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A B S T R A C T   

In this article a repetitive group sampling control has been introduced for the neutrosophic statistics under the 
Conway-Maxwell-Poisson (COM-Poisson) distribution. The suggested chart has been compared with the existing 
plan using simulated data generated from neutrosophic COM-Poisson distribution. The practical implementation 
of the suggested chart has also been expounded using the data from the manufacturing of the electric circuit 
boards. Overall, the results demonstrate that the suggested chart will be a proficient addition in the control chart 
literature. It is also observed that the suggested chart is an ideal chart when applied under appropriate 
conditions.   

1. Introduction 

Control charts are considered as an effective tool of Statistical Pro
cess Control (SPC) used for observing and enhancing the quality of goods 
and services. Several other process monitoring techniques like histo
gram, scatter diagram, flow chart, Pareto chart, and fishbone diagram 
are used very commonly for the certain, crispy and, clear data/obser
vations. There are many situations when the quality control personnel 
have to face vague, uncertain, indeterminate, unclear data/observations 
Shu, et al. [1]. 

Repetitive Group Sampling (RGS) scheme, introduced by Sherman 
[2], has attracted several researchers of SPC because of its simplicity and 
efficiency [3]. The methodology of this RGS is similar to a sequential 
sampling and this sampling plan commits the smallest sample size in 
addition to the requisite protection to consumers as well as producer. In 
RGS, a sample is selected from the industrial process to make a decision 
about the state of the control chart. In the case of indecision, a second 
sample is selected and the process to select a sample is continued until a 
decision is made. Moreover, repetitive sampling is more capable than a 
single and double sampling plan whereas not as capable as the 
sequential plan. Balamurali, et al. [4] developed variables RGS plan for 
the disposition of the lot using normal and log-normal distributions. 
Balamurali and Jun [5] introduced the model of RGS for variables 

inspection. Ahmad, et al. [6] proposed the RGS control chart for 
improved monitoring of coal quality. Azam, et al. [7] suggested the 
hybrid exponentially weighted moving average chart for the repetitive 
sampling scheme. Ahmad, et al. [8] developed various dispersion charts 
using repetitive sampling. Aslam, et al. [9] developed the control chart 
technique for repetitive sampling under the multivariate Poisson dis
tribution. Adeoti and Olaomi [10] proposed a repetitive sampling con
trol chart for the mean monitoring under the process capability index. 
Aldosari, et al. [11] developed the variance chart using multiple 
dependent state repetitive sampling. Shafqat, et al. [12] developed an 
exponentially weighted moving average control chart for nonparametric 
statistics using the RGS scheme. Al-Marshadi, et al. [13] presented a 
chart for monitoring customer complaints using the RGS scheme. RGS 
scheme has been explored by many authors of the industrial statistics 
including, [14] and [15–21]. 

In the real-world the researchers often face the presence of incom
plete, uncertain, unclear information. Smarandache [22] proposed an 
alternative approach based upon fuzzy logic to study uncertain obser
vations. The neutrosophic logic is the generalization of the fuzzy logic. 
The neutrosophic logic deals with the measure of indeterminacy. The 
theory of neutrosophic statistic introduced by [23] is currently being 
used extensively to the situations when the results of the traditional 
statistics are unreliable due to the incomplete, uncertain and vague 
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observations [24]. The neutrosophic statistics is presented using the idea 
of neutrosophic logic and are the extension of the classical statistics and 
provides information about the measure of indeterminacy. In addition, 
the neutrosophic statistics can be applied when the data in hand is in the 
interval, uncertain, and indeterminate. On the other hand, classical 
statistics can be applied when all observations in the data are deter
mined and précised. Taleb and Limam [25] developed a control chart 
procedure for fuzzy and linguistic data. Hsieh, et al. [26] presented a 
control chart for fuzzy theory for monitoring the defects in the IC in
dustry. [27] developed the measurement system to deal with uncer
tainty. Intaramo and Pongpullponsak [28] developed the control chart 
using the theory of extreme value of fuzzy observations for non- 
distributions. Sorooshian [29] presented the improved control chart 
for considering vagueness and uncertainty of observations. Charon
grattanasakul and Pongpullponsak [30] investigated the technique for 
fuzzy quality control using the Weibull distribution. Panthong and 
Pongpullponsak [31] presented a variable control chart for non-crispy 

data using a triangular fuzzy function. Afshari and Sadeghpour Gildeh 
[32] developed the acceptance sampling plan for the fuzzy data using 
the multiple deferred state sampling scheme. Shu, et al. [1] proposed a 
variable control chart for fuzzy data using variable sample sizes. Aslam, 
et al. [33] developed a reliability chart for Weibull distribution for the 
uncertainty environment. Aslam, et al. [34] presented the dispersion 
chart for uncertain data using the neutrosophic interval method. Aslam 
and Raza [35] designed a neutrosophic multiple deferred state sampling 
plan for exponentially weighted moving averages for process capability 
index. Zhang, et al. [36] explored the structural characterizations of the 
neutrosophic general symmetry. Khan, et al. [37] designed a dispersion 
chart using neutrosophic statistics and described its application in the 
production process. 

