〈0.113, 0.878, 0.678〉, 〈0.231, 0.598, 0.765〉),
(ς3, 〈0.112, 0.767, 0.887〉, 〈0.213, 0.889, 0.889〉, 〈0.114, 0.667, 0.665〉),
(ς4, 〈0.319, 0.768, 0.615〉, 〈0.321, 0.778, 0.898〉, 〈0.435, 0.767, 0.987〉)}.
Then MN4

= 1MN ∩Mc
N1

∩Mc
N2

= Mc
N1

is closed MPNS.

Theorem 3.12. Let (Q, TMN
) be MPNTS and MN ∈ mpn(1MN). MN is closed MPNS iff MN = MN.

Proof. The proof is obvious.

Definition 3.13. Let MN be an MPN-subset of (Q, TMN
), then its frontier or boundary can be represented

as Fr(MN) and defined as Fr(MN) = MN ∩Mc
N.

Definition 3.14. LetMN be an MPN-subset of (Q, TMN
), then its exterior can be represented as Ext(MN)

and defined as Ext(MN) = (MN)
c = (Mc

N)o.

Example 3.15. We consider the MPNTS constructed in Example 3.3 and consider the MPNSs MN3
and

MN4
given in Examples 3.7 and 3.11. Then by using previous definitions we can write that

Mo
N3

= MN2
, MN3

= 1MN,

Fr(MN3
) = 1MN, Ext(MN3

) = 0MN,

Mo
N4

= 0MN, MN4
= Mc

N1
,

Fr(MN4
) = Mc

N1
, Ext(MN4

) = MN1
.

Now we present some results which does not hold in MPNTS but hold in crisp set theory due to the law of

contradiction and law of excluded middle.

Remark. (i): In MPNTS the members of discrete topology are infinite due to the infinite subsets of an

arbitrary MPNS.

(ii): In MPNTS law of contradiction MN∩Mc
N = 0MN and law of excluded middle MN∪Mc

N = 1MN do

10



not hold in general. In Example 3.15, we can observe that MN3
∩Mc

N3
6= 0MN and MN3

∪Mc
N3

6= 1MN.

(iii): In m-polar neutrosophic set theory an assembling TMN
= {0MN, 1MN,MN,Mc

N} is not an MPNTS

in general. But this result hold in classical set theory. This result can be easily seen by using Example 3.15.

Theorem 3.16. Let MN ∈ mpn(1MN), then

(1): (Mo
N)c = (Mc

N),

(2): (MN)c = (Mc
N)o,

(3): Ext(Mc
N) = Mo

N,

(4): Ext(MN) = (Mc
N)o,

(5): Ext(MN) ∪ Fr(MN) ∪Mo
N 6= 1MN,

(6): Fr(MN) = Fr(Mc
N),

(7): Mo
N ∩ Fr(MN) 6= 0MN.

Proof. (1): and (2): are obvious.

(3): Ext(Mc
N) = (Mc

N)c

⇒ Ext(Mc
N) = [(Mc

N)c]o

⇒ Ext(Mc
N) = Mo

N.

(4): Ext(MN) = (MN)c

⇒ Ext(MN) = (Mc
N)o.

(5): Ext(MN)∪Fr(MN)∪Mo
N 6= 1MN. By Example 3.15, we can see that MN1

∪Mc
N1

∪ 0MN 6= 1MN.

(6): Fr(Mc
N) = (Mc

N) ∩ [(Mc
N)]c

⇒ Fr(Mc
N) = (Mc

N) ∩ (MN) = Fr(MN.

(7):Mo
N ∩ Fr(MN) 6= 0MN. Example 3.15 shows that MN2

∩ 1MN 6= 0MN.

3.1 Similarity measures

In this part, we present two different formulae for similarity measures to find the similarity between MPNSs.

This concept will help us in the section of multi–criteria decision-making.

