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Abstract

Neutrosophic cubic set (NCS) is the generalized version of neutrosophic sets and interval neutrosophic sets. It can deal
with the complex information by combining the neutrosophic set (NS) and cubic set (CS). The partitioned Maclaurin
symmetric mean (PMSM) operator can reflect the interrelationships among attributes where there are interrelationships
among attributes in the same partition, but the attributes in different partitions are irrelevant. To effectively gather
neutrosophic cubic information, we extend the PMSM operator to neutrosophic cubic environment and define the
neutrosophic cubic partitioned Maclaurin symmetric mean (NCPMSM) operator and neutrosophic cubic weighted
partitioned Maclaurin symmetric mean (NCWPMSM) operator. Later, we define a novel score function of NCS which
overcome the drawbacks of the existing score functions. Next, based on NCWPMSM operator and the novel score
function, we develop a multi-attribute group decision-making method. Finally, we give an example of supplier selection
to illustrate the usefulness of the proposed multi-attribute group decision-making (MAGDM) method. At the same time, a
comparative analysis is to show the effectiveness and advantages of the proposed method compared with the existing
methods.

Keywords multi-attribute group decision-making (MAGDM) · neutrosophic cubic set (NCS) · weighted partitioned
Maclaurin symmetric mean (WPMSM) operator · score function

1. Introduction

The entire world is designated with complex
circumstances. In order to process the complexity

and uncertainty, Zadeh (1965) firstly introduced
the concept of fuzzy set (FS) in 1965. FS
represents the uncertainty of decision
information by the membership degree which is
in the closed interval [0, 1]. However, in the
process of cognition, people tend to hesitate in
different degrees or show a certain degree of
lack of knowledge, so the cognitive results are
shown as positive, negative or intermediate
between positive and negative. In order to
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overcome this shortcoming, Atanassov (1986, 1989)
proposed the concept of intuitionistic fuzzy set (IFS)
in 1986. IFS considers both membership information
and non-membership information at the same time,
so it has a stronger performance in dealing with
uncertain information. However, in some real
situations, the membership degree, non-membership
degree and hesitation of elements may not be specific
values, so IFS was extended to interval-value
intuitionistic fuzzy set (IVIFS) by Atanassov and
Gargov (1989). In IFS and IVIFS, the membership
degree and non-membership degree are defined
independently, while hesitant degree is dependent on
membership degree and non-membership degree. To
overcome this limitation, Smarandache (1999)
proposed the concept of neutrosophic set (NS). NS
includes membership degree T(x), indeterminacy
degree I(x) and non-membership degree F(x) of
elements. Wang and Zhang et al. (2005) further
proposed the concept of interval neutrosophic set
(INS), where the representation of the T(x), I(x) and
F(x) extended from single values to interval values.
Wang et al. (2010) proposed the single-valued
neutrosophic set (SVNS) theory.

In 2012, Jun et al. (2011) proposed the concept of
cubic set (CS), which is characterized by interval-
value fuzzy set (IVFS) (Turksen 1986) and FS. CS
can contain more information and it is more effective
to deal with uncertain and vague information.
Mehmood et al. (2016) proposed the cubic hesitant
fuzzy sets (CHFSs). Muhiuddin and Al-roqi (2014)
proposed the cubic soft sets (CSSs). Aslam et al.
(2020) proposed develop trapezoidal cubic linguistic
uncertain fuzzy numbers (TrCLUFNs), and propose
the trapezoidal cubic linguistic uncertain fuzzy
Einstein weighted average (TrCLUFEWA) operator
and the trapezoidal cubic linguistic uncertainty fuzzy
Einstein mixed weighted average (TrCLUFEHWA)
operator to aggregate trapezoidal cubic linguistic
uncertain fuzzy information. Amin et al. (2020)
introduced six uncertain fuzzy operators based on
triangular cubic linguistic information, and proposed
a multi-attribute group decision-making method. Jun
et al. (2017) introduced the cubic set to neutrosophic
set and proposed the concept of neutrosophic cubic
set (NCS). NCS has attracted the attention of many
researchers, because it is more effective and

informative by the available information in the
form of INS and SVNS. Gulistan et al. (2018)
combined NCS and Molodtsov’ s soft sets (1999)
with matrices to develop a neutrosophic cubic
soft matrix theory. Gulistan et al. (2019)
combined NCS and complex fuzzy set and
proposed the complex neutrosophic cubic set
(internal and external).Cui et al. (2019) proposed
the concept of dynamic neutrosophic cubic set
(DNCS) to describe patients' disease symptoms
in different time intervals and proposed the
logarithmic similarity measure (LSM) of
DNCSs to apply it to medical diagnosis.