The Conway-Maxwell-Poisson (COM-Poisson) distribution is a two 
parametric generalized form of the conventional Poisson distribution, 
promptly growing distribution in several areas of research used to study 
the count data for under-dispersion and over-dispersion scenario [38]. 
Due to some nice properties of the COM-Poisson distribution such as it is 
the special case of Bernoulli and geometric distribution, it has attracted 
the consideration of several authors during the last 20 years. Shmueli, 
et al. [39] described its statistical and the probabilistic properties for the 
count data and suggested three methods for estimation of parameters. 
COM-Poisson distribution has more applications in queuing modeling, 
quality control, reliability, modeling ionization statistics if the data is of 
the form log-concave and flexible enough to model under and over 
dispersed count data. Aslam, et al. [40] developed a multiple dependent 
state sampling chart under COM-Poisson distribution. Aslam, et al. [41] 
designed a chart for exponentially weighted moving averages using the 
COM-Poisson distribution. Mashuri [42] developed a control chart for 
fuzzy bivariate data. 

Aslam and Al-Marshadi [43] proposed the control chart for COM- 
Poisson distribution under neutrosophic statistics using the single sam
pling scheme. By exploring the literature and according to the best of our 
knowledge, there is no work on the control chart for COM-Poisson dis
tribution under neutrosophic statistics using the RGS. The main aim is to 
propose an efficient control chart to minimize the non-conforming 
product from the production process. The present manuscript is con
structed for describing a new repetitive sampling chart technique for the 
neutrosophic statistics using the COM-Poisson distribution. We will 
compare the efficiency of the proposed control chart with the existing 
chart in terms of neutrosophic average run length. It is expected that the 

proposed chart will perform better than the existing chart under un
certain environment. This paper is organized as: the design of repetitive 
control chart for NCOM-Poisson distribution is described in Section 2. 
The advantages of the suggested chart have been described in Section 3. 
In Section 4 a simulation study is provided. The practical application of 
the suggested chart has been discussed in Section 5 and in the end, 
concluding remarks have been added in Section 6. 

2. Repetitive control chart based on NCOM-Poisson distribution 

Sellers, et al. [38] proposed a conventional COM-Poisson distribution 
and the generalization to conventional COM-Poisson distribution is 
developed by Aslam and Al-Marshadi [43] called as neutrosophic COM- 
Poisson (NCOM-Poisson) distribution. The neutrosophic probability 
mass function (npmf) of NCOM-Poisson distribution is defined by (see 
[43]:  

where μN ∈ {μL, μU} is a neutrosophic scale parameter and νN ∈ {νL, νU}

is the neutrosophic dispersion parameter, while zN(μN, νN) =
∑∞

jN
μyN

N
(jN !)νN where jN = [0,0], [1,1], [2,2],...is a neutrosophic normalization 

constant. The NCOM-Poisson distribution tends to the classical COM- 
Poisson distribution when no uncertainty is present in the sample of 
the population. The NCOM-Poisson distribution reduced to neutrosophic 
Poisson distribution if νN ∈ {1,1}, neutrosophic geometric distribution 
if νN ∈ {0,0} and Bernoulli distribution if νN ∈ {∞,∞}. For more in
formation on neutrosophic discrete distributions, readers should see 
[44]. The mean and variance for the NCOM-Poisson distribution can be 
stated as 

μYN
= μ1/νN

N −
νN − 1

2νN
; μN ∈ {μL, μU}, νN ∈ {νL, νU} (2)  

σ2
YN

=
μ1/νN

N

νN
; μN ∈ {μL, μU}, νN ∈ {νL, νU} (3) 

The following repetitive chart using the neutrosophic statistic can be 
stated as: 

Step 1: Choose an item randomly from the manufacturing process 
with the quality characteristic YN ∈ {YL,YU} and record the number of 
non-conformities sayYtN ∈ {YtL,YtU}. 

Step 2: If YtN⩾UCL1N or YtN⩽LCL1N declare the process as out-of- 
control and ifLCL2N⩽YtN⩽UCL2N; YtN ∈ {YtL,YtU} then declare the pro
cess as in-control. Otherwise, repeat the process. 

Where LCL1N and UCL1N are lower and upper outer control limits; 
whereas, LCL2N and UCL2N are lower and upper inner control limits for 
the neutrosophic statistical interval method accordingly. 

