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Abstract: This study introduces simplified neutrosophic linguistic numbers (SNLNs) to describe 

online consumer reviews in an appropriate manner. Considering the defects of studies on SNLNs 

in handling linguistic information, the cloud model is used to convert linguistic terms in SNLNs to 

three numerical characteristics. Then, a novel simplified neutrosophic cloud (SNC) concept is 

presented, and its operations and distance are defined. Next, a series of simplified neutrosophic 

cloud aggregation operators are investigated, including the simplified neutrosophic clouds 

Maclaurin symmetric mean (SNCMSM) operator, weighted SNCMSM operator, and generalized 

weighted SNCMSM operator. Subsequently, a multi-criteria decision-making (MCDM) model is 

constructed based on the proposed aggregation operators. Finally, a hotel selection problem is 

presented to verify the effectiveness and validity of our developed approach. 

Keywords: simplified neutrosophic linguistic numbers; cloud model; Maclaurin symmetric mean; 

multi-criteria decision-making 

 

1. Introduction 

Nowadays, multi-criteria decision-making (MCDM) problems are attracting more and more 

attention. Lots of studies suggest that it is difficult to describe decision information completely 

because the information is usually inconsistent and indeterminate in real-life problems. To address 

this issue, Smarandache [1] put forward neutrosophic sets (NSs). Now, NSs have been applied to 

many fields and extended to various forms. Wang et al. [2] presented the concept of single-valued 

neutrosophic sets (SVNSs) and demonstrated its application, Ye [3] proposed several kinds of 

projection measures of SVNSs, and Ji et al. [4] proposed Bonferroni mean aggregation operators of 

SVNSs. Wang et al. [5] used interval numbers to extend SVNSs, and proposed the interval-valued 

neutrosophic set (IVNS). Ye [6] introduced trapezoidal neutrosophic sets (TrNSs), and proposed a 

series of trapezoidal neutrosophic aggregation operators. Liang et al. [7] introduced the preference 

relations into TrNSs. Peng et al. [8] combined the probability distribution with NSs to propose the 

probability multi-valued neutrosophic sets. Wu et al. [9] further extended this set to probability 

hesitant interval neutrosophic sets. All of the aforementioned sets are the descriptive tools of 

quantitative information. 

Zhang et al. [10] proposed a method of using NSs to describe online reviews posted by 

consumers. For example, a consumer evaluates a hotel with the expressions: ‘the location is good’, 

‘the service is neither good nor bad’, and ‘the room is in a mess’. Obviously, there is active, neutral, 

and passive information in this review. According to the NS theory, such review information can be 
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characterized by employing truth, neutrality, and falsity degrees. This information presentation 

method has been proved to be feasible [11]. However, in practical online reviews, the consumer 

usually gives a comprehensive evaluation before posting the text reviews. NSs can describe the text 

reviews, but they cannot represent the comprehensive evaluation. To deal with this issue, many 

scholars have studied the combination of NSs and linguistic term sets [12,13]. The semantic of 

linguistic term set provides precedence on a qualitative level, and such precedence is more sensitive 

for decision-makers than a common ranking due to the expression of absolute benchmarks [14–16]. 

Based on the concepts of NSs and linguistic term sets, Ye [17] proposed interval neutrosophic 

linguistic sets (INLSs) and interval neutrosophic linguistic numbers (INLNs). Then, many interval 

neutrosophic linguistic MCDM approaches were developed [18,19]. Subsequently, Tian et al. [20] 

introduced the concepts of simplified neutrosophic linguistic sets (SNLSs) and simplified 

neutrosophic linguistic numbers (SNLNs). Wang et al. [21] proposed a series of simplified 

neutrosophic linguistic Maclaurin symmetric mean aggregation operators and developed a MCDM 

method. The existed studies on SNLNs simply used the linguistic functions to deal with linguistic 

variables in SNLNs. This strategy is simple, but it cannot effectively deal with qualitative information 

because it ignores the randomness of linguistic variables.  

The cloud model is originally proposed by Li [22] in the light of probability theory and fuzzy set 

theory. It characterizes the randomness and fuzziness of a qualitative concept rely on three numerical 

characters and makes the conversion between qualitative concepts and quantitative values becomes 

effective. Since the introduction of the cloud model, many scholars have conducted lots of studies 

and applied it to various fields [23–25], such as hotel selection [26], data detection [27], and online 

recommendation algorithms [28]. Currently, the cloud model is considered as the best way to handle 

linguistic information and it is used to handle multiple qualitative decision-making problems [29–

31], such as linguistic intuitionistic problems [32] and Z-numbers problems [33]. Considering the 

effectiveness of the cloud model in handling qualitative information, we utilize the cloud model to 

deal with linguistic terms in SNLNs. In this way, we propose a new concept by combining SNLNs 

and cloud model to solve real-life problems. 