Definition 3.17. (Cosine similarity measure for MPNSs)

We define the cosine similarity measure for m-polar neutrosophic sets based on Bhattacharyas distance

[6, 41, 59]. Suppose that MN1
,MN2

∈ mpn(1MN), over Q = {ς1, ς2, ..., ςl}. A cosine similarity measure

between MN1
MN2

is given as

C1
MPNS(MN1

,MN2
) = 1

ml

l
∑

η=1

m
∑

α=1

1Aα(ςη)
2Aα(ςη)+

1Sα(ςη)
2Sα(ςη)+

1Yα(ςη)
2Yα(ςη)√

(1Aα(ςη))2+(1Sα(ςη))2+(1Yα(ςη))2
√

(2Aα(ςη))2+(2Sα(ςη))2+(2Yα(ςη))2
.

C1
MPNS satisfies the following properties,

(1): 0 ≤ C1
MPNS ≤ 1,

(2): C1
MPNS(MN1

,MN2
) = C1

MPNS(MN2
,MN1

),

(3): C1
MPNS(MN1

,MN2
) = 1 if MN1

= MN2
,

(4): If MN1
⊆ MN2

⊆ MN3
then C1

MPNS(MN1
,MN3

) ≤ C1
MPNS(MN1

,MN2
) and

C1
MPNS(MN1

,MN3
) ≤ C1

MPNS(MN2
,MN3

). The proof of these properties can be easily done by using the

above definition.
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Definition 3.18. (Set theoretic similarity measure of MPNSs)

We define the set theoretic similarity measure for m-polar neutrosophic sets based on set theoretic viewpoint

[52]. Suppose that MN1
,MN2

∈ mpn(1MN), over Q = {ς1, ς2, ..., ςl}. A set theoretic similarity measure

between MN1
MN2

is given as

C2
MPNS(MN1

,MN2
) = 1

ml

l
∑

η=1

m
∑

α=1

1Aα(ςη)
2Aα(ςη)+

1Sα(ςη)
2Sα(ςη)+

1Yα(ςη)
2Yα(ςη)

max[(1Aα(ςη))2+(1Sα(ςη))2+(1Yα(ςη))2,(2Aα(ςη))2+(2Sα(ςη))2+(2Yα(ςη))2]
.

C2
MPNS satisfies the following properties,

(1): 0 ≤ C2
MPNS ≤ 1,

(2): C2
MPNS(MN1

,MN2
) = C2

MPNS(MN2
,MN1

),

(3): C2
MPNS(MN1

,MN2
) = 1 if MN1

= MN2
,

(4): If MN1
⊆ MN2

⊆ MN3
then C2

MPNS(MN1
,MN3

) ≤ C2
MPNS(MN1

,MN2
) and

C2
MPNS(MN1

,MN3
) ≤ C2

MPNS(MN2
,MN3

). The proof of these properties can be easily done by using the

above definition.

4 Multi-Criteria Decision Making for Medical Diagnosis

Multi-criteria decision making (MCDM) is a process to find an optimal alternative that has the highest

degree of satisfaction from a set of feasible alternatives characterized with multiple criteria, and these kinds

of MCDM problems arise in many real-world situations. In this section, we discuss an application of medical

diagnosis with the help of m-polar fuzzy neutrosophic data. We present two novel algorithms to multi-

criteria decision-making (MCDM) with linguistic information based on the MPNTS and MPFNSs for medical

diagnosis to determine kind of illness under the experts opinion.

Proposed Technique:

In this part of our manuscript, we establish two different techniques based on MPNTS and on similarity

measures to investigate the disease with m-polar neutrosophic information. The flow chart diagram of

proposed algorithms can be seen in Figure 2.
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Algorithm 1 (Algorithm for m-polar neutrosophic topological space)

Input:

Step 1: Input the set P for a patient according to his doctor, corresponding to the ”m” number of symptoms

appearing to the patient. All the input data leads to those ”p” diseases which will be possible outcome

according to the appearing symptoms in the form of m-polar neutrosophic set.

Step 2: Input the sets ℑξ; ξ = 1, 2, ..., z, for ”p” diseases ðδ; δ = 1, 2, ..., p, according to ”z” number of

experts, corresponding to the ”m” number of symptoms in the form of m-polar neutrosophic sets (MPNSs).