The outer control limits are given by 

LCL1N = μYN
− k1NσYN =

(

μ1/νN
N −

νN − 1
2νN

)

− k1N

(
μ1/νN

N

νN

)1/2

;k1N ∈{k1L,k1U}

(4)  

UCL1N = μYN
+k1NσYN =

(

μ1/νN
N −

νN − 1
2νN

)

+k1N

(
μ1/νN

N

νN

)1/2

;k1N ∈{k1L,k1U}

(5) 

Also, 

P(YN = yN ; μN , νN) =
μyN

N

(YN !)
νZN(μN , νN)

; YN ∈ {YL,YU} for yN = [0, 0], [1, 1], [2, 2], ... (1)   
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LCL2N = μYN
− k2NσYN =

(

μ1/νN
N −

νN − 1
2νN

)

− k2N

(
μ1/νN

N

νN

)1/2

;k2N ∈{k2L,k2U}

(6)  

UCL2N = μYN
+k2NσYN =

(

μ1/νN
N −

νN − 1
2νN

)

+k2N

(
μ1/νN

N

νN

)1/2

;k2N ∈{k2L,k2U}

(7)  

where k1N ∈ {k1L, k1U} and k2N ∈ {k2L, k2U} are the neutrosophic control 
chart coefficient and are obtained by using in-control neutrosophic 
average run lengths (NARLs). 

The suggested chart for NCOM-Poisson distribution for neutrosophic 
statistics is a generalization of the NCOM-Poisson distribution under the 
neutrosophic statistics and reduces to single sampling plan when k1N =

k2N = kN. The chart based upon NCOM-Poisson distribution using 
neutrosophic statistics given by Aslam and Al-Marshadi [43] is a 
generalization of classical chart which utilized COM-Poisson distribu
tion developed by Sellers, et al. [38]. 

Assume that the neutrosophic mean of the in-control process is 
μ0N ∈ {μ0L, μ0U}. The process is said to be out-of-control if 
YtN⩾UCL1N or YtN⩽LCL1N. The probability of the out-of-control the pro
cess when actually it is not out-of-control, then 

Pout
0N = P{YtN⩾UCL1N | μ =μ0N}+P{YtN⩽LCL1N | μ =μ0N}

= P{(YtN − μYN
)/σYN ⩾(UCL1N − μYN

)/σYN }+P{(YtN − μYN
)/σYN ⩽(LCL1N

− μYN
)/σYN }

= P{ZtN⩾k1N}+P{ZtN⩽ − k1N}

= 2[1 − Φ(k1N) ] (8)  

where Φ() is the neutrosophic cumulative standard normal distribution 
and ZtN = (YtN − μYN

)/σYN is the neutrosophic standard normal variable, 
for more details see [22] and [45]. 

Then the probability of repetition (Prep
0N) is given as 

Prep
0N = P{UCL2N⩽YtN⩽UCL1N | μ =μ0N}+P{LCL1N⩽YtN ⩽LCL2N | μ =μ0N}

= P{ZtN⩽k1N} − P{ZtN⩽k2N}+P{ZtN⩽ − k2N} − P{ZtN ⩽ − k1N}

= Φ(k1N) − Φ(k2N)+Φ( − k2N) − Φ( − k1N)

= 2[Φ(k1N) − Φ(k2N) ]. (9) 

Therefore, the probability that it is out-of-control (P0N.out) may be 
defined as 

P0N.out =
Pout

0N

1 − Prep
0N
. (10) 

In the above expressions, the superscript 0 shows in-control process. 
According to the literature of the control chart, the performance of any 
suggested chart can be evaluated by calculating its Average Run Length 
(ARL). The ARL may be defined as the average number of samples before 
the process indicates an out-of-control or the deteriorated signal. The 
ARL of the suggested control chart can be calculated using the formula. 

ARL0N =
1

P0N.out
;ARL0N ∈ {ARL0L,ARL0U}. (11) 

Assume that the process neutrosophic parameter μ0N ∈ {μ0L, μ0U} is 

shifted to μ1N = δμ0Nwhere δ be a shift constant and μ1N ∈ {μ1L, μ1U}. 
Then, the probability of out-of-control process for a single sample when 
a shift of moderate size is introduced may be given as 

Pout
1N = P{YtN⩾UCL1N | μ =μ1N}+P{YtN⩽LCL1N | μ =μ1N}

Table 1 
The NARLs of proposed chart when \; νN ∈ [0.4, 0.6] and μN ∈ [2.5, 3.5].  