Information integration is a common activity
in multi-attribute decision-making. The
Maclaurin symmetric mean (MSM) operator is
one of the aggregation methods that proposed by
Maclaurin (1729). The MSM operator fully
considers the correlation among attributes. Qin
et al. (2014) proposed the weighted intuitionistic
fuzzy Maclaurin symmetric mean (WIFMSM)
operator firstly by introducing the MSM to the
fuzzy information aggregation field. Li et al.
(2016) applied the Maclaurin symmetric mean
operator to gather hesitant fuzzy information,
and defined the weighted hesitant fuzzy
Maclaurin symmetric mean (WHFMSM)
operator for human resources management.
Wang et al. (2018) made a study on the
weighted single-valued neutrosophic linguistic
Maclaurin symmetric mean (WSVNLMSM)
operator and verified its properties. Based on the
MSM operator and geometric mean (GM)
operator, Qin et al. (2015) proposed the dual
Maclaurin symmetric mean (DMSM) operator.
The MSM and its extension can capture the
correlation between multiple input values, but
not all attributes are related. Based on this, Bai
et al. (2018) proposed the concept of partitioned
Maclaurin symmetric mean (PMSM) operator.
The PMSM operator has several advantages in
processing the situation where there are
interrelationships among attributes in the same
partition, but the attributes in different partitions
are irrelevant. So we introduce the partitioned
Maclaurin symmetric mean operator to
neutrosophic cubic environment and proposed



neutrosophic cubic partitioned Maclaurin symmetric
mean (NCPMSM) operator and neutrosophic cubic
weighted partitioned Maclaurin symmetric mean
(NCWPMSM) operator.

The rest of this paper is shown below. The section
II briefly introduces some theoretical basis for this
paper. Section III introduces the NCPMSM operator,
the NCWPMSM operator, and a novel score function
of neutrosophic cubic numbers. In section IV, a
multi-attribute group decision-making method based
on the NCWPMSM operator and a novel score
function is introduced. In section V, an example of
supplier selection is introduced to illustrate the
feasibility and superiority of the proposed method.
Finally, section VI gives the conclusion.

2. Preliminaries

Definition 1. (Zadeh 1965) Let X be an universal
set and x be the element in X. Then a FS F in X is
defined as: F={<x,μA(x)>|x∈X}, where μA(x) : x →

[0, 1] is the membership degree of the element x ∈
X.
Definition 2. (Atanassov 1986; Atanassov 1989)

Let X be an universal set and x be the element in X.
Then an IFS in X is defined as: A*={<x, μ A(x), ν

A(x)>| x ∈ X}, where μA(x) : X → [0, 1] and νA(x) :

X → [0, 1] with the condition 0≤ μA(x) + νA(x) ≤ 1,

∀ x ∈ X. The μ A(x) and ν A(x) represent the
membership degree and non-membership degree of
the element x to the set A* respectively.
Definition 3. (Zeng et al. 2019) Let d = [a, b] be an
IFV, where a ∈ [0, 1], b ∈ [0, 1] and 0 ≤ a + b ≤ 1.
Let πd be the hesitant degree of the IFV d, where πd

∈ [0, 1]. Then the score function SCK (d) of the IFV
d is defined as :
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where SCK (d)∈ [-1, 1]. In the score function,
the larger of the first part “a − b”, the larger the
score value SCK (d). The second part “π d ×

log2 (1 + πd ) / 100” is used to distinguish two
IFVs which have the same value of “a − b”, and
the smaller the value of “πd × log2 (1 + πd ) /
100”, the larger the score value SCK (d) of the
IFV d.
Definition 4. (Atanassov et al. 1999) Let X be a
set of objects and x be the element in X. The NS
A in X consists of TA(x) - membership degree,
IA(x) - uncertainty degree and FA(x) - non-
membership degree, and it is defined as A= {<x,
TA(x), IA(x), FA(x)>ￜx ∈ X}. TA(x), IA(x), FA(x)
are non-standard subsets in ]0-,1+[, i.e. TA(x) : X
→ ]0-,1+[, IA(x) : X → ]0-,1+[, and FA(x) : X
→ ]0-,1+[. Due to the sum of TA(x), IA(x) and
FA(x) is unlimited, so 0- ≤ TA(x) + IA(x) + FA(x)
≤3+.
Definition 5. (Wang et al. 2010) Let X be a set
of objects and x be the element in X. When
TA(x), IA(x) and FA(x) respectively degenerate to
an exact number, then A is a SVNS.
Definition 6. (Wang et al. 2005) Let X be a set
of objects and x be the element in X. The NS A
on X consists of TA(x) - membership degree,
IA(x) - uncertainty degree and FA(x) - non-
membership degree. When TA(x), IA(x) and FA(x)
belong to closed interval [0, 1], i.e. TA(x) : X →

[0,1], IA(x) : X → [0,1], and FA(x) : X →[0,1],
then A is an INS which can be expressed as A=
{x, [TL

A(x), TU
A (x)], [ IL

A(x), IU
A (x)], [FL

A(x), FU
A (x)]>

ￜx ∈ X}. Similarly, the sum of TA(x), IA(x) and
FA(x) satisfies: 0 ≤ TU

A + IU
A (x)+ FU

A (x) ≤ 3.
Definition 7. (JUN et al. 2011) let X be an
universe, then a CS can be expressed as the
following form：

={ , ( , ( ,) ) }x xx x X  

in which Ψ is an interval value fuzzy set (IVFS)
and µ is a fuzzy set (FS).

The notion of NCS is an extension of CS.
Definition 8. (Aslam et al. 2020) Let X be a
non-empty set. A NCS in X is a pair =(A, )A ,



where A= {<x, [A L
T (x), A U

T (x)], [A L
I (x), A U

I (x)], [A L
F

(x), A U
F (x)]>ￜx ∈ X} is an interval neutrosophic set

in X and Λ={<x, λ T(x), λ I(x), λF(x)>ￜx ∈ X} is a
single-valve neutrosophic set in X.

