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Abstract: In real-world diagnostic procedures, due to the limitation of human cognitive competence,
a medical expert may not conveniently use some crisp numbers to express the diagnostic information,
and plenty of research has indicated that generalized fuzzy numbers play a significant role in
describing complex diagnostic information. To deal with medical diagnosis problems based on
generalized fuzzy sets (FSs), the notion of single-valued neutrosophic multisets (SVNMs) is firstly
used to express the diagnostic information in this article. Then the model of probabilistic rough
sets (PRSs) over two universes is applied to analyze SVNMs, and the concepts of single-valued
neutrosophic rough multisets (SVNRMs) over two universes and probabilistic rough single-valued
neutrosophic multisets (PRSVNMSs) over two universes are introduced. Based on SVNRMSs over
two universes and PRSVNMs over two universes, single-valued neutrosophic probabilistic rough
multisets (SVNPRMSs) over two universes are further established. Next, a three-way decisions
model by virtue of SVNPRMSs over two universes in the context of medical diagnosis is constructed.
Finally, a practical case study along with a comparative study are carried out to reveal the accuracy
and reliability of the constructed three-way decisions model.

Keywords: single-valued neutrosophic multisets; medical diagnosis; probabilistic rough sets over
two universes; three-way decisions

1. Introduction

In medical science and technology, it is acknowledged that disease diagnosis is a rather
complicated activity for medical experts who are faced with tasks in handling varieties of uncertain
diagnostic information. In order to seek the accurate diagnosis for the considered patients, it is essential
for medical experts to take into account a number of related symptoms simultaneously, and this
procedure might take a long time to reach a final diagnostic outcome. Considering it is meaningful to
cope with the above complex decision making situation within the background of medical diagnosis,
plenty of practitioners are likely to focus on the relationship between the diagnosis set and the symptom
set, and varieties of achievements have been made on the basis of fuzzy approaches [1-3]. According to
the FS theory established by Zadeh [4], fuzzy approaches have been extensively used in lots of medical
diagnosis situations. However, the modeling tools of classical FSs are confined when multiple kinds of
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uncertainties emerge at the same time. Thus, several new notions of generalized FSs were put forward
one after another during the past decades [5].

Among various generalized FSs, in view of intuitionistic fuzzy sets (IFSs) [6] lack a reasonable
scheme to effectively process inconsistent and indeterminate information embedded in realistic
scenarios, Smarandache [7] initiated the framework of neutrosophic sets (NSs) and neutrosophic logic,
which could be seen as a generalized form of FSs, IFSs, fuzzy logic and intuitionistic fuzzy logic [8-10].
Compared with IFSs, through adding an indeterminacy membership function which is focused on
separately, NSs are able to express incomplete, inconsistent and indeterminate information efficiently.
Further, in order to utilize the idea of NSs to solve a broader range of practical issues, Wang et al. [11]
presented a novel branch of NSs called single-valued neutrosophic sets (SVNSs), whose values of three
membership functions belong to [0,1]. Ever since the establishment of SVNSs, many enlightening
research results have been made in many real-world areas [12-21]. Recently, inspired by one typical
solution to obtain an accurate diagnosis for a patient is to arrange the medical examination at different
parts on a day to day basis (e.g., morning, noon and evening), Ye [22] introduced the notion of SVNMs
by taking advantage of fuzzy multisets (FMs) [23] and n-valued refined neutrosophic logic [24].
With the support of SVNMs, the SVN membership values occur one or multiple times, which is
favourable to the expression of the above SVN diagnostic information at different time intervals, hence
SVNMs could process the uncertain information well, and offer medical experts a rather powerful
tool to record a complicated medical diagnosis knowledge base. Until now, the studies of SVNMs
are mainly concentrated on algebraic properties, similarity measures, neutrosophic multiple relations,
cosine measures, and so on [25-28].

In general, medical experts are often confronted with the following two challenges in practical
medical diagnosis, one is to make an accurate diagnostic conclusion for the considered patients,
another one is to provide a reasonable explanation on how to obtain the result under uncertain
scenarios [29-31]. Through designing possible and deterministic decision rules, rough set theory has
illustrated its powerful performances for solving various decision making situations in the above
challenges [32-42]. In addition, among varieties of specific rough set models, it is worth noticing
that lots of them are often too strict and might require additional information when constructing
approximations originated from the classical rough set theory. In order to effectively handle the above
issue, by combining the rough sets with probability theory, the concept of PRSs is initiated by Wong
and Ziarko [43] to let rough set models possess the error tolerance capability when processing the noisy
data. Further, PRSs are developed by virtue of more powerful soft computing tools such as Bayesian
decision theory, graded set inclusions, Bayesian confirmation measures, etc [44—48]. Compared with
other types of rough sets, through introducing the probability theory to estimate the rough membership,
PRSs permit the existence of the error tolerance by means of the introduction of thresholds. In recent
years, motivated by the notion of three-way decisions [49,50], several decision making methods by
means of PRSs-based three-way decisions have been put forward to promote the solving efficiency of
real-world problems [51-54].