k1N [2.9507,3.2403] [3.0408,3.1851] [3.0498,3.0709] 
k2N [0.8980,0.3022] [1.0480,0.5720] [1.4214,1.2464] 
c NARL 
1.0000 [200.01,200.00] [300.01,300.00] [308.37, 327.44] 
1.0125 [167.71,174.15] [249.39,262.44] [249.79, 284.91] 
1.0250 [136.78,148.79] [201.89,225.38] [198.07, 244.44] 
1.0375 [109.25,125.15] [159.55,190.62] [154.86, 207.28] 
1.0500 [86.04,103.99] [124.75,159.32] [120.64, 174.86] 
1.0625 [67.22,85.68] [95.57,132.01] [92.82, 146.26] 
1.0750 [52.35,70.19] [73.32,108.77] [34.56, 70.01] 
1.1250 [19.83,31.31] [26.68,49.46] [21.02, 49.87] 
1.1500 [12.71,21.21] [16.60,33.72] [9.82, 25.08] 
1.2000 [5.85,10.34] [7.45,16.49] [4.47,14.62] 
1.2500 [3.18,5.56] [3.85,8.72] [2.62,8.30] 
1.3000 [2.05,3.35] [2.36,5.07] [2.00,5.74] 
1.3500 [1.28,2.28] [1.36,3.24] [1.53,3.95] 
1.4000 [1.08,1.72] [1.11,2.29] [1.30,2.55] 
1.4500 [1.02,1.42] [1.03,1.77] [1.17,2.03] 
1.5000 [1.00,1.25] [1.00,1.47] [1.05,1.45] 
1.6000 [1.00,1.10] [1.00,1.19] [1.00,1.10] 
1.8000 [1.00,1.02] [1.00,1.03] [1.00,1.05] 
1.9000 [1.00,1.00] [1.00,1.01] [1.00,1.02] 
2.0000 [1.00,1.00] [1.00,1.00] [308.37, 327.44]  

Table 2 
The NARLs of proposed chart when \; νN ∈ [0.9, 1.1] and μN ∈ [3.5, 4.5].  

k1N [3.1682,3.2172] [3.0897,2.9829] [3.1170,3.0570] 
k2N [0.3923,0.3286] [0.8398,1.4527] [0.9821,1.3554] 
c NARL 
1.0000 [200.00,200.00] [300.00,300.00] [370.00,370.00] 
1.0125 [183.72,186.22] [276.85,282.53] [341.18,347.41] 
1.0250 [167.82,172.56] [254.13,265.00] [312.91,324.82] 
1.0375 [152.54,159.22] [232.16,247.66] [285.61,302.54] 
1.0500 [138.05,146.36] [211.22,230.71] [259.61,280.84] 
1.0625 [124.49,134.09] [191.51,214.31] [235.15,259.92] 
1.0750 [111.92,122.52] [173.13,198.59] [212.39,239.96] 
1.1250 [71.85,83.81] [113.63,144.02] [138.86,171.33] 
1.1500 [57.36,68.93] [91.68,121.98] [111.82,143.98] 
1.2000 [36.80,46.66] [59.97,87.43] [72.88,101.61] 
1.2500 [24.08,31.94] [39.88,63.12] [48.30,72.28] 
1.3000 [16.19,22.27] [27.13,46.17] [32.75,52.14] 
1.3500 [11.22,15.87] [18.94,34.32] [22.78,38.25] 
1.4000 [8.03,11.57] [13.58,25.95] [16.26,28.56] 
1.4500 [5.94,8.65] [10.00,19.96] [11.91,21.72] 
1.5000 [4.54,6.63] [7.55,15.61] [8.95,16.80] 
1.6000 [2.91,4.18] [4.65,10.02] [5.43,10.57] 
1.8000 [1.66,2.18] [2.33,4.91] [2.62,5.01] 
1.9000 [1.41,1.76] [1.86,3.71] [2.04,3.74] 
2.0000 [1.27,1.51] [1.57,2.93] [1.69,2.93]  
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Again the probability of out-of-control process for repetitive sam
pling when a shift of moderate size is introduced may be given as Prep

1N =

P{UCL2N⩽YtN⩽UCL1N| μ =μ1N} + P{LCL1N⩽YtN⩽LCL2N| μ =μ1N}

Therefore, the probability under a repetitive sampling of the shifted 
process when a shift is being used is defined as 

P1N.out =
Pout

1N

1 − Prep
1N
. (14) 

The NARL for the shifted process is given as follows: 

ARL1N =
1

P1N.out
;ARL1N ∈ {ARL1L,ARL1U}. (15)    

3. Advantages of the suggested chart 

Under this Section the advantages of the suggested chart have been 
described. Tables 1–3 have been generated for the above-developed 
methodology an R-language the program was run to calculate the 
average run lengths for different process settings νN[0.4,0.6] and μN 
[2.5,3.5], νN[0.9,1.1] and μN[3.5,4.5] and νN[0.36,0.37] and μN 
[2.85,2.90] using different shift levels 1.0000, 1.0125, 1.0250, 1.0375, 

Table 3 
The NARLs of proposed chart when \; νN ∈ [0.36, 0.37] and μN ∈ [2.85, 2.90].  