For simplicity, a basic element {<x, [AL
T (x), AU

T (x)],
[A L

I (x), A U
I (x)], [A L

F (x), A U
F (x)], λT(x), λI(x), λF(x)>}

in a NCS can be expressed as a=(<[AL
T , AU

T ], [AL
I , AU

I ],
[A L

F , A U
F ]>, < λ T, λ I, λ F>), which is called

neutrosophic cubic number (NCN). Besides, A L
T , A U

T ,
AL

I , AU
I , AL

F , AU
F , λT, λI and λF ∈[0,1], and 0 ≤ AU

T +A
U
I + AU

F ≤ 3, 0 ≤ λT + λI + λF ≤ 3.
Definition 9. (Pramanik et al. 2017; Ali et al.

2016; Liu et al. 2020) For any two NCNs A = {<[AL
T ,

A U
T ], [A L

I , A U
I ], [A L

F , A U
F ]>, <λT, λ I, λF>} and B =

{<[BL
T , BU

T ], [BL
I , BU

I ], [BL
F , BU

F ]>, <λT’, λI’, λF’>}

(i=1, 2,... n) and η ≥ 0, the operational laws for
NCNs are shown as follows:
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Definition 10. (Ali et al. 2016) For any two NCSs
iA = {<[A L

T (xi), A U
T (xi)], [A L

I (xi), A U
I (xi)], [A L

F , A U
F ]>,

<λT(xi), λ I(xi), λF(xi)>} and iB = {<[B L
T (xi), B U

T (xi)],

[BL
I (xi), BU

I (xi)], [BL
F (xi), BU

F (xi)]>, <λT’(xi), λI’(xi),

λ F’(xi)>} (i=1, 2,... n), the Hamming distance
measure between A and B is given by:
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Definition 11. (Ye 2018) Let 1 2, ,..., nA A A be a
set of NCNs where jA = {<[A L

Tj, A U
Tj], [A L

Ij , A U
Ij ],

[A L
Fj , A U

Fj ]>, < λ Tj, λ Ij, λ Fj>}. Then the
neutrosophic cubic weighted arithmetic
averaging (NCWAA) operator is defined as
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When wj=1/n, the NCWAA operator
degenerates to NCAA operator, i.e.
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The Maclaurin symmetric mean (MSM)

operator (Maclaurin 1986)was initiated by
Maclaurin originally, which can seize the
interrelation among attributes more effectively.
Definition 12. Suppose ai (i=1, 2, ... n) is a set
of non-negative crisp numbers, then the
Maclaurin symmetric mean (MSM) operator is
the mapping shown as:
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where k=1, 2,...,n, (i1, i2, ...,ik) is one of all the k -
tuple combinations of (1, 2,... n), and Ck

n is the
binomial coefficient which satisfies:
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Definition 13. (Qin 2015) Suppose ai (i=1, 2, ... n) is
a set of non-negative crisp numbers, then the dual
Maclaurin symmetric mean (DMSM) operator is the
mapping shown as:
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where k=1, 2, ..., n, (i1, i2, ...,ik) is one of all the k -
tuple combinations of (1,2,...n), and C k

n is the
binomial coefficient satisfying following formula:
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Definition 14. The MSM operator possesses some
characteristics:

(1) Idempotency: MSM(k) (a1, a2,... an) = a when ai

= a (i= 1, 2, ... n) ;
(2) Monotonicity: MSM(k)(a1, a2,... an) ≤ MSM(k)

(b1, b2, ... bn) if ai ≤ bi (i=1,2,...n);
(3) Boundedness: min{ai} ≤ MSM(k) (a1, a2, ... an)

≤ max {ai}.
Definition 15. (Bai 2018; Nguyen 2020; Liu 2020)
Let A=(a1, a2,... an) be a set of non-negative real
numbers, which are divided into d partitions Z1, Z2, ...
Zd and Zi ∩ Z j = Ø. Then the PMSM operator is
defined as follows:
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where kr is the parameter in the partition Zr, k=1,
2, ... , |Zr|. |Zr| is the number of input arguments in the
partition Zr and it satisfies ∑ d

r=1 |Zr| = n. (i1, i2, ...,ik)
traverses the overall kr-tuple different combinations

of (1, 2, ... , |Zr|); Ck r
|Zr| is the binomial coefficient

and it satisfies:
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Definition 16. (Liu 2020; Liu 2020) Let A={a1,
a2, ... an} be a set of non-negative real numbers,
which are divided into d partitions Z1, Z2, ... Zd

and Zi ∩ Z j = Ø. The weight vector of input
arguments is W = (w1, w2, ... , wn)T with wi∈[0,
1] and ∑

n

i wi=1. Then the weighted partitioned
Maclaurin symmetric mean (WPMSM) operator
is defined as follows:
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where kr is the parameter in the partition Zr, k=1,
2, ... , |Zr|. |Zr| is the number of input arguments
in the partition Zr and it satisfies ∑ d

r=1 |Zr|=n. (i1,
i2, ..., ik) traverses the overall kr - tuple different
combinations of (1, 2, ... , |Zr|); C k r

|Zr| is the
binomial coefficient and it satisfies：
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3. The NCPMSM operator and NCWPMSM
operator and a novel score function of NCN