Calculations:

Step 3: Construct m-polar neutrosophic topological space (MPNTS) TMN
using MPNSs ℑξ; ξ = 1, 2, ..., z

given by ”z” number of experts.

Step 4: Find interior Po of P by using Definition 3.6 under the constructed TMN
. Po shows the actual

condition of the patient according to the ”z” number of experts and give better decision to diagnosis.

Step 5: Calculate scores of each disease corresponding to ”m” number of symptoms by using Definition 2.6.

Output:

Step 6: We rank the alternative (disease) on the basis of score values according to the Definition 2.7.

Step 7: Alternative (disease) with the higher score has the maximum rank according to the given numerical

example. This implies that patient is suffering from that disease.

Algorithm 2 (Algorithm for m-polar neutrosophic sets using similarity measures)

Input:

Step 1: Input the set P for a patient according to his doctor, corresponding to the ”m” number of symptoms

appearing to the patient. All the input data leads to those ”p” diseases which will be possible outcome

according to the appearing symptoms in the form of m-polar neutrosophic set.

Step 2: Input the sets ℑξ; ξ = 1, 2, ..., z, for ”p” diseases ðδ; δ = 1, 2, ..., p, according to ”z” number of

experts, corresponding to the ”m” number of symptoms in the form of m-polar neutrosophic sets (MPNSs).

Calculations:

Step 3: calculate cosine similarity measure using Definition 3.17 between ℑξ; ξ = 1, 2, ..., z and P.

Step 3’: calculate set theoretic similarity measure using Definition 3.18 between ℑξ; ξ = 1, 2, ..., z and P.

Step 4: Choose the MPNS from ℑξ; ξ = 1, 2, ..., z having highest cosine similarity measure with P. That

ℑξ gives the best decision for diagnosis of patient.

Step 4’: Choose the MPNS from ℑξ; ξ = 1, 2, ..., z having highest set theoretic similarity measure with P.

That ℑξ gives the best decision for diagnosis of patient.

Step 5: Calculate scores of each disease ðδ of selected ℑξ after finding cosine and set theoretic similarity

measures corresponding to ”m” number of symptoms by using Definition 2.6. From this method we get two

different results (rankings) according to two different similarity measures.

Output:

Step 6: We rank the alternative (disease) on the basis of score values according to the Definition 2.7.

Step 7: Alternative (disease) with the higher score has the maximum rank according to the given numerical

example. This implies that patient is suffering from that disease.

13



Start

Algorithm 1 Algorithm 2

Input MPN-data for patient P

Construct MPNTS on ℑξ

Find similarity measure between p and ℑξ

Evaluate interiors Po

Choose ℑξ having highest similarity measure

Find score value £1 for each ðδ

Rank the attributes ðδ using score values

Choose attribute with maximum score Comparison analysis

Stop

Input MPN-data for experts ℑξ

Cosine similarity measure Set theoretic similarity measure

Figure 2: Flowchart diagram of proposed algorithms

4.1 Numerical Example

Suppose that a patient is facing some health issues and the symptoms are temperature, headache, fatigue,

loss of appetite, stomach pain, inadequate immune system, muscle and joint pain. According to the doctor’s

opinion all these symptoms lead to the following diseases Tuberculosis, Hepatitis C and Typhoid fever.

Let us consider the set Q = {ð1, ð2, ð3} of the alternatives consisting of three diseases and the set Z =

{J1,J2,J3,J4} of symptoms, where

ð1 = Tuberculosis

ð2 = Hepatitis C

ð3 = Typhoid fever

J1 = Fever

J2 = Poor immune system

J3 = Muscle and joint pain, fatigue

J4 = Unintentional weight loss, loss of appetite
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Table 5: 4-polar neutrosophic data of patient P

P 4-polar neutrosophic sets

ð1

(
〈0.635, 0.115, 0.114〉, 〈0.813, 0.239, 0.115〉, 〈0.513, 0.431, 0.513〉 〈0.911, 0.119, 0.238〉