k1N [2.9443,2.9170] [3.0635,3.0194] [3.2757,3.2942] 
k2N [0.9228,1.0434] [0.9423,1.1681] [0.5084,0.4735] 
c NARL 
1.0000 [200.00,200.00] [300.00,300.00] [370.00,370.00] 
1.0125 [161.79,163.61] [239.04,242.65] [285.58,287.18] 
1.0250 [123.46,126.76] [179.00185.40] [205.55,208.46] 
1.0375 [90.61,94.67] [128.68,136.33] [141.49,144.88] 
1.0500 [65.11,69.24] [90.54,98.18] [95.26,98.47] 
1.0625 [46.4350.23] [63.24,70.14] [63.7466.47] 
1.0750 [33.16,36.45] [44.27,50.16] [42.82,45.00] 
1.1250 [9.59,11.06] [11.87,14.40] [10.00,10.73] 
1.1500 [5.67,6.62] [6.76,8.37] [5.45,5.86] 
1.2000 [2.52,2.92] [2.80,3.46] [2.22,2.36] 
1.2500 [1.55,1.72] [1.62,1.91] [1.38,1.43] 
1.3000 [1.21,1.29] [1.23,1.36] [1.13,1.15] 
1.3500 [1.08,1.72] [1.09,1.15] [1.04,1.05] 
1.4000 [1.03,1.29] [1.03,1.06] [1.01,1.02] 
1.4500 [1.01,1.12] [1.01,1.02] [1.00,1.00] 
1.5000 [1.00,1.05] [1.00,1.01] [1.00,1.00] 
1.6000 [1.00,1.02] [1.00,1.00] [1.00,1.00] 
1.8000 [1.00,1.01] [1.00,1.00] [1.00,1.00] 
1.9000 [1.00,1.00] [1.00,1.00] [1.00,1.00] 
2.0000 [1.00,1.00] [1.00,1.00] [1.00,1.00]  

Fig. 1. Proposed chart for simulation data set.  
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1.0500, 1.0625, 1.0750, 1.1250, 1.1500, 1.2000, 1.2500, 1.3000, 
1.3500, 1.4000, 1.4500, 1.5000, 1.6000, 1.8000, 1.9000, and 2.0000. 
Table 4 has been presented for evaluating the working of the suggested 
chart with the existing [43]. On comparison, it can be observed that the 
suggested chart is efficient and quick in indicating the out-of-control 
situation of the process. For example, a shift level of 1.0500 is detec
ted after 98.03 samples using the existing chart while the same shift is 
detected after 86.04 samples by the proposed methodology. The same 
pattern can be observed for other levels of shifts. 

4. Simulation study 

Generally, control charts are applied for monitoring the unusual 
changes in the manufacturing process. The best control chart is that 
which has performed efficiently. So, in this section, the suggested chart 
performance is discussed for checking the efficiency over the counter
part chart introduced by [43] by using the simulated data created from 
NCOM-Poisson distribution. Using simulated data, we assume that 
ARL0N ∈ [370, 370], νN ∈ [0.4, 0.6] and μ0N ∈ [2.5, 3.5]. The 50 ob
servations are generated by using the NCOM-Poisson with designed 
parameters values, first 20 observations are generated by assuming an 
in-control process and next 30 observations are created by assuming the 
process is out-of-control with shifted values 1.2. For calculating the 
control limits of the proposed chart, the control limits constants are got 

from Table 1 3.0498, 3.0709k1N ∈ [] and k2N ∈ [1.4214, \; 1.2464]. The 
calculated NARL from Table 1 is ARL1N ∈ [4.47, 14.62], so the first out- 
of-control shift will be detected between the 4th and the 14th sample. 
We have plotted the values of XNi for the suggested chart in Fig. 1 and for 
the existing chart in Fig. 2. On observing Fig. 1, it is noted that the first 
shift detection is at sample 14th for the proposed chart. The proposed 
chart detects a total of 4 out-of-control shifts, but the existing chart just 
detects 2 shifts that can be seen in Fig. 2. The existing chart detects the 
first out-of-control shift at sample 22nd. After a comparison of both 
control charts for simulated data set, it is clear that the suggested chart 
gives out-of-control signal between the values of NARL in the interval of 
indeterminacy but the existing chart did not show out-of-control signal 
between the intervals. Although, from Fig. 1, there are some values that 
lie between the repetitive part and all these values are also need more 
attention and care of the engineers. Other than that, the suggested chart 
perceives very quickly the out-of-control signal as compared to the 
counterpart chart scheme. So the quick recognition ability of any chart 
assists the engineers to recognize the source of variation which reduced 
the non-conforming items from the monitoring process. 

5. Applications for circuit boards product 

The practical use of the suggested chart is presented in a famous 
electrical company situated in Saudi Arabia. This electrical group pro
duces circuit boards known as (PCB). The PCB production process is very 

Table 5 
Data of a well-known electrical company situated in Saudi Arabia.  