In this part, firstly we apply the PMSM
operator to neutrosophic cubic environment and
propose the NCPMSM operator and
NCWPMSM operator.
Definition 17. Let 1 2, ,..., nA A A be a set of
NCNs where iA ={<[A L

Ti, A U
Ti], [A L

Ii , A U
Ii ], [AL

Fi, A
U
Fi ]>, < λ Ti, λ Ii, λ Fi>}. Then the NCPMSM
operator is defined as follows:
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where kr is the parameter in the partition Zr, k=1,
2, ... , |Zr|. |Zr| indicates the number of input



arguments in the partition Zr and ∑ d
r=1 |Zr|=n. (i1,

i2, ...,ik) traverses the overall kr-tuple different
combinations of (1, 2, ... , |Zr|); C k r

|Zr| is the binomial
coefficient and it satisfies:
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Theorem 1. Let 1 2, ,... nA A A be a set of NCNs.
Then the integrated result of the above NCPMSM
operator is also a NCN, which displayed as below:
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Finally, we obtain the aggregated value of n NCNs as
follows:
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Next we prove some properties of the
proposed NCPMSM operator.
Theorem 2. (commutativity) Let ' ' '
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Proof. According to the idempotency and
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derive the following inequalities:
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Definition 18. Let 1 2, ,..., nA A A be a set of
NCNs where iA ={<[A L

Ti, A U
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Ii , A U
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Fi, A
U
Fi ]>, <λTi, λ Ii, λFi>}. And let the weight of the
input argument iA (i = 1, 2, ..., n) be wi, where

wi ∈ [0, 1] and ∑
n

i wi=1. Then the neutrosophic
cubic weighted partitioned Maclaurin symmetric
mean (NCWPMSM) operator is defined as
follows:
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where kr is the parameter in the partition Zr, k=1,
2, ... , |Zr|. |Zr| is the number of input arguments
in the partition Zr and ∑ d

r=1 |Zr|=N. (i1, i2, ...,ik)
traverses the overall kr - tuple different
combinations of (1, 2, ... , |Zr|); C k r

|Zr| denotes the
binomial coefficient and it satisfies:
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Theorem 6. Let 1 2, ,... nA A A be a set of NCNs and
the weight of the input argument iA (i = 1, 2, ..., n)

be wi, where wi ∈ [0, 1] and ∑
n

i wi=1. Then the
integrated result of the above NCWPMSM operator
is also a NCN, displayed as below:
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Similar to the proof of theorem 1, we omit this

process of proof here.
Same as the NCPMSM operator, the NCWPMSM

operator also has some properties of commutativity,
idempotency, monotonicity and boundedness. The
processes of proof are similar to Theorem 2 -
Theorem 5, so here we omit these proofs.

We can use the score function of IFV in definition
3 to acquire the score of NCN. In order to meet the

expected properties of the score function, we
have improved it.
Definition 19. For a neutrosophic cubic number
A ={<[AL

T , AU
T ], [AL

I , AU
I ], [AL

F , AU
F ]>, <λT, λI, λ

F>}, the proposed novel score function of NCN
of A is as follows:
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This new function can make up for some
shortcomings of the existing score function in
[29]. For example, A = {<[0.8, 0.9], [0.5, 0.6],
[0.4, 0.6], <0.7, 0.5, 0.6>}, B = {<[0.7, 0.8],
[0.4, 0.7], [0.6, 0.7], <0.6, 0.2, 0.3>}, according
to the existing score function (Ye 2018) we can
get S (A) = S (B) = 0.58. Apparently, the
original score function can’t accurately
distinguish the size of two numbers. Based on
the novel score function, we get S(A) = 0.2671,
S(B) =0.1670, i.e. A > B.
Theorem 7. The proposed novel score function
of NCN satisfies: ( )S A ∈ [-1, 1].
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T - B U

T > 0, - (A L
F -

BL
F ) > 0, - (A U

F - BU
F ) > 0, λF - λF’ > 0. Now we

construct a function y:
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It is easy to see that y'' is a decreasing function with
respect to x. So
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Apprantly, y is an increasing function with respect to
x. So
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Let 1A ={<[1, 1], [0, 0], [0, 0]>, <1, 0, 0>} and

2A ={<[0, 0], [1, 1], [1, 1]>, <0, 1, 1>}, 1A and 2A
are the maximum and minimum values of the NCN,
respectively. So
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Therefore, we can get S ∈ [−1, 1]

4. A Multi-attribute group decision-making
method based on the NCWPMSM operator
and a novel score function

For neutrosophic cubic multi-attribute group
decision-making method, supposing there are m
alternatives A={A1, A2, ..., Ai, ..., Am} and n
attributes C={C1, C2, ..., Cj, ..., Cn}. The weights
of attributes are w = (w1, w2, ..., wj, ..., wn).
There are l experts Dk (k= 1, 2, ... l), whose
weights are γ=(γ1, γ2,... γl), are invited to evaluate
the alternatives. The concret decision-making
process is shown as follows:
Step1. Construct the decision matrix Rk

All experts give their own evaluation values
about this problem. The evaluation value of Ai

on attribute Cj given by expert k is represented
by the decision matrix Rk=(r k

ij )m×n, where rij is a
NCN.
Step2. Aggregate information from each

expert
Use the NCWAA operator in Definition 11 to

gather decision information from all experts:
1 2NCWAA( , ,..., ).l

ij ij ij ijr r r r
Step3. Obtain the comprehensive evaluation

value
Firstly, we need to partition the attributes.