In this paper, inspired by the idea of PRSs-based three-way decisions, we systematically study
various probabilistic rough approximations in the background of SVNMs information by integrating
SVNMs with PRSs over two universes, and propose the model of SVNPRMs over two universes.
Then, we aim to investigate a three-way decisions method by utilizing the proposed SVNPRMs over
two universes under the context of medical diagnosis. In light of the above discussion, we arrange the
structure of the article below. In Section 2, we revisit several fundamental notions about SVNMs and
PRSs. In the next section, we present the notion of SVNRMs over two universes and PRSVNMs over
two universes at first, then present the notion of SVNPRMs over two universes. Section 4 constructs
a medical diagnosis algorithm based on SVNPRMs over two universes, then a case study and its
corresponding comparative study are carried out to show the validity of the constructed medical
diagnosis algorithm. The last section concludes the contributions of the work.
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2. Preliminaries

In the following, we revisit several fundamental concepts which will be utilized in the latter part
of the paper.

2.1. SVNMs

As a generalization of many concepts such as FSs, IFSs, SVNSs, etc., the definition of SVNMs and
their related operations are presented below.

Definition 1. [22] Suppose that U is a finite and nonempty set, a SVNM A is featured by count
truth-membership of CT,, count indeterminacy-membership of Cls, count falsity-membership of CE,,
where CTy,ClLy, CFq : U — R forall x € U. Then a SVNM A is given by

% (Th (), 73 (), T (),
A= < L), (), 1 (@), >|xeu ,
FL (), B (3),. G (%))

where the truth-membership  sequence,  the indeterminacy-membership sequence and  the
falsity-membership  sequence (T}1 (x),T% (x),..., Th (x)), (I}1 (x), 14 (x),.... 1} (x)) and
(F}‘ (x),F4 (x),...,F} (x)) are arranged in an increasing or decreasing order. Additionally,
for each i = 1,2,...,q, the sum of T (x),I'(x),F,(x) € [0,1] fulfills the requirement
0 < T, (x) + I (x) + F (x) < 3. For the sake of convenience, a simplified form of SVNM could be
expressed as A = {(x, Ty (x),I' (x),F} (x)) |x € U,i =1,2,...,q }. Furthermore, we represent the set of
all SVNMs on U as SVNM (U). For all x € U, A is called a full SVNM if and only if x = (1,0,0), while A
is called an empty SVNM if and only if x = (0,1,1).

Definition 2. [22] The length of x in a SVNM A is represented by L (x : A), where L (x : A) = |CT4 (x)| =
|CI4 (x)| = |CF4 (x)] (|CTa (x)], |CLa (x)| and |CF4 (x)| represent the cardinality of CTx (x), Cl4 (x)
and CF4 (x)). In addition, for any A,B € SVNM (U), L (x: A,B) =max{L(x: A),L(x:B)}.

For any two SVNMs A and B, it is noted that L (x : A) might be different from L (x : B) in many
situations. Through adding the maximum number for the indeterminacy-membership value and the

falsity-membership value, and further adding the minimum number for the truth-membership value,
we could make L (x: A) = L (x: B).

Definition 3. [22] For any two SVNMs A and B in the universe U, we have

1. A®B={(x, T (x)+Th(x) =T (x) T (x), I}, (x) I5 (x) , Fiy (x) Fy (x)) [x e U,i =1,2,...,q9};
2. A®B={{(x, T} (x) T} (x), Ty (x) + Iy (x) — Iy (x) Iy (x), Fiy (x) + F (x) = Fiy (x) Fy () [x € U,
i=12,...,9};
3. the complement of A is represented by A° such that Vx € U,
A= {(x,Fy (x),1=L (x), Ty (x)) |xeU,i=12,...,q9};
4. the union of A and B is represented by A U B such that Vx € U,
AUB = {(x, T} (x) VTj (x), I} (x) N5 (x),Fy (x) AFy (x)) [x e U,i=1,2,...,q9};
5. the intersection of A and B is represented by A N B such that Vx € U,
ANB={(x, T\ (x) AT} (x),I} (x) VI§ (x),F) (x) VFy (x)) |[x e U,i=1,2,...,q9}.

2.2. PRSs

In view of classical rough sets being rather rigorous when constructing lower/upper
approximations and often requiring some additional information, Wong and Ziarko [43] took
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advantage of the probabilistic measure theory, and presented a probabilistic model of rough sets
to update the method for obtaining a related rough set region.

Definition 4. [43] Suppose that U is the universe of discourse, and P is the probabilistic measure based on
the o algebra. Then (U, R, P) is named a probabilistic approximation space. Forany 0 < p<a <1, X C U,
the lower and upper approximations of X are given by

(X[[x]) 2 a|x e U},

Py (X) ={P
P {P(X|[x]) > plxeU},

Pg (X)

where the pair (P, (X), Pg (X)) is named a PRS. Moreover, by virtue of the above approximations, the positive
region, negative region and boundary region of X are further given by

POS (X,a,B) = P, (X) = {P(X|[x]) 2 a|x € U},
NEG (X,&,B) = U—Ps (X) = {P(X|[x]) < Blxr e U},
BND (X,a,B) = Pp(X) =P, (X) ={B < P(X|[x]) <alxeU},

it is noted that the above approximations reduce to classical rough sets when o« = 1 and B = 0, thus classical
rough sets act as a special case of PRSs.