Sample No Non-conformities Sample No Non-conformities 

1 [1,1] 16 [3,3] 
2 [2,2] 17 [5,5] 
3 [3,3] 18 [5,5] 
4 [3,3] 19 [4,4] 
5 [1,1] 20 [6,6] 
6 [1,1] 21 [5,5] 
7 [8,9] 22 [7,7] 
8 [2,2] 23 [5,5] 
9 [5,5] 24 [8,8] 
10 [11,11] 25 [2,2] 
11 [2,3] 26 [5,6] 
12 [1,1] 27 [6,6] 
13 [0,0] 28 [8,9] 
14 [2,2] 29 [3,3] 
15 [5,5] 30 [7,7]  

Table 4 
The NARLs of proposed chart when \; νN ∈ [0.4, 0.6] and μN ∈ [2.5, 3.5].  

existing chart Proposed chart 

c NARL  

1.000 [200.02, 200.55] [300.24, 302.03] [370.03, 372.73] [200.01, 200.00] [300.01, 300.00] [370.00, 370.00]  
1.0125 [172.25, 181.78] [255.28, 271.45] [312.54, 333.53] [167.71, 174.15] [249.39, 262.44] [308.37, 327.44]  
1.0000 [144.95, 162.56] [211.69, 240.42] [257.22, 293.95] [136.78, 148.79] [201.89, 225.38] [249.79, 284.91]  
1.0125 [119.88, 143.74] [172.33, 210.39] [207.70, 255.84] [109.25, 125.15] [159.55, 190.62] [198.07, 244.44]  
1.0250 [98.03, 125.99] [138.64, 182.38] [165.69, 220.54] [86.04, 103.99] [124.75, 159.32] [154.86, 207.28]  
1.0375 [79.67, 109.73] [110.85, 157.05] [131.38, 188.80] [67.22, 85.68] [95.57, 132.01] [120.64, 174.86]  
1.0500 [64.63, 95.16] [88.50, 134.65] [104.03, 160.92] [52.35, 70.19] [73.32, 108.77] [92.82, 146.26]  
1.0625 [28.95, 53.30] [37.41, 72.18] [42.70, 84.35] [19.83, 31.31] [26.68, 49.46] [34.56, 70.01]  
1.0750 [20.12, 40.26] [25.36, 53.43] [28.58, 61.81] [12.71, 21.21] [16.60, 33.72] [21.02, 49.87]  
1.1250 [10.26, 23.88] [12.83, 30.57] [14.41, 34.72] [5.85, 10.34] [7.45, 16.49] [9.82, 25.08]  
1.1500 [6.28, 15.03] [7.31, 18.65] [7.92, 20.84] [3.18,5.56] [3.85,8.72] [4.47,14.62]  
1.2000 [4.09, 10.02] [4.63, 12.10] [4.93, 13.34] [2.05,3.35] [2.36,5.07] [2.62,8.30]  
1.2500 [2.90,7.05] [3.20, 8.31] [3.37, 9.05] [1.28,2.28] [1.36,3.24] [2.00,5.74]  
1.3000 [2.21, 5.20] [2.38, 6.00] [2.48, 6.46] [1.08,1.72] [1.11,2.29] [1.53,3.95]  
1.3500 [1.78, 4.00] [1.89, 4.53] [1.95, 4.83] [1.02,1.42] [1.03,1.77] [1.30,2.55]  
1.4000 [1.51, 3.19] [1.58, 3.55] [1.62, 3.76] [1.00,1.25] [1.00,1.47] [1.17,2.03]  
1.4500 [1.22, 2.23] [1.25, 2.41] [1.26, 2.51] [1.00,1.10] [1.00,1.19] [1.05,1.45]  
1.5000 [1.03, 1.43] [1.03, 1.49] [1.04, 1.52] [1.00,1.02] [1.00,1.03] [1.00,1.10]  
1.6000 [1.01, 1.25] [1.01, 1.29] [1.01, 1.31] [1.00,1.00] [1.00,1.01] [1.00,1.05]  
1.8000 [1.00, 1.15] [1.00, 1.17] [1.00, 1.18] [1.00,1.00] [1.00,1.00] [1.00,1.02]  

Fig. 2. Existing chart for simulation data set.  
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complex, and engineers are unable to find the correct proportion of 
defective items and also non-conformities in a sample. Due to these 
conditions the classical control chart is not suitable or not possible to 
apply for checking the process performance. So, the proposed chart is 
best for the process of monitoring and detecting the non-conformities. 
This electrical unit decided to adopt the suggested chart when ARL0N 
= [370, 370] with 100 sample sizes, then using NCOM-Poisson distri
bution with\; νN ∈ [0.634222, 0.657101] and μ0N ∈ [2.5485,2.5485] and 
is described in Table 5. 