Then we need to use the NCWPMSM operator
in definition 18 to integrate the evaluation
information of different attribute values of each
alternative to obtain the comprehensive
evaluation value.
Step4. Calculate the score function for the

alternatives
We can use the score function in definition 19

to acquire the score values of alternatives.
Step5. Rank all the alternatives.
This step we need to rank all the alternatives

according to respective score value in decending
order. The larger the score value, the better the
alternative.



5. An application example

Supplier selection is an important part of the
industry and production strategy for industrial
organizations. Choosing the best supplier will
improve the overall efficiency and cost effectiveness
of the whole supply chain. Consider a decision
problem in an automobile manufacturing enterprise,
which aims to find a suitable supplier for the
purchase of components. After preliminary screening,

four potential automobile equipment suppliers
(A1, A2, A3, A4) have been identified for further
evaluation. Five attributes to be considered in
the evaluation process are: C1: Environment
management; C2: Quality management; C3:
Product performance; C4: Green image; C5:
Green product innovation. The weights of
attributes are w =(0.24, 0.2, 0.2, 0.17, 0.19).
Three experts assess this problem and the
relative importance vector is W= (0.4, 0.3, 0.3)T.

Table 1
Decision matrix R1 of the decision-maker D1

C1 C2 C3

A1
{<[0.2,0.3],[0.2,0.3],

[0.4,0.5]>,<0.3,0.3,0.5>}
{<[0.3,0.4],[0.2,0.3],

[0.1,0.2]>,<0.4,0.2,0.1>}
{<[0.4,0.5],[0.1,0.2],

[0.2,0.3]>,<0.5,0.2,0.2>}

A2
{<[0.3,0.4],[0.1,0.2],

[0.2,0.3]>,<0.3,0.2,0.3>}
{<[0.2,0.3],[0.3,0.4],

[0.4,0.5]>,<0.2,0.4,0.5>}
{<[0.1,0.2],[0.2,0.3],

[0.5,0.6]>,<0.1,0.3,0.6>}

A3
{<[0.3,0.4],[0.1,0.2],

[0.1,0.2]>,<0.4,0.1,0.1>}
{<[0.5,0.6],[0.2,0.3],

[0.2,0.3]>,<0.6,0.2,0.3>}
{<[0.5,0.6],[0.1,0.2],

[0.2,0.3]>,<0.6,0.1,0.2>}

A4
{<[0.4,0.5],[0.1,0.2],

[0.2,0.3]>,<0.5,0.1,0.2>}
{<[0.6,0.7],[0.2,0.3],

[0.1,0.2]>,<0.7,0.2,0.1>}
{<[0.7,0.8],[0.2,0.3],

[0.2,0.3]>,<0.8,0.2,0.3>}

C4 C5

A1
{<[0.4,0.5],[0.1,0.2],

[0.3,0.4]>,<0.4,0.2,0.3>}
{<[0.7,0.9],[0.2,0.4],

[0.3,0.4]>,<0.8,0.5,0.2>}

A2
{<[0.5,0.6],[0.1,0.2],

[0.1,0.2]>,<0.6,0.1,0.1>}
{<[0.5,0.6],[0.3,0.4],

[0.3,0.5]>,<0.7,0.3,0.6>}

A3
{<[0.5,0.6],[0.2,0.3],

[0.1,0.2]>,<0.5,0.4,0.2>}
{<[0.6,0.8],[0.2,0.4],

[0.5,0.6]>,<0.7,0.2,0.4>}

A4
{<[0.3,0.4],[0.2,0.3],

[0.1,0.2]>,<0.5,0.2,0.2>}
{<[0.7,0.9],[0.2,0.3],

[0.3,0.5]>,<0.8,0.5,0.2>}

Table 2
Decision matrix R2 of the decision-maker D2

C1 C2 C3

A1
{<[0.3,0.4],[0.2,0.3],

[0.5,0.6]>,<0.3,0.3,0.6>}
{<[0.5,0.6],[0.3,0.4],

[0.2,0.3]>,<0.5,0.4,0.3>}
{<[0.2,0.3],[0.2,0.3],

[0.4,0.5]>,<0.2,0.2,0.5>}

A2
{<[0.5,0.6],[0.2,0.3],

[0.1,0.2]>,<0.5,0.3,0.1>}
{<[0.4,0.5],[0.1,0.2],

[0.3,0.4]>,<0.5,0.2,0.3>}
{<[0.6,0.7],[0.2,0.3],

[0.1,0.2]>,<0.6,0.3,0.2>}

A3
{<[0.4,0.6],[0.1,0.3],

[0.2,0.4]>,<0.5,0.2,0.3>}
{<[0.6,0.7],[0.1,0.2],

[0.2,0.3]>,<0.7,0.1,0.2>}
{<[0.5,0.6],[0.1,0.2],

[0.1,0.2]>,<0.6,0.1,0.1>}



A4
{<[0.8,0.9],[0.1,0.1],

[0.1,0.2]>,<0.9,0.1,0.1>}