3. Probabilistic Rough Approximations of a SVNM under the Background of Two Universes

In this section, we aim to put forward the probabilistic rough approximations of a SVNM under
the background of two universes, and eventually develop the model of SVNPRMSs over two universes.
To facilitate our discussion, based on the proposed relation on SVNMs from the universe U to the
universe V and some operations, we first discuss the general rough approximations of a SVNM
under the background of two universes and present the model of SVNRMs over two universes.
Then, we investigate rough single-valued neutrosophic multisets on a probabilistic approximation
space over two universes and propose the model of PRSVNMs over two universes. Lastly, the definition
of SVNPRMs over two universes is put forward and several significant propositions of the presented
model are explored.

3.1. Relations on SVNMs Based on Two Universes and Some Operations

In what follows, we introduce the arbitrary relation on SVNMs based on two related universes.

Definition 5. Suppose that U, V are two universes of discourse, and R is a relation on SVNMs. Then R is
given by

R={{(xy), Tk (x,y), Ik (x,9) Fr (x,0)) (x,9) € UX V,i=1,2,...,9},
Moreover, we denote the family of all relations on SVNMs from U to V as SVNM (U x V).

In order to facilitate the latter discussions of the paper, we present subtraction and division
operations, and the corresponding score functions for SVNMs as follows.

Definition 6. For any two SVNMs A and B in the universe U, we have

_ Th(0)-Th(x) Ih(x) Fj(x) . S ‘
L AcSH {<x 1-T(x) ’li;(x)'Fl’;(x)>xEU/1 1,2,...,17}, which is wvalid under the

requirements A > B, Th (x) # 1, Ik (x) # O and Fi (x) # 0;
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2. AoB = {<x, 2‘8))’ Ii‘l(x);(légx), Eh fx)F,f > lxel,i=12,...,q }, which is valid under the
B B

requirements A < B, Th (x) # 0, I5 (x) # land Fj (x) # 1.

In the following, the corresponding score function is proposed to rank different elements
in SVNMs.

Definition 7. Suppose that x = (T’ (x), I (x), Fi (x)) is an element in a SVNM, the corresponding score
function of x is defined below.

s(x):{ ?lefq(x)+Z?:1(1_IA )4—2 (1—FA ))}/Sq.

For two elements in a SVNM x1 and x5, we have

1. Ifs(x1) <s(xp), then x1 < xp;
2. Ifs(x1) =s(xp), then x1 = xp;
3. Ifs(x1) > s(x2), then x; > xp.

3.2. SVNRMs over Two Universes

By virtue of the above presented relations on SVNMs based on two universes, the definition of
SVNRMs over two universes is put forward below.

Definition 8. Suppose that U, V are two universes of discourse, and R € SVNM (U x V) is a relation
on SVNMs. Then (U, V,R) is named a general approximation space over two universes based on SVNMs.
Forany A € SVNM (V), x € U,y € V, the lower and upper approximations of A with respect to (U, V,R)
are given by

[=

(4) = {(x, Thay (¥) Ty (%), Figay (0)) [x € Wi =1,2,..,q
(A) = {<x,T%(A) (%) Ty (%) Bl ) (x)> lxeU,i= 1,2,...,q},

=

where Té(A) (x) = Nyev [lez (x,y) VT, (y)], Ié.(“‘) (x) = Vyev [(1 — It (x,y)) NI ()], FZB —
Vyew T4 (50) A By (0], Thy (5) = Vaew [Th o) AT ()], Ty () = Ayey [T (v9) v 11 < )
and Fllz(A) (x) = Ayev [Fk (x,y) V Fy (y)]. Based on the above statements, the pair (R (A), R (A)) is named
a SVNRM over two universes.

3.3. PRSVNMs over Two Universes

Considering the various advantages of PRSs, we then extend the presented SVNRMs over
two universes to the context of PRSs. In what follows, we first investigate rough single-valued
neutrosophic multisets on a probabilistic approximation space over two universes.

Definition 9. Suppose that U, V are two universes of discourse, R C U x V is a binary relation on two
universes, and P is a probabilistic measure based on the o algebra. Then (U, V, R, P) is named a probabilistic
approximation space over two universes.

Next, we develop the approach to obtain the conditional probability P (A |R (x)) of an event
expressed by SVNMs given the description R (x) € 2V.
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Definition 10. Suppose that (U, V, R, P) is a probabilistic approximation space. For any A € SVNM (V),
x € U, y € V, the conditional probability P (A |R (x) ) is given by

.
PAIR(x) = 2k LU

By virtue of the proposed conditional probability P (A |R (x) ), the definition of PRSVNMs over
two universes is put forward as follows.

Definition 11. Suppose that (U, V, R, P) is a probabilistic approximation space over fwo universes. For any
0<B<a<1AecSVNM(V) x €U,y € V,the lower and upper approximations of A with respect to
(U, V,R,P) are given by

EyeR(x) A (y)
IR (x)]

)
SVNMf(A)_{P(A|R(x))>[%|er,er}—{ZW>,B|x€ll,y€V},

SVNMg(A):{P(AR(x))>o¢|x€u,y€V}:{ >tx|x€u,y€V},

where the pair (S VNM; (A),SVN Mf (A)) is named a PRSVINM over two universes. Moreover, by virtue
of the above approximations, the positive region, negative region and boundary region of A are further given by

ZyeR(x) A (]/)

POSsynm (A &, B) = SVNM;, (A) = { IR (x)]

>¢x|x6U,y6V},

NEGsynm (A a,B) = U—SVNMf (A) = {W <BlxeUye v},

ZyeR(x) A (]/)

rGTaNEviy « _
BNDSVNM (A,IX,IB) = SVNMP (A) _Mp (A) - {‘B < |R (X)|

<¢x|xeu,y6V}.