The aggregation operator is one of the most important tool of MCDM method [34–37]. Maclaurin 

symmetric mean (MSM) operator, defined by Maclaurin [38], possess the prominent advantage of 

summarizing the interrelations among input variables lying between the maximum value and 

minimum value. The MSM operator can not only take relationships among criteria into account, but 

it can also improve the flexibility of aggregation operators in application by adding parameters. Since 

the MSM operator was proposed, it has been expanded to various fuzzy sets [39–43]. For example, 

Liu and Zhang [44] proposed many MSM operators to deal with single-valued trapezoidal 

neutrosophic information, Ju et al. [45] proposed a series of intuitionistic linguistic MSM aggregation 

operators, and Yu et al. [46] proposed the hesitant fuzzy linguistic weighted MSM operator. 

From the above analysis, the motivation of this paper is presented as follows: 

1. The cloud model is a reliable tool for dealing with linguistic information, and it has been 

successfully applied to handle multifarious linguistic problems, such as probabilistic linguistic 

decision-making problems. The existing studies have already proved the effectiveness and 

feasibility of using the cloud model to process linguistic information. In view of this, this paper 

introduces the cloud model to process linguistic evaluation information involved in SNLNs. 

2. As an efficient and applicable aggregation operator, MSM not only takes into account the 

correlation among criteria, but also adjusts the scope of the operator through the transformation 

of parameters. Therefore, this paper aims to accommodate the MSM operator to simplified 

neutrosophic linguistic information environments. 

The remainder of this paper is organized as follows. Some basic definitions are introduced in 

Section 2. In Section 3, we propose a new concept of SNCs and the corresponding operations and 

distance. In Section 4, we propose some simplified neutrosophic cloud aggregation operators. In 

Section 5, we put forward a MCDM approach in line with the proposed operators. Then, in Section 

6, we provide a practical example concerning hotel selection to verify the validity of the developed 

method. In Section 7, a conclusion is presented. 
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2. Preliminaries 

This section briefly reviews some basic concepts, including linguistic term sets, linguistic scale 

function, NSs, SNSs, and cloud model, which will be employed in the subsequent analyses. 

2.1. Linguistic Term Sets and Linguistic Scale Function 

Definition 1 ([47]). Let  *,1,2, ,2 1H h t Nt = = +  be a finite and totally ordered discrete term set, 

where *N  is a set of positive integers, and h  is interpreted as the representation of a linguistic variable. 

Then, the following properties should be satisfied: 

(1) The linguistic term set is ordered: h h   if and only if   , where ( , )h h H   ; 

(2) If a negation operator exists, then (2 1 )( ) ( , )1,2, ,2 1tneg h h t   + −= = + . 

Definition 2 ([48]). Let h H   be a linguistic term. If [0,1]   is a numerical value, then the linguistic 

scale function f  that conducts the mapping from h  to ( )1,2, ,2 1t  = +  can be defined as 

( ):s 1,2, ,2 1 ,f t  → = +  (1) 

where 1 2 2 1 10 t   +     . 

Based on the existed studies, three types of linguistic scale functions are described as 
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2.2. SNSs and SNLSs 

Definition 3 ([1]). Let X  be a space of points (objects), and x be a generic element in X . A NS A  in X  

is characterized by a truth-membership function ( )AT x , a indeterminacy-membership function ( )AI x , and 

a falsity-membership function ( )AF x . ( )AT x , ( )AI x , and ( )AF x  are real standard or nonstandard 

subsets 0 ,1− +  
. That is, ( ) : 0 ,1AT x x − + → 

, ( ) : 0 ,1AI x x − + → 
, and ( ) : 0 ,1AF x x − + → 

. There 

is no restriction on the sum of ( )AT x , ( )AI x , and ( )AF x , so ( ) ( ) ( )0 sup sup sup 3A A AT x I x F x− + + +  . 

In fact, NSs are very difficult for application without specification. Given this, Ye [34] introduced 

SNSs by reducing the non-standard intervals of NSs into a kind of standard intervals. 