The data of non-conformities are plotting in Fig. 3 for the suggested 
chart and Fig. 4 for the existing chart proposed by [43]. On observing 
Fig. 3, all observations fall in the portion of in-control but point 10 lies in 
the repetitive part of the proposed chart and very close to the control 
limits. At point 10 the PCB non-conformities number is 11 that is very 
close to the out-of-control the region which is 12.36 and under repetitive 
control region which is 10.86. While in Fig. 4 all observations fall in the 
in-control portion and no point is closer to the control limit as compared 
to the proposed chart. Meanwhile, the counterpart chart doesn’t expose 
that the interval of indeterminacy in the fraction parameter and control 
limits. So, we can say that the proposed chart’s performance is better as 
compared to the counterpart chart. The proposed chart is more benefi
cial to be applied and adaptable to be used in an uncertain environment. 
On comparing the suggested chart and existing chart, it is noticed that 
the suggested chart shows that there are some issues in monitoring the 
process that should be identified. 

6. Conclusions 

In this article a repetitive sample scheme has been presented for the 
efficient monitoring of uncertain observations for COM-Poisson distri
bution. Two pairs of control limits have been generated using the neu
trosophic interval method by considering specific average run lengths. A 
comparison study has been presented for describing the benefits of the 
suggested chart. It is concluded that the suggested chart is efficient, 
adequate, and flexible when applied under appropriate conditions. The 
proposed control chart using a cost model can be extended for future 
research. The proposed control chart using the mixed sampling scheme 
can be considered as future research. 

Declaration of Competing Interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Acknowledgements 

We are thankful to the editor and reviewers for their valuable sug
gestions to improve the quality of the paper. 

References 

[1] M.-H. Shu, D.-C. Dang, T.-L. Nguyen, B.-M. Hsu, N.-S. Phan, Fuzzy and control 
charts: A data-adaptability and human-acceptance approach, Complexity 2017 
(2017). 

[2] R.E. Sherman, Design and evaluation of a repetitive group sampling plan, 
Technometrics 7 (1) (1965) 11–21. 

[3] L. Ahmad, M. Aslam, C.-H. Jun, The design of a new repetitive sampling control 
chart based on process capability index, Trans. Inst. Meas. Control 38 (2016) 
971–980. 

[4] S. Balamurali, H. Park, C.-H. Jun, K.-J. Kim, J. Lee, Designing of variables 
repetitive group sampling plan involving minimum average sample number, 
Commun. Statistics – Simul. Comput. 34 (3) (2005) 799–809. 

[5] S. Balamurali, C.-H. Jun, Repetitive group sampling procedure for variables 
inspection, J. Appl. Statistics 33 (3) (2006) 327–338. 

[6] L. Ahmad, M. Aslam, C.-H. Jun, Coal quality monitoring with improved control 
charts, Eur. J. Sci. Res. 125 (2014) 427–434. 

[7] M. Azam, M. Aslam, C.-H. Jun, Designing of a hybrid exponentially weighted 
moving average control chart using repetitive sampling, Int. J. Adv. Manuf. 
Technol. 77 (2015) 1927–1933. 

[8] L. Ahmad, M. Aslam, O. Arif, C.-H. Jun, Dispersion chart for some popular 
distributions under repetitive sampling, J. Adv. Mech. Des., Syst. Manuf. 10 (2016) 
1–18. 

[9] M. Aslam, G. Srinivasa Rao, L. Ahmad, C.-H. Jun, A control chart for multivariate 
Poisson distribution using repetitive sampling, J. Appl. Stat. 44 (2017) 123–136. 

[10] O.A. Adeoti, J.O. Olaomi, Capability index based control chart for monitoring 
process mean using repetitive sampling, Commun. Statistics-Theory Methods 
(2017). 

[11] M.S. Aldosari, M. Aslam, N. Khan, L. Ahmad, C.-H. Jun, A new S 2 control chart 
using multiple dependent state repetitive sampling, IEEE Access 6 (2018) 
49224–49236. 

[12] A. Shafqat, Z. Huang, M. Aslam, M.S. Nawaz, A nonparametric repetitive sampling 
DEWMA control chart based on linear prediction, IEEE Access 8 (2020) 
74977–74990. 

[13] A.H. Al-Marshadi, M. Aslam, A.H. Alharbey, N. Khan, L. Ahmad, Monitoring 
customer complaints using the repetitive sampling, Commun. Statistics - Theory 
Methods (2020) 1–15. 
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extended triplet groups and generalized groups, Cognit. Syst. Res. 57 (2019) 
32–40. 

[37] Z. Khan, M. Gulistan, R. Hashim, N. Yaqoob, W. Chammam, Design of S-control 
chart for neutrosophic data: An application to manufacturing industry, J. Intell. 
Fuzzy Syst. 38 (2020) 4743–4751. 

[38] K.F. Sellers, S. Borle, G. Shmueli, The COM-Poisson model for count data: a survey 
of methods and applications, Appl. Stochastic Models Bus. Ind. 28 (2012) 104–116. 

[39] G. Shmueli, T.P. Minka, J.B. Kadane, S. Borle, P. Boatwright, A useful distribution 
for fitting discrete data: revival of the Conway–Maxwell–Poisson distribution, 
J. Royal Stat. Soc.: Ser. C (Appl. Stat.) 54 (2005) 127–142. 