3.4. SVNPRMs over Two Universes

In the previous descriptions, we explore rough single-valued neutrosophic multisets on
a probabilistic approximation space over two universes. However, the probabilistic approximation
space over two universes (U, V, R, P) could only express the crisp relation of the elements from the
universe U to the universe V. Since there exist lots of relations based on SVNMs, it is necessary to study
SVNPRMs over two universes. In what follows, we extend the general probabilistic approximation
space over two universes to the probabilistic approximation space over two universes on SVNMs,

Definition 12. Suppose that U, V are two universes of discourse, R € SVNM (U x V) is a relation on
SVNMs, and P is a probabilistic measure based on the o algebra. Then (U,V, R, P) is named a probabilistic
approximation space over two universes based on SVNMs.

Definition 13. Suppose that (U, V, R, P) is a probabilistic approximation space over two universes based on
SVNMs. Forany A € SVNM (V), x € U, y € V, the conditional probability P (A |R (x,y) ) is given by

ey A R (x,
P(AIR(x,y)) = Eyz‘;ev(ly%)(x,g/) :

By virtue of the proposed conditional probability P (A |R (x,y) ), the definition of SVNPRMs over
two universes is put forward as follows.
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Definition 14. Suppose that (U, V, R, P) is a probabilistic approximation space over two universes based on
SVNMs. Forany0 < p<a <1, A€ SVNM(V),x € U,y € V, the lower and upper approximations of A
with respect to (U, V, R, P) are given by

@A) — _ JLyev AW R(xy)

SVNMR? (A)—{P(A|R(x,y))>o¢|x€U,y€V}—{ Yooy R(5,9) >vcx€U,y€V},
SUNMR? _ JEyev AW R(xy)

SVNMR, (A) = {P (A|R(xy))>[5|xeu,yev}—{ Yyev R(%,7) >,B|x€U,y€V},

where the pair (SVNMR‘; (A) ,SVNMRf (A)) is named a SVNPRM over two universes. Moreover,

by virtue of the above approximations, the positive region, negative region and boundary region of A are
further given by

v Aly
POSsynmr (A, &, B) = SVNMR; (A) = {%

NEGsvur (4,4, ) = U — SVNMR, (4) = { B2 < glreuyev),

EerR( Y)
o Yyev Aly
BNDsynmr (A, &, B) = SVNMRf( A) — SYNMR" (A) = {/3 < %

>uc|x€Uy€V}

<a|xEU,yEV}.

It is noted that the parameters « and § in the above definitions can be determined in advance by
experts based on their experience and knowledge in realistic decision making situations.
According to the above definitions, a simple example is offered as follows.

Example 1. Suppose that U = {x1.x2,x3} and V = {x1.xp, x3} are two universes, R € SVNM (U x V) is
a relation on SVINMs based on two related universes, where

n Y2 Y3
(0.6,0.5,0.4), (0.4,0.3,0.2), (0.8,0.8,0.7),
0 < (0.3,0.2,0.2), > < (0.7,0.6,0.6), > < (0.2,0.2,0.1), >
((02,0.1,0.1)) ((0.8,0.7,0.7)) ((0.1,0.1,0.0))
. (0.3,0.3,0.2), (0.8,0.7,0.6), (0.5,0.5,0.4),
9\ < (0.4,0.4,0.3), > < (030201) > < (0.3,03,0.2), >
((0.6,05,0.4)) ((0.2,02,0.1)) ((0.6,06,0.5))
(0.7,0.7,0.6), (0.4,0.4,03), (0.3,0.2,02),
X < (0.3,02,0.1), > < (0.5,0.5,0.4), > < (0.6,0.6,05), >
((0.1,0.1,0.0)) ((0.6,0.6,0.5)) ((0.9,09,0.7))

A SVNM A in the universe V is provided below.

A = {{y1,(05),(05), (0.

By wvirtue of Definition 13, we obtain

evA R (xq,
PRt = Zyiev(lz)(xlfyg 2
cvA(y) R (xp,
P(AIR (x2,y)) = ZyZ‘:/yev(lyi>(x;;2) .
Lyev AW R (x3,)

P(A[R (x3,y)) =

ZyEV R (X3, ]/)

2)),(y2,(0.8),(0.3), (0.

= ((0.67,0.61,0.55), (0.32,0.28,0.27) , (0.20,0.14,0.14)),,
= ((0.80,0.76,0.73), (0.23,0.20,0.16) , (0.10,0.09,0.07)),

= ((0.69,0.68,0.64), (0.29,0.29,0.24) , (0.13,0.13,0.10)) .