)

ð2

(
〈0.739, 0.119, 0.115〉, 〈0.923, 0.111, 0.108〉, 〈0.889, 0.108, 0.117〉, 〈0.835, 0.113, 0.218〉

)

ð3

(
〈0.919, 0.113, 0.122〉, 〈0.818, 0.112, 0.211〉, 〈0.611, 0.513, 0.618〉, 〈0.713, 0.218, 0.319〉

)

Table 6: 4-polar neutrosophic data for expert ℑ1

ℑ1 4-polar neutrosophic sets

ð1

(
〈0.511, 0.311, 0.213〉, 〈0.631, 0.431, 0.211〉, 〈0.328, 0.611, 0.782〉 〈0.713, 0.348, 0.411〉

)

ð2

(
〈0.638, 0.324, 0.237〉, 〈0.816, 0.118, 0.119〉, 〈0.717, 0.115, 0.218〉, 〈0.719, 0.222, 0.249〉

)

ð3

(
〈0.889, 0.212, 0.213〉, 〈0.699, 0.189, 0.232〉, 〈0.413, 0.718, 0.818〉, 〈0.518, 0.421, 0.518〉

)

Table 7: 4-polar neutrosophic data for expert ℑ2

ℑ2 4-polar neutrosophic sets

ð1

(
〈0.611, 0.213, 0.118〉, 〈0.711, 0.321, 0.118〉, 〈0.412, 0.511, 0.611〉 〈0.813, 0.211, 0.341〉

)

ð2

(
〈0.718, 0.211, 0.117〉, 〈0.916, 0.113, 0.112〉, 〈0.817, 0.113, 0.211〉, 〈0.815, 0.211, 0.234〉

)

ð3

(
〈0.918, 0.116, 0.132〉, 〈0.713, 0.116, 0.213〉, 〈0.511, 0.611, 0.713〉, 〈0.613, 0.321, 0.416〉

)

Table 8: 4-polar neutrosophic data for expert ℑ3

ℑ3 4-polar neutrosophic sets

ð1

(
〈0.711, 0.118, 0.108〉, 〈0.811, 0.213, 0.108〉, 〈0.512, 0.421, 0.521〉 〈0.815, 0.118, 0.213〉

)

ð2

(
〈0.723, 0.119, 0.111〉, 〈0.928, 0.112, 0.110〉, 〈0.888, 0.111, 0.119〉, 〈0.889, 0.181, 0.201〉

)

ð3

(
〈0.929, 0.115, 0.128〉, 〈0.813, 0.112, 0.211〉, 〈0.611, 0.511, 0.613〉, 〈0.718, 0.213, 0.325〉

)

We input the data of patient according to his doctor in the form of 4-polar neutrosophic set for each dis-

ease corresponding to every symptom. In this data the numeric values corresponding to each symptom

shows that how many chances he have to be suffered from the considered disease. In Table 5 for disease

ð1 =Tuberculosis, the first triplet 〈0.635, 0.115, 0.114〉 shows that according to his ”J1 =fever” patient has

63, 5% truth chances, 11.5% indeterminacy and 11.4% falsity chances to have tuberculosis. Similarly, we can

observe all values of patient according to his symptoms for all diseases.

We consider that we have ”z=3” highly qualified experts, then according to these experts the data of each

disease corresponding to each symptom is given in tabular form of 4-polar neutrosophic sets as Table 6, 7

and 8. Each ℑξ; ξ = 1, 2, 3 represent the data of each disease corresponding to each symptom according to

3 experts. This means that for expert ℑ1 and disease ð1 =tuberculosis the first triplet 〈0.511, 0.311, 0.213〉
shows that according to symptom ”J1 =fever” there are 63, 5% truth chances, 11.5% indeterminacy and

11.4% falsity chances to have tuberculosis. On the same pattern, we can observe all values of diseases ac-

cording to the corresponding symptoms for each expert.