{<[0.4,0.5],[0.1,0.2],

[0.2,0.3]>,<0.5,0.1,0.2>}
{<[0.6,0.7],[0.2,0.3],

[0.1,0.2]>,<0.7,0.2,0.1>}

C4 C5

A1
{<[0.1,0.6],[0.3,0.4],

[0.5,0.8]>,<0.5,0.5,0.7>}
{<[0.2,0.6],[0.4,0.5],

[0.3,0.6]>,<0.6,0.5,0.9>}

A2
{<[0.2,0.5],[0.4,0.9],

[0.5,0.8]>,<0.5,0.2,0.7>}
{<[0.3,0.4],[0.5,0.7],

[0.5,0.8]>,<0.6,0.1,0.7>}

A3
{<[0.6,0.7],[0.3,0.6],

[0.3,0.7]>,<0.7,0.5,0.3>}
{<[0.6,0.8],[0.4,0.6],

[0.5,0.6]>,<0.8,0.4,0.6>}

A4
{<[0.3,0.7],[0.7,0.8],

[0.6,0.7]>,<0.4,0.2,0.8>}
{<[0.4,0.5],[0.5,0.7],

[0.8,0.9]>,<0.4,0.6,0.7>}

Table 3
Decision matrix R3 of the decision-maker D3

C1 C2 C3

A1
{<[0.2,0.3],[0.1,0.2],

[0.3,0.4]>,<0.2,0.1,0.4>}
{<[0.3,0.4],[0.3,0.4],

[0.5,0.6]>,<0.3,0.4,0.6>}
{<[0.5,0.6],[0.2,0.3],

[0.3,0.4]>,<0.6,0.3,0.4>}

A2
{<[0.3,0.4],[0.1,0.2],

[0.2,0.3]>,<0.4,0.1,0.3>}
{<[0.4,0.5],[0.2,0.3],

[0.3,0.4]>,<0.5,0.2,0.4>}
{<[0.6,0.7],[0.1,0.2],

[0.2,0.3]>,<0.6,0.2,0.3>}

A3
{<[0.4,0.5],[0.1,0.2],

[0.1,0.2]>,<0.5,0.1,0.2>}
{<[0.4,0.5],[0.2,0.3],

[0.1,0.2]>,<0.5,0.2,0.1>}
{<[0.7,0.8],[0.1,0.2],

[0.2,0.3]>,<0.8,0.1,0.2>}

A4
{<[0.5,0.6],[0.2,0.3],

[0.1,0.2]>,<0.6,0.2,0.3>}
{<[0.7,0.8],[0.1,0.2],

[0.2,0.3]>,<0.7,0.1,0.2>}
{<[0.8,0.9],[0.1,0.2],

[0.1,0.2]>,<0.8,0.2,0.1>}

C4 C5

A1
{<[0.2,0.3],[0.3,0.4],

[0.4,0.5]>,<0.3,0.4,0.6>}
{<[0.2,0.3],[0.3,0.5],

[0.4,0.5]>,<0.6,0.4,0.3>}

A2
{<[0.5,0.6],[0.1,0.2],

[0.2,0.3]>,<0.6,0.3,0.2>}
{<[0.5,0.6],[0.1,0.2],

[0.2,0.3]>,<0.6,0.3,0.3>}

A3
{<[0.3,0.4],[0.1,0.2],

[0.2,0.3]>,<0.3,0.2,0.4>}
{<[0.5,0.6],[0.4,0.5],

[0.6,0.8]>,<0.4,0.6,0.7>}

A4
{<[0.4,0.5],[0.2,0.3],

[0.5,0.6]>,<0.2,0.3,0.6>}
{<[0.7,0.8],[0.8,0.9],

[0.6,0.7]>,<0.3,0.5,0.6>}

Table 4
Group decision matrix F

C1 C2 C3

A1
{<[0.23,0.33],[0.16,0.27],

[0.39,0.49]>,<0.27,0.22,0.49>}
{<[0.37,0.47],[0.26,0.36],

[0.2,0.31]>,<0.41,0.30,0.24>}
{<[0.36,0.48],[0.15,0.26],

[0.28,0.38]>,<0.46,0.23,0.32>}

A2
{<[0.37,0.47],[0.12,0.23],

[0.16,0.27]>,<0.40,0.18,0.22>}
{<[0.33,0.43],[0.19,0.30],

[0.34,0.44]>,<0.40,0.26,0.40>}
{<[0.45,0.56],[0.16,0.27],

[0.23,0.35]>,<0.45,0.27,0.35>}



A3
{<[0.36,0.50],[0.10,0.23],

[0.12,0.25]>,<0.46,0.12,0.17>}
{<[0.51,0.61],[0.16,0.27],

[0.16,0.27]>,<0.61,0.16,0.19>}
{<[0.57,0.68],[0.10,0.20],

[0.16,0.27]>,<0.68,0.10,0.16>}

A4
{<[0.59,0.71],[0.12,0.18],

[0.13,0.24]>,<0.71,0.12,0.18>}
{<[0.59,0.69],[0.13,0.24],

[0.15,0.26]>,<0.65,0.13,0.15>}
{<[0.71,0.82],[0.16,0.27],

[0.13,0.24]>,<0.77,0.20,0.16>}

C4 C5

A1
{<[0.26,0.48],[0.19,0.3],

[0.38,0.53]>,<0.41,0.32,0.48>}
{<[0.46,0.73],[0.28,0.46],

[0.33,0.48]>,<0.70,0.47,0.35>}

A2
{<[0.42,0.57],[0.15,0.31],

[0.20,0.34]>,<0.57,0.17,0.22>}
{<[0.45,0.55],[0.25,0.38],

[0.31,0.49]>,<0.64,0.22,0.51>}

A3
{<[0.48,0.59],[0.18,0.33],

[0.17,0.33]>,<0.53,0.35,0.28>}
{<[0.57,0.75],[0.30,0.48],

[0.53,0.65]>,<0.67,0.34,0.53>}

A4
{<[0.33,0.54],[0.29,0.40],

[0.28,0.40]>,<0.39,0.23,0.42>}
{<[0.63,0.80],[0.40,0.54],

[0.50,0.66]>,<0.60,0.53,0.40>}

After fully considering the relationship between
attributes, the five attributes are divided into two
parts, i.e. {C1, C4, C5} and {C2, C3}. That is to say,
|Z1|=3 and |Z2|=2.

The concrete decision-making procedure is as