1)), (y3,(0.3),(06),(0.7))} .
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If we assume « =  ((0.76,0.74,0.72),(0.28,0.27,0.26) ,(0.13,0.12,0.12)) and B =
((0.68,0.65,0.6),(0.32,0.31,0.26), (0.18,0.14,0.12)), we obtain SVNMR;’j (A) = {xp} and
SVNMRf (A) = {xp,x3}. Then it is not difficult to obtain POSsynmr (A&, B) = {x2},

NEGsynmr (A, &, B) = {x1} and BNDsynmr (A, &, B) = {x3}.

In what follows, we show some common properties that are owned by the presented SVNPRMs
over two universes.

Proposition 1. Suppose that (U, V, R, P) is a probabilistic approximation space over two universes based on
SVNMs. Forany0 < f<a <1, A€ SVNM(V), x € U, y € V, we have the following propositions:

1. ACB= SYNMR®(A)C SVNMR® (B), SUNMR" (A) C SYNMR? (B);

2. SVNMR® (@) = @, SVNMR" (V) = U;

3. SVNMR" (A) C SVNMR! (A);

4. SVNMR®(ANB) C SVNMR® (A) N SVNMR® (B), SVNMR: (AUB) 2 SVNMR: (A) U
SVNMR?® (B);

5. a1 <a = SVNMR® (A) C SUNMR® (A), 1 < o = SYNMR'? (A) C SUNMR"' (A).

The detailed proofs of Proposition 1 are included in the Appendix A at the end of the paper.

4. Medical Diagnosis Based on SVNPRMs over Two Universes

4.1. Medical Diagnosis Model

In the following, we explore a reasonable and effective medical diagnosis approach by means of
SVNPRMs over two universes. As pointed out in the earlier statements, SVNPRMs over two universes
take advantage of SVNMs and PRSs at the same time. For one thing, SVNMs are able to provide
medical experts with a more powerful tool to describe a complicated medical diagnosis knowledge
base, i.e., the SVNMs information could not only handle the uncertain situation well, but also record
the diagnostic information at different time intervals reasonably. For another, PRSs-based three-way
decisions could further overcome the drawbacks of classical rough sets, and provide a robust decision
result by considering the decision risk, hence PRSs-based three-way decisions act as an effectual way
to analyze the above SVNMs information.

In the medical diagnosis procedures, suppose that U = {x1,%x0,..., %} is a diagnosis set,
and V = {y1,y2,...,yn} is a symptom set. Then based on the universe U and the universe V, medical
experts are likely to construct the relationship between the diagnosis set and the symptom set by means
of the SVNMs information, which is represented by R € SVNM (U x V). Moreover, suppose that P is
a probabilistic measure based on the ¢ algebra. Hence we establish a medical diagnosis probabilistic
approximation space over two universes based on SVNMs (U, V, R, P).

For a given patient, the symptoms of the patient are expressed by a SVNM A in the universe V.
Next suppose that « and § are the thresholds provided in advance by medical experts according
to their experience and knowledge in realistic medical diagnosis situations. In light of the above
statements, it is not difficult to calculate the two approximations of A in terms of (U, V, R, P), which are
denoted by SVNMR? (A) and SVN MRf (A). Further, we obtain the positive region, negative region
and boundary region of A according to Definition 14, which are expressed as POSsynumr (A, &, B),
NEGgsynmr (A, a, B) and BNDgynmr (A, &, B). Lastly, the following medical diagnosis rule could be
concluded by virtue of the three-way decisions theory originated by Yao [49,50].

(P) Ifx; € POSsynmr (A, B),i=1,2,...,m, then x; is the determined diagnostic conclusion;
(N) Ifx; € NEGsynmr (A a,B),i=1,2,...,m,then x; is the excluded diagnostic conclusion;
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(B) Ifx; € BNDsynmr (A, B),i=1,2,...,m, then medical experts are unable to confirm whether
x; is the determined or excluded diagnostic conclusion, they need more additional medical
examinations to confirm the final diagnostic conclusion

4.2. Algorithm for Medical Diagnosis Model

To summarize, we conclude the medical diagnosis approach for a given patient based on
SVNPRMs over two universes (Algorithm 1).

Algorithm 1 Medical diagnosis based on SVNPRMSs over two universes.

Require: (U,V,R,P)and A.

Ensure: The determined diagnostic conclusion.
Step 1. Calculating the conditional probability P (A |R (x,y));
Step 2. Presenting the thresholds « and §;
Step 3. Calculating the lower and upper approximations of A in terms of (U,V,R,P).
ie, SYNMR?® (A) and SVNMR", (A);
Step 4. Calculating the positive region, negative region and boundary region of A,
Le., POSsynmr (A, &, B), NEGsynmr (A, &, p) and BNDsynmr (A, a, B);
Step 5. Confirming the determined diagnostic conclusion on the basis of the proposed medical
diagnosis rule (P), (N) and (B).

4.3. An Illustrative Example

In the following, a case study within the context of medical diagnosis is illustrated as the
demonstration of the presented medical diagnosis approach based on SVNPRMs over two universes.
The content of the illustrative example (adapted from [26]) is shown as follows.

Let U = {x1,x2,x3,x4} be a diagnosis set (where x; (i =1,2,3,4) denotes “viral fever”,
“tuberculosis”, “typhoid”, and “throat disease”, respectively), and V. = {y1,y2,¥3,Y1, Y5} be
a symptom set (where y; (i = 1,2,3,4,5) denotes “temperature”, “cough”, “throat pain”, “headache”,
and “body pain”, respectively). Let R € SVNM (U x V) be a relation on SVNMs based on two related

universes, which is recorded in the Table 1.