Algorithm 1:

Now we construct 4-polar neutrosophic topological space TMN
on ℑξ; ξ = 1, 2, 3 given as

TMN
= {ℑ1,ℑ2,ℑ3,

0MN, 1MN}. We find the interior Po of P by using Definition 3.6 under the 4PNTS

TMN
. Thus Po = 0MN ∪ ℑ1 ∪ ℑ2 = ℑ2. Now we use Definition 2.6 on ℑ2 to find scores of all the diseases
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ðδ, δ = 1, 2, 3.

£1(ℑ2ð1
) = 1

2×4 (4 + (0.611− 2(0.213)− 0.118) + (0.711− 2(0.321)− 0.118) +

(0.412− 2(0.511)− 0.611) + (0.813− 2(0.211)− 0.341)) = 0.3558.

Similarly we can find £1(ℑ2ð2
) = 0.662 and £1(ℑ2ð3

) = 0.3691. By Definition 2.7 we can write that

ð2 ≻ ð3 ≻ ð1. Hence patient is suffering from Hepatitis C.

Figure 3: Ranking of attributes under MPNTS

Algorithm 2:

Now by using Tables 5, 6, 7 and 8, we find cosine similarity measures between (ℑ1,P), (ℑ2,P) and (ℑ3,P)

by using Definition 3.17 given as;

C1
MPNS(ℑ2,P) = 1

3×4

(

(0.611)(0.635)+(0.213)(0.115)+(0.118)(0.114)√
(0.611)2+(0.213)2+(0.118)2

√
(0.635)2+(0.115)2+(0.114)2

+

(0.711)(0.813)+(0.321)(0.329)+(0.118)(0.115)√
(0.711)2+(0.321)2+(0.118)2

√
(0.813)2+(0.329)2+(0.115)2

+ ...+ (0.613)(0.713)+(0.321)(0.218)+(0.416)(0.319)√
(0.613)2+(0.321)2+(0.416)2

√
(0.713)2+(0.218)2+(0.319)2

)

.

C1
MPNS(ℑ2,P) = 11.89053

12 = 0.990878. Similarly we can find similarity between other MPNSs given as;

C1
MPNS(ℑ1,P) = 11.50807

12 = 0.95900, C1
MPNS(ℑ3,P) = 11.996

12 = 0.99966. This shows that C1
MPNS(ℑ3,P) ≻

C1
MPNS(ℑ2,P) ≻ C1

MPNS(ℑ1,P). From this ranking it is clear to see that opinion of expert ℑ3 is most

related and similar to the condition of patient P. So, we select ℑ3 and calculate score values of all diseases

ðδ; δ = 1, 2, 3 by using Definition 2.6. This implies that

£1(ℑ3ð1
) = 0.5198, £1(ℑ3ð2

) = 0.7301, £1(ℑ3ð3
) = 0.4977. By Definition 2.7 we can write that ð2 ≻ ð1 ≻

ð3. Hence patient is suffering from Hepatitis C.

Now we use set theoretic similarity measure C2
MPNS to find similarity between (ℑ1,P), (ℑ2,P) and (ℑ3,P)

by using Definition 3.18 given as;

C2
MPNS(ℑ2,P) = 1

3×4

(

(0.611)(0.635)+(0.213)(0.115)+(0.118)(0.114)
max((0.611)2+(0.213)2+(0.118)2,(0.635)2+(0.115)2+(0.114)2) +

(0.711)(0.813)+(0.321)(0.329)+(0.118)(0.115)
max((0.711)2+(0.321)2+(0.118)2,(0.813)2+(0.329)2+(0.115)2)+...+ (0.613)(0.713)+(0.321)(0.218)+(0.416)(0.319)

max((0.613)2+(0.321)2+(0.416)2,(0.713)2+(0.218)2+(0.319)2)

)

.