[40] M. Aslam, L. Ahmad, C.-H. Jun, O.H. Arif, A control chart for COM–Poisson 
distribution using multiple dependent state sampling, Qual. Reliab. Eng. Int. 32 
(2016) 2803–2812. 

[41] M. Aslam, A. Saghir, L. Ahmad, C.-H. Jun, J. Hussain, A control chart for COM- 
Poisson distribution using a modified EWMA statistic, J. Stat. Comput. Simul. 87 
(2017) 3491–3502. 

[42] M. Mashuri, “A Fuzzy Bivariate Poisson Control Chart,” Symmetry, vol. 12, p. 573, 
2020. 

[43] M. Aslam, A.H. Al-Marshadi, Design of a control chart based on COM-Poisson 
distribution for the uncertainty environment. Complexity, 2019, 2019. 

[44] F. Smarandache, Introduction to neutrosophic statistics, Infinite Study (2014). 
[45] M. Aslam, A variable acceptance sampling plan under neutrosophic statistical 

interval method, Symmetry 11 (2019) 114. 

M. Aslam et al.                                                                                                                                                                                                                                  

http://refhub.elsevier.com/S0263-2241(20)30938-6/h0100
http://refhub.elsevier.com/S0263-2241(20)30938-6/h0100
http://refhub.elsevier.com/S0263-2241(20)30938-6/h0115
http://refhub.elsevier.com/S0263-2241(20)30938-6/h0115
http://refhub.elsevier.com/S0263-2241(20)30938-6/h0125
http://refhub.elsevier.com/S0263-2241(20)30938-6/h0125
http://refhub.elsevier.com/S0263-2241(20)30938-6/h0130
http://refhub.elsevier.com/S0263-2241(20)30938-6/h0130
http://refhub.elsevier.com/S0263-2241(20)30938-6/h0130
http://refhub.elsevier.com/S0263-2241(20)30938-6/h0135
http://refhub.elsevier.com/S0263-2241(20)30938-6/h0135
http://refhub.elsevier.com/S0263-2241(20)30938-6/h0140
http://refhub.elsevier.com/S0263-2241(20)30938-6/h0140
http://refhub.elsevier.com/S0263-2241(20)30938-6/h0140
http://refhub.elsevier.com/S0263-2241(20)30938-6/h0155
http://refhub.elsevier.com/S0263-2241(20)30938-6/h0155
http://refhub.elsevier.com/S0263-2241(20)30938-6/h0160
http://refhub.elsevier.com/S0263-2241(20)30938-6/h0160
http://refhub.elsevier.com/S0263-2241(20)30938-6/h0160
http://refhub.elsevier.com/S0263-2241(20)30938-6/h0170
http://refhub.elsevier.com/S0263-2241(20)30938-6/h0170
http://refhub.elsevier.com/S0263-2241(20)30938-6/h0175
http://refhub.elsevier.com/S0263-2241(20)30938-6/h0175
http://refhub.elsevier.com/S0263-2241(20)30938-6/h0180
http://refhub.elsevier.com/S0263-2241(20)30938-6/h0180
http://refhub.elsevier.com/S0263-2241(20)30938-6/h0180
http://refhub.elsevier.com/S0263-2241(20)30938-6/h0185
http://refhub.elsevier.com/S0263-2241(20)30938-6/h0185
http://refhub.elsevier.com/S0263-2241(20)30938-6/h0185
http://refhub.elsevier.com/S0263-2241(20)30938-6/h0190
http://refhub.elsevier.com/S0263-2241(20)30938-6/h0190
http://refhub.elsevier.com/S0263-2241(20)30938-6/h0195
http://refhub.elsevier.com/S0263-2241(20)30938-6/h0195
http://refhub.elsevier.com/S0263-2241(20)30938-6/h0195
http://refhub.elsevier.com/S0263-2241(20)30938-6/h0200
http://refhub.elsevier.com/S0263-2241(20)30938-6/h0200
http://refhub.elsevier.com/S0263-2241(20)30938-6/h0200
http://refhub.elsevier.com/S0263-2241(20)30938-6/h0205
http://refhub.elsevier.com/S0263-2241(20)30938-6/h0205
http://refhub.elsevier.com/S0263-2241(20)30938-6/h0205
http://refhub.elsevier.com/S0263-2241(20)30938-6/h0220
http://refhub.elsevier.com/S0263-2241(20)30938-6/h0225
http://refhub.elsevier.com/S0263-2241(20)30938-6/h0225

	Monitoring circuit boards products in the presence of indeterminacy
	1 Introduction
	2 Repetitive control chart based on NCOM-Poisson distribution
	3 Advantages of the suggested chart
	4 Simulation study
	5 Applications for circuit boards product
	6 Conclusions
	Declaration of Competing Interest
	Acknowledgements
	References