Table 1. Relationship between the considered diseases and symptoms represented by SVNMs.

R Yq Y, Y3 Yq Ys

x ((08),(0.1),(0.1))  ((02),(0.7),(0.1)) ((03),(0.5),(0.2)) ((05),(03),(0.2)) ((05),(04),(0.1))
v ((02),(0.7),(01))  {(09),(00),(0.1)) ((0.7),(0.2),(0.1)) {(0.6),(03),(0.1)) ((0.7),(0.2),(0.1))
v ((05),(03),(02))  ((03),(05),(02)) ((0.2),(07),(01)) ((02),(0.6),(02)) ((0.4),(0.4),(02))
2 ((01),(0.7),(02))  {(0.3),(06),(0.1)) ((08),(0.1),(0.1)) {(0.1),(0.8),(0.1)) ((0.1),(0.8),(0.1))

Suppose that the symptoms of the patient is denoted by a SVNM A in the universe V below.

y1,(0.8,0.6,0.5), y2,(0.5,0.4,0.3), y3,(0.2,0.1,0.0),

<(aaazan, >,<(o¢aaa@, >,<(oaozam, >,
(0.4,0.2,0.1) (0.6,0.3,0.4) (0.8,0.7,0.7)
v4,(0.7,0.6,0.5), ys,(0.4,0.3,0.2),

<(aaazan, >,<(0aaaa®, >

(0.4,0.3,0.2) (0.6,0.4,0.4)
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According to the steps of the proposed medical diagnosis approach (Algorithm 1), we first
calculate the conditional probability as follows.

AR (x1,
PAR (xy)) = eV AWREVY) 00070 0.64), (007,004,002, (0.08,002,001)),
ZyEVR(xlry)
A())R (xa,
P(AIR (xa,y)) = eV AW RE2Y) 00674 061),(005,0.08,002) (007,001,001}
EerR(xzfy)
A(y) R (x3,
P(AR (x3,y)) = eV AWRESY) o0 06 05), (013,009,006, (0.1,0.03,002))
ZyEVR(xSIy)
A(y)R (x4,
P(AIR (xy,y)) = <V AW RELY) 06034 022),(015,0.1,008) , 0.08,0.02,001))
EerR(x4fy)

Then we present the thresholds « and 8 below.

« = ((0.85,0.74,0.63) , (0.06,0.03,0.02) , (0.075,0.02,0.01)),
B = ((0.5,0.4,0.3),(0.13,0.1,0.07), (0.09,0.02,0.01)} .

Next the two approximations of A in terms of (U, V, R, P) could be obtained.

SVNMR® (A) =

{P(AIR(x,y)) Zza|xe Uy eV} ={x},
SVNMR? (A) = {P

(AIR(x,y))>BlxeU,yeV} ={x,x,x3}.
Based on the above calculated data, we further obtain

POSsynmr (A, &, B) = SVNMRT (A) = {x1},
NEGsynmg (4,4, B) = U — SVNMRE (A) = {x4},
BNDsynmr (A, &, B) = SVNMRf (A) = SVNMR] (A) = {x2,x3} .

Finally, we could obtain the diagnostic conclusion by means of the proposed medical diagnosis
rule (P), (N) and (B).

(P) The patient is suffering from viral fever, medical experts need to pay close attention to the
diagnosis;

(N) The same patient shows no signs of having throat disease, which does not need close attention at
the current stage;

(B) Medical experts are unable to confirm whether the considered patient is suffering from
tuberculosis and typhoid or not due to insufficient diagnostic information, they might organize
an expert consultation to confirm the determined diagnostic conclusion at a later stage.

4.4. Comparative Analysis

In what follows, in order to show the applicability and validity of the constructed medical
diagnosis approach, we compare the approach based on SVNPRMs over two universes with
two significant and common approaches (similarity measures and cosine measures) presented in
literature [26,28] respectively.

4.4.1. Comparison with Other Approaches in Literature [26]

As presented by Ye et al. [26], suppose that any two SVNMs in the universe U = {x1,x2,..., X}
could be expressed by A = {(x;, T, (x) A (x) ,F (x;)) ‘x]' el,i=12...,q} and B =
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{(xj, Ti (x), I (x), Fi (xj)) |xj € U,i=1,2,...,q}, then the generalized distance measure between
A and B is defined as

lj

wan-|LELT

; ; p
T (x)) = Th (%)) | +

; ; p
I ()~ I ()| +

(

where [; = L(x: A,B) = max{L(x: A),L(x:B)},j=1,2,...,m. Then based on the generalized
distance measure between A and B, two similarity measures are defined as

Ji=1

1/p
mww%wﬁﬂ ,

m lj . . . ) . vr
:ﬂ—b;%;(m@wmmﬁ+aww%wW+aww%wﬁﬂ,
= =
1—d,(A,B)
%2(4/B) = 1+d£ (A, B)
m li . Vp
PwagiuQuwﬂT%@W+MMM—%@W?FMM—%@MQ1
= - ; | ' ‘ ' 1/p
H%gipﬁﬁﬂﬁ)Tﬂmf+wdm%&M”H&@0PQMQ1

According to the above stated similarity measures, if we take p = 2, the largest value of similarity
measures between the symptoms of the patient and each potential diagnosis could be regarded as
the determined diagnostic conclusion. Since the overall ranking result of the similarity measure
shows x1 > x3 > x2 > x4, the results of two similarity measures indicate the patient is suffering
from viral fever, which is identical with the determined diagnostic conclusion obtained from our
proposed approach.