C2
MPNS(ℑ2,P) = 10.44972

12 = 0.87081. Similarly we can find similarity between other MPNSs given as;

C2
MPNS(ℑ1,P) = 10.51971

12 = 0.87664, C2
MPNS(ℑ3,P) = 11.2283

12 = 0.9355. This shows that C2
MPNS(ℑ3,P) ≻

C2
MPNS(ℑ1,P) ≻ C2

MPNS(ℑ2,P). From this ranking it is clear to see that opinion of expert ℑ3 is most

related and similar to the condition of patient P. So, we select ℑ3 and calculate score values of all diseases

ðδ; δ = 1, 2, 3 by using Definition 2.6. This implies that

£1(ℑ3ð1
) = 0.5198, £1(ℑ3ð2

) = 0.7301, £1(ℑ3ð3
) = 0.4977. By Definition 2.7 we can write that ð2 ≻ ð1 ≻

ð3. Hence patient is suffering from Hepatitis C.
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Figure 4: Ranking of attributes under similarity measures

4.2 Discussion and Comparison Analysis

In this section, we discuss advantages validity, simplicity, flexibility and superiority of our proposed approach

and algorithms. We also give a brief comparison analysis of proposed method with existing approaches.

Advantages of Proposed Approach:

Now we discuss some advantages of the proposed technique based on MPNSs.

(i) Validity of the method:

The suggested method is valid and suitable for all types of input data. we present two algorithms in this

manuscript one for MPNTS and other for similarity measures. We introduced two similarity measures be-

tween MPNSs. It is interesting to note that both algorithms and both formulas of similarity gives the same

result (see Table 9). In this work, both algorithms have their own importance and can be used according

to the requirement of decision-maker. Both algorithms are valid and give best decision in multi-criteria

decision-making (MCDM) problems.

Table 9: Score values for diseases under both algorithms

Algorithm Method ð1 ð2 ð3 Ranking of alternatives

Algorithm1 m-polar neutrosophic topological space 0.3558 0.622 0.3691 ð2 ≻ ð3 ≻ ð1

Algorithm2 cosine similarity on m-polar neutrosophic sets 0.5198 0.7301 0.4977 ð2 ≻ ð1 ≻ ð3

Algorithm2 set theooretic similarity on m-polar neutrosophic sets 0.5198 0.7301 0.4977 ð2 ≻ ð1 ≻ ð3

(ii) Simplicity and flexibility dealing with different criteria:

In MCDM problems we experience different types of criteria and input data according to the given situations.

The proposed algorithms are simple and easy to understand which can be applied easily on whatever type

of alternatives and measures. Both algorithms are flexible and easily altered according to the different

situations, inputs and outputs. There is a slightly difference between the ranking of the proposed approaches

because different formulae have different ordering strategies so they can afford the slightly different effect

according to their deliberations.

(iii) Superiority of proposed method:

From all above discussion, we observe that our proposed models of m-polar neutrosophic set and m-polar
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neutrosophic topological space are superior to previous approaches including fuzzy neutrosophic set, m-

polar intuitionistic fuzzy set, interval valued m-polar fuzzy set, m-polar fuzzy set. Moreover, many hybrid

structures of fuzzy set become the special cases of m-polar neutrosophic set with the addition of some suitable

conditions (see Figure 1). So our proposed approach is valid, flexible, simple and superior to other hybrid

structures of fuzzy set.

Comparison Analysis:

(1) In our proposed method, we define m-polar neutrosophic topological space and two algorithms based

on MPN input data. The impressive point of this model is that we can use it for mathematical modeling

at a large scale or ”m” numbers of degrees with its truth, falsity and indeterminacy part. These m-degrees

basically show the corresponding properties or any set criteria about the alternatives. As in given numerical

example, we use m = 4 to analyze the data for four symptoms appearing to the patient. The vale of ”m” can

be taken as large as possible which is not possible for other approaches. Moreover, many hybrid structures of

fuzzy set become the special cases of m-polar neutrosophic set with the addition of some suitable conditions

(see Figure 1).