follows:
Step1. Construct the decision matrix Rk

The experts assign values to the suppliers
through the NCNs to form three decision matrices,
as shown in Table 1 - 3.
Step2. Aggregate information from all experts.
We use the NCWAA operators to gather decision

information from all experts. The group decision
matrix F we obtained is shown as Table 4.
Step3. Obtain the comprehensive evaluation

value
We use the NCWPMSM operator to integrate the

evaluation information of different attribute values
of each alternative to obtain the comprehensive
evaluation value. Here we let k1 = k2 = 2. The group
decision matrix is shown in table 4.
Step4. Calculate the score function for the

alternatives
The score we acquire is S1 = -0.26, S2 = -0.24,

S3 = -0.18, S4 = -0.14.
Step5. Rank all the alternatives

Due to S4 > S3 > S2 > S1, the ranking of the
alternatives is A4 ≻ A3 ≻ A2 ≻ A1.

5.1. The effect of the parameters k1, k2 on the this
decision-making problem

To perceive the effect of the parameters k1, k2 on
the decision making, we set different values for the
parameters k1, k2 in step 3 and then rank the
alternatives Ai. The ranking order for different
parameters values is given in Table 5.

Table 5
Ordering of the alternatives based on NCWPMSM by using

different values of k1, k2

k1, k2 Score values Ranking order

k1 = 1
k2 = 1

S1 = 0.1474, S2 = 0.2026,
S3 = 0.2516, S4 = 0.2806 A4 ≻A3 ≻A2 ≻A1

k1 = 2
k2 = 1

S1 = 0.2400, S2 = 0.2517,
S3 = 0.2856, S4 = 0.3025 A4 ≻A3 ≻A2 ≻A1

k1 = 3
k2 =1

S1 =-0.8272, S2 = -0.8423,
S3 =-0.7597, S4 = -0.7222 A4 ≻A3 ≻A1 ≻A2

k1 = 1
k2 = 2

S1 = 0.1470, S2 = 0.2019,
S3 = 0.2514, S4 = 0.2789 A4 ≻A3 ≻A2 ≻A1

k1 = 2
k2 = 2

S1 = -0.2574, S2 = -0.2383
S3 = -0.1800, S4 = -0.1441 A4 ≻A3 ≻A2 ≻A1

k1 = 3
k2 = 2

S1 = -0.8280, S2 = -0.8438,
S3 = -0.7603, S4 = -0.7243 A4 ≻A3 ≻A1 ≻A2

From Table 5, we can see that when the
parameters k1 and k2 take different values, the
alternative rankings are roughly the same, and the
best alternative is always A4. Therefore, the



parameters k1 and k2 in the NCWPMSM operator
have little influence on decision-making.

5.2. Comparison with existing neutrosophic cubic
fuzzy aggregation operators

In order to test the effectiveness and superiority
of the proposed method, we compared the
NCWPMSM operator proposed in this paper with
the NCWAA and NCWGA operators provided in
reference [29], respectively. The results listed in
Table 6 show that the ranking orders based on the
NCWPMSM operator is almost the same with the

NCWAA and NCWGA operator and the best
alternative is always A4, so the NCWPMSM
operator is feasible and valid.

Furthermore, only the WPMSM operator
considers the situation where the attributes can be
divided into different partitions and there is an
interrelationship among any attribute in each class,
whereas there is no interrelationship among
attributes of any two classes. So the NCWPMSM
operator has the advantage over the NCWAA and
NCWGA operators on aggregating decision
information, and it is more effective to handle
MAGDM problems under a neutrosophic cubic
environment in some cases.