4.4.2. Comparison with Other Approaches in Literature [28]

In literature [28], the authors mainly proposed a novel decision making method based on cosine
measures of SVNMs. We also suppose that any two SVNMs in the universe U = {x1,xp,..., X, } are
described as A = {xj, (pa1, (Ta1 (), La1 (xj) , Far (%)), (a2, (Taz (xj) . La2 (%)) , Fa2 (x}))) -,

(Par (Tai (%)), Lai (%)) Fai (%)) [xj € U} and B = {xj, (pw1, (Ts1 (%) , I1 (%)) , Fin (x7))) ,

(Pe2, (Tha (x7) , 12 (%) Fi2 (%)) -, (Pe1, (Thi (%)) , Isi (%) , Foi (%)) | xj € U }, where p denotes
the repeated times with the same neutrosophic components. Based on that, the cosine measure between
two SVNMs A and B is defined as

T (1 Tae (39)) = T (1= T (3))"™ |
1 i i
p(AB) = 3 cos§ | ITT (Lai ()" = TT (Ine (37))"™ | + :
i=1 = =
IT (Fai (%)™ = TT (Fgr (x;))"™"
k=1 k=1

As described in the case study section in literature [28], one customer intends to purchase a car,
let U = {x1,x2,x3, x4} be a car set with four possible alternatives. Then we let V = {y1,y2,y3,Yy1}
be an attribute set (where y; (i = 1,2, 3,4) denotes “fuel economy”, “price”, “comfort”, and “safety”,
respectively). Let R € SVNM (U x V) be a relation on SVNMs based on two related universes,

which is recorded in the Table 2.
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Table 2. Relationship between alternatives and attributes represented by SVNMs for purchasing a car.

R Y1 Y Y3 Yy

x1 ((07,05),(0.7,03),(0.6,02)) ((05),(04),(04)) ((0.8,07),(0.7,0.7),(0.6,0.5))  ((0.5,0.1),(0.5,0.2),(0.8,0.7))
x {(09,0.7),(0.7,07),(05,0.1)) {((0.8),(0.7),(0.6)) ((0.9,0.9),(0.6,0.6),(0.4,04)) {(0.5,05),(0.2,0.1),(0.9,0.7))
x5 ((0.6,03),(04,03),(07,02)) ((02),(02),(02)) ((0.9,06),(05,0.5),(0.502)) ((0.7,04),(05,02),(03,0.2))
xy ((09,08),(0.7,06),(02,01)) ((05),(03),(02)) ((0.5,0.1),(0.7,04),(0.5,02)) ((0.8,08),(0.4,04),(02,02))

Suppose that the ideal attribute set is denoted by a SVNM A in the universe V below.

A _ | 1,(098),(0.12),(0.02)), (12, (07),(0:2),(0:2),
(y3,(0.99),(0.16), (0.1)), (y4, (0.82),(0.02), (0.06)) [

Based on the steps of our proposed approach, we first calculate the conditional probability

as follows.
P(A|R (x1,y)) = Ly GZ:‘;:‘V(I]:)(I;EJ;)’]/ ) _ ((1,0.97), (0.05,0.02),, (0.06,0.02)),
P(A|R (x2,y)) = Ly ;’ij(ly{)(igz)’y ) _ ((1,0.99), (0.02,0.02) , (0.04,0.01)),
P(A|R(x3,y)) = Ly ;"y:‘v(lyz)(lj;ﬁ’y ) _ ((1,0.98),(0.03,0.01), (0.03,0)),
P(AR (x4,y)) = Ly ;’ij(ly{)(if;‘*)’y ) _ ((0.99,0.97), (0.04,0.03), (0,0)) .

Then we present the thresholds « and 8 below.

a = ((1,0.99),(0.02,0.02), (0.025,0.02)),
B = ((0.98,0.97),(0.03,0.02), (0.02,0.01)).

Next we further calculate the two approximations of A in terms of (U, V, R, P) and the three
divided regions.

SVNMRY (A) ={P(A[R(x,y)) > a|lx e Uy €V} ={x3},
SVNMR" (A) = {P(A|R (x,y)) > Blx € U,y € V} = {xy,x3, 74},
POSsynmr (A, &, B) = SVNMRT (A) = {x3},
NEGsynmr (A o, B) = U —Wf (A) ={x1},
BNDsynmr (A &, B) = SVNMR! (A) — SYNMR?® (A) = {x2, %4} -
Lastly, we could obtain the decision making recommendation by means of the proposed three-way
decisions rule (P), (N) and (B).

(P) The customer is suggested to purchase the third car;

(N) The same customer is not suggested to by the first car at present;

(B) The same customer is not sure whether the second car and the forth car are the ideal selections,
he or she might collect some additional information to make a final conclusion at a later stage.