Table 10: Comparison with some existing approaches

Methods Similarity measures on sets Ranking of alternatives

Wei [45] picture fuzzy set ð2 ≻ ð1 ≻ ð3

Xu an Chen [51, 52] intuitionistic fuzzy set and correlation measures ð2 ≻ ð1 ≻ ð3

Ye [57] correlation coefficient of neutrosophic set ð2 ≻ ð1 ≻ ð3

Ye [59] intuitionistic fuzzy set ð2 ≻ ð3 ≻ ð1

Li and Cheng [21] intuitionistic fuzzy set ð2 ≻ ð3 ≻ ð1

Lin [22] hesitant fuzzy linguistic information ð2 ≻ ð1 ≻ ð3

Wei [46] interval-valued intuitionistic fuzzy set ð2 ≻ ð3 ≻ ð1

Proposed algorithm1 m-polar neutrosophic topological space ð2 ≻ ð3 ≻ ð1

Proposed algorithm2 cosine similarity on m-polar neutrosophic sets ð2 ≻ ð1 ≻ ð3

Proposed algorithm2 set theooretic similarity on m-polar neutrosophic sets ð2 ≻ ð1 ≻ ð3

(2) Table 10 as given above listing the results of the comparison in the final ranking of top 3 alternatives

(diseases). As it could be observed in the comparison Table 10, the best selection made by the proposed

methods is comparable with the already established methods which is expressive in itself and approves the

reliability and validity of the proposed method. Now the question turns out that why we need to specify

a novel algorithm based on this novel structure? There are many arguments which show that proposed

operator is most suitable than other existing methods. As we know that intuitionistic fuzzy set, picture

fuzzy set, fuzzy set, hesitant fuzzy set, neutrosophic set and other existing hybrid structures of fuzzy sets

have some limitations and not able to present full information about the situation. But our proposed model

of m-polar neutrosophic set is most suitable for MCDM methods and deals with multi-criteria having truth,

indeterminacy and falsity values. Due to addition of netrosophic nature in multi-polarity these three grades

goes independent to each other and give a lot of information about the multiple-criteria for the attributes.

(3) The similarity measures for other existing hybrid structures of fuzzy set becomes special cases of similarity

measures of m-polar neutrosophic set. So this model is most generalized and can easily deal with the problems

involving intuitionistic, neutrosophy, hesitant, picture and fuzziness. The constructed topological space on

MPNS become superior than existing topological spaces and easily deals with the problems in MCDM

methods.
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5 Conclusion

Decision analysis has been intensively studied by numerous scholars and researchers. The techniques devel-

oped for this task mainly depend on the type of decision problem under consideration. Most of its relating

issues are associated with uncertain, imprecise and multipolar information, which cannot be tackled properly

through fuzzy set. To overcome this particular deficiency of fuzzy set, Chen et al. [8] have proposed the con-

cept of m-polar fuzzy set (MPFS) in 2014, which has the capability to deal with the data having vagueness

and uncertainty under multipolar information. Neutrosophic set deal with the MCDM having truth, falsity

and indeterminacy grades for the corresponding attributes. In this manuscript, we have established the idea

of m-polar neutrosophic set (MPNS) by combining two independent concepts of MPFS and FNS. We have

established the notion of m-polar neutrosophic topology and its different structures such as, interior, closure,

exterior and frontier in the context of MPNS with the help of illustrations. We have introduced various

results which holds for classical set theory but do not hold for MPN data. We have presented cosine and set

theoretic similarity measures to find the similarity between MPNSs. The score function and improved score

function have manifested for the comparison of MPNNs. Two novel algorithms for multi-criteria decision-

making (MCDM) with linguistic information have developed, which based on the MPNTS and similarity

measures for medical diagnosis to determine symptoms of disease, kind of illness of the patient. Further-

more, we have presentesd advantages, simplicity, flexibility and validity of the proposed algorithms. We have

discussed and compare our results with some existing methodologies. m-polar fuzzy neutrosophic set is an

important mathematical model to deal with uncertainties in MCDM of the real world problems. We shall

extend the proposed work to solve other MCDM of real world problems by using TOPSIS, AHP, VIKOR,

ELECTRE family and PROMETHEE family.
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