Table 6
Decision results based on different aggregation operators

Aggregation
Operator Aggregated Result Ranking Order The Best

Alternative

NCWPMSM
(k1 = k2 = 2)

A1 = {<[0.08,0.13],[0.32,0.36],
[0.35,0.38]>,<0.11,0.35,0.36>}
A2 = {<[0.10,0.13],[0.31,0.35],
[0.34,0.37]>,<0.12,0.33,0.36>}
A3 = {<[0.13,0.18],[0.30,0.35],
[0.32,0.36]>,<0.17,0.32,0.34>}
A4 = {<[0.16,0.23],[0.32,0.35],
[0.32,0.36]>,<0.19,0.33,0.33>}

A4 ≻ A3 ≻ A2 ≻ A1 A4

NCWAA

A1 = {<[0.34,0.51],[0.20,0.32],
[0.31,0.43]>,<0.31,0.29,0.37>}
A2 = {<[0.40,0.51],[0.17,0.29],
[0.24,0.36]>,<0.22,0.22,0.32>}
A3 = {<[0.50,0.63],[0.15,0.28],
[0.19,0.32]>,<0.21,0.18,0.23>}
A4 = {<[0.59,0.73],[0.19,0.29],
[0.20,0.32]>,<0.25,0.20,0.23>}

A4 ≻ A3 ≻ A2 ≻ A1 A4

NCWGA

A1 = {<[0.33,0.47],[0.21,0.33],
[0.32,0.44]>,<0.42,0.31,0.39>}
A2 = {<[0.40,0.51],[0.17,0.30],
[0.25,0.38]>,<0.47,0.22,0.35>}
A3 = {<[0.48,0.61],[0.17,0.30],
[0.24,0.37]>,<0.58,0.21,0.28>}
A4 = {<[0.56,0.71],[0.22,0.33],
[0.24,0.37]>,<0.62,0.25,0.26>}

A4 ≻ A3 ≻ A2 ≻ A1 A4



5.3. Comparison with existing score function

In order to check the validity and superiority of
the novel score function, we make a comparison of
the proposed score function with the existing score
function (Ye 2018). The results of comparison
shown in table 7. Obviously, no matter which score
function is used, the best alternative is always A4,
which reflects the effectiveness of the new score
function. But in some situations, the existing score
function can’t distinguish the score valves of
alternatives. Such as that when k1 = k2 = 1, the score
values of A4 and A3 are equal, therefore it cannot
evaluate the priority of the alternatives of A4 and A3. But
the proposed score function can make up for these
shortcomings.

Table 7
Decision results based on different aggregation operators

k1, k2 score function Score values Ranking orders

k1 = 1
k2 = 1

novel
score function

S1 = 0.15, S2 =0.20
S3 = 0.25, S4 =0.28 A4 ≻A3 ≻A2 ≻A1

exiting
score function

S1 = 0.60, S2 =0.63
S3 = 0.65, S4 =0.65 A4 =A3 ≻A2 ≻A2

k1 = 2
k2 = 1

novel
score function

S1 = 0.24, S2 = 0.25
S3 = 0.29, S4 = 0.30 A4 ≻A3 ≻A2 ≻A1

exiting
score function

S1 =0.63, S2 = 0.64
S3 = 0.65, S4 = 0.66 A4 ≻A3 ≻A2 ≻A2

k1 = 3
k2 = 1

novel
score function

S1=-0.83, S2 = -0.84
S3=-0.76, S4 =-0.72 A4 ≻A3 ≻A1 ≻A2

exiting
score function

S1 =0.10, S2 = 0.10
S3 =0.14, S4 = 0.14 A4 =A3 ≻A1 =A3

k1 = 1
k2 = 2

novel
score function

S1 =0.15, S2 = 0.20
S3 = 0.25, S4 = 0.28 A4 ≻A3 ≻A2 ≻A1

exiting
score function

S1 =0.60, S2 = 0.63,
S3 = 0.65, S4 =0.65 A4 ≻A3 ≻A2 ≻A2

k1 = 2
k2 = 2

novel
score function

S1=-0.26, S2 =-0.24,
S3=-0.18, S4 =-0.14 A4 ≻A3 ≻A2 ≻A1

exiting
score function

S1 = 0.47, S2 = 0.48
S3 = 0.50, S4 = 0.51 A4 ≻A3 ≻A2 ≻A2

k1 = 3
k2 = 2

novel
score function

S1 =-0.83, S2 =-0.84,
S3 =-0.76, S4 =-0.72 A4 ≻A3 ≻A1 ≻A2

exiting
score function

S1= 0.10, S2= 0.10,
S3= 0.14, S4 = 0.14 A4 =A3≻A1=A3

6. Conclusion

In this paper, firstly, we put the partitioned
Maclaurin symmetric mean operator to
neutrosophic cubic environment and propose the
neutrosophic cubic partitioned Maclaurin
symmetric mean (NCPMSM) operator and
neutrosophic cubic weighted partitioned Maclaurin
symmetric mean (NCPMSM) operator. Then, we
verify some characteristics for the proposed
operators. Later, we extend the score function of
IFV to neutrosophic cubic environment and define
a novel score function, which can overcome the
shortcomings of existing score functions. Finally
we developed a new approach for MAGDM
problems with NCWPMSM operator and the novel
score function in neutrosophic cubic environment,
and applying an example of supplier selection to
this method. By setting different parameters in
NCWPMSM operator, we know that the best
alternative remains unchanged when the parameters
are changed due to subjective preferences. By
comparing with existing operators and score
function, we verify the effectiveness and
superiority of the proposed operator and novel
function.

In the future, it is necessary to apply the
NCWPMSM operator to other fields, such as
medical diagnosis, pattern recognition and decision
support. Besides, it is necessary to improve the
proposed novel score function.
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