According to the above stated cosine measures of SVNMs, the largest value of cosine measures
between the alternatives and attributes for purchasing a car could be regarded as the final decision
making conclusion. It is noted that the overall ranking result of the cosine measure shows x3 > x4 >
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x1 > X2, which indicates the customer should buy the third car, the decision making result is also the
same as the determined decision making conclusion obtained from our proposed approach.

In conclusion, it is noted that in the above two comparative analyses, though the final decision
making result by virtue of our proposed method is the same as the approaches of similarity measures
and cosine measures, the overall ranking result by using our proposed method is slightly different
from the approaches of similarity measures and cosine measures based on SVNMs. To be specific, if we
rank alternatives according to the corresponding values of conditional probability in our presented
approach, all the results are shown in the following Tables 3 and 4.

Table 3. The ranking orders by utilizing two different methods in the first comparison analysis.

Different Methods Ranking Results of Alternatives The Best Alternative
Method 1 based on similarity measures in [26] X1 > X3 > Xp > X4 X1
The proposed method X1 > Xp > X3 > X4 X1

Table 4. The ranking orders by utilizing two different methods in the second comparison analysis.

Different Methods Ranking Results of Alternatives The Best Alternative
Method 2 based on cosine measures in [28] X3 > Xg > X1 > X2 X3
The proposed method X3 = Xp > X4 > Xq X3

Compared with the approaches of similarity measures and cosine measures based on SVNMs,
the approaches of similarity measures and cosine measures lack the ability of processing decision
risks and noisy decision making data. In addition, the proposed approach based on SVNPRMs
over two universes offers a reasonable and efficient tool for analyzing the SVNMs information,
which not only considers the decision risks by introducing a three-way decision tactic, but also
enhances the performance of handling various noisy SVNMs data by introducing the thresholds.
Moreover, our presented medical diagnosis approach could be seen as another similarity measures
approach, i.e., the conditional probability expresses the similarity of the symptoms of the patient A
with the relationship between the considered diseases and symptoms, by further adding the thresholds
« and B, the ability of processing risk preferences of medical experts could be improved. Thus,
the constructed approach based on SVNPRMs over two universes is able to enhance the reliability and
accuracy of medical diagnosis efficiently.

5. Conclusions

In this article, we mainly investigate a PRSs-based method to analyze the SVNMs information
within the medical diagnosis context. Specifically, after revisiting several fundamental concepts about
SVNMs and PRSs, we first put forward the notion of SVNRMSs over two universes and PRSVNMs
over two universes. Based on that, the notion of SVNPRMs over two universes is further established.
Then some common propositions of the presented SVNPRMs over two universes are further explored.
Next, based on the proposed SVNPRMs over two universes, we construct a medical diagnosis
approach by means of the three-way decisions strategy. At last, an illustrative case analysis along
with a comparative study is carried out to reveal the practicability and effectiveness of the constructed
medical diagnosis approach. In future work, it is necessary to establish some more PRSs-based
theoretical models based on neutrosophic triplet structures and neutrosophic duplet structures, and it
is also meaningful to apply other valid decision making tools to handle various complicated decision
making situations.
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Appendix A
The proofs of Proposition 1 are listed as follows.
Proof.

1. Since A C B, according to Definition 14, we have

a [ Lyev A(y)R(xy) Lyev B(y)R(xy) _
SVNMR® (B).
Thus we obtain A C B = SVNMRY (A) € SVNMR? (B). Similarly, we could also obtain
SVNMR’ (A) C SVNMR?, (B).

[ Xyev OR(xy) _
2. SVNMR;‘;(@)f{mzﬂxeuyev}f@,

SN AR _ [ Eyev VR(xy) B
SVNMRE (V) = {TGVR(W) >Blreuyevi=u

Hence SVNMR? (©) = @ and SVNMRf (V) = U could be obtained.
3. Since0 < B <a < 1,itis not difficult to obtain

p Lyev Ay)R(xy) Yyev By)R(xy)
SVNMR® (A) = {yz‘y’evwza\xeu,yEV} C {yz‘;evw>ﬁ|xeu,yev} -

SUNMRP
SVNMR?, (B).
Therefore, SVNMR? (A) C SVNMR? (A) could be obtained.
4. If SYNMRY (AN B) holds, we have P ((AN B) [R (x,y)) > a, then it is not difficult to obtain

x < Yyev (ANB)(y)R(xy) _ Eyev A(y)R(xy) Yyev (ANB)(y)R(xy) < Lyev B(y)R(xy)
- Z}/EVR(X'y) - ZyEVR(XIy Zer R(xy) - ZyEVR(x'y)

Hence we obtain SVNMR] (AN B) C SVNMRY (A) N SVNMR? (B). In an identical fashion,

SVNMR® (AUB) D SVNMR" (A) USVNMR" (B) could also be obtained.
5.  Since a7 < &y, we have

and a <

o [ Zyev AWR(xy) Yyev A(y)R(xy) _
SVNMR® (A) = {W >mlrelye V} C {W >a|relye V} =
SVNMR® (A).

Hence we have a; < ay = SVNMR}2 (A) € SVNMR! (A),and By < B = SVNMR?2 (A) C

SNVl . o
SVNMR, (A) could be proved in a similar way.
O
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