Definition 4 ([17]). Let X  be a space of points with a generic element x . Then, an SNS B  in X  can be 

defined as ( ) , ( ), ( ), ( )B B BB x T x I x F x x X=  , where ( ) : [0,1]BT x X → , ( ) : [0,1]BI x X → , and 
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( ) : [0,1]BF x X → . In addition, the sum of ( )BT x , ( )BI x , and ( )BF x  satisfies 

0 ( ) ( ) ( ) 3B B BT x I x F x + +  . For simplicity, B  can be denoted as ( ), ( ), ( )B B BB T x I x F x= , which is 

a subclass of NSs. 

Definition 5 ([20]). Let X  be a space of points with a generic element x, and 

 *1,2, ,2 1,H h t t N = = +   be a linguistic term set. Then an SNLS C  in X  is defined as 

 , ( ),( ( ), ( ), ( ))C C C CC x h x T x I x F x x X=  , where    ( ) , ( ) 0,1 , ( ) 0,1C C Ch x H T x I x   ,  ( ) 0,1CF x   and 

0 ( ) ( ) ( ) 3C C CT x I x F x + +   for any x X . In addition, ( )CT x , ( )CI x , and ( )CF x  represent the degree 

of truth-membership, indeterminacy-membership, and falsity-membership of the element x  in X  to the 

linguistic term ( )Ch x , respectively. For simplicity, a SNLN is expressed as ( ),( ( ), ( ), ( ))C C C Ch x T x I x F x . 

2.3. The Cloud Model 

Definition 6 ([22]). Let U  be a universe of discourse and T  be a qualitative concept in U . x U  is a 

random instantiation of the concept T , and x  satisfies ( )( )2
*~ ,x N Ex En , where ( )* 2~ ,En N En He , and 

the degree of certainty that x  belongs to the concept T  is defined as 

( )

( )

2

2
*2

,

x Ex

En
e

−
−

=  
 

then the distribution of x  in the universe U  is called a normal cloud, and the cloud C  is presented as 

( ), ,C Ex En He= . 

Definition 7 ([33]). Let ( )1 1 1, ,M Ex En He  and ( )2 2 2, ,N Ex En He  be two clouds, then the operations 

between them are defined as 

(1) ( )2 2 2 2

1 2 1 2 1 2, ,M N Ex Ex En En He He+ = + + + ; 

(2) ( )2 2 2 2

1 2 1 2 1 2, ,M N Ex Ex En En He He− = − + + ; 

(3) ( ) ( ) ( ) ( )( )2 2 2 2

1 2 1 2 2 1 1 2 2 1, ,M N Ex Ex En Ex En Ex He Ex He Ex = + + ; 

(4) ( )1 1 1, ,M Ex En He   = ; and 

(5) ( )1 1

1 1 1 1 1, ,M Ex Ex En Ex He    − −= . 

2.4. Transformation Approach of Clouds 

Definition 8 ([33]). Let iH  be a linguistic term in  1,2,...,2 1iH H i t= = + , and f  be a linguistic scale 

function. Then, the procedures for converting linguistic variables to clouds are presented below. 

(1) Calculate i : Map iH  to i  employing Equation (2) or (3) or (4). 

(2) Calculate iEx : ( )min max mini iEx X X X= + − . 

(3) Calculate iEn : Let ( ),x y  be a cloud droplet. Since ( )'2~ ,i ix N Ex En , we have 

 '

max min3 max ,i i iEn X Ex Ex X= − −  in the light of 3  principle of the normal distribution curve. Then, 
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(4) Calculate iHe : 
( )'

3

i

i

En En
He

+ −
= , where  ' 'max iEn En+ = . 

3. Simplified Neutrosophic Clouds and the Related Concepts 

Based on SNLNs and the cloud transformation method, a novel concept of SNCs is proposed. 

Motivated by the existing studies, we provide the operations and comparison method for SNCs and 

investigate the distance measurement of SNCs. 

3.1. SNCs and Their Operational Rules 

Definition 9. Let X  be a space of points with a generic element x ,  *,1,2, ,2 1H h t Nt = = +  be a 

linguistic term set, and ( ),( ( ), ( ), ( ))C C C Ch x T x I x F x  be a SNLN. In accordance with the cloud conversion 

method described in Section 2.4, the linguistic term ( )Ch x H  can be converted into the cloud , ,Ex En He

. Then, a simplified neutrosophic cloud (SNC) is defined as 

( ), , , , ,Y Ex En He T I F=   

Definition 10. Let ( ) ( )1 1 1 1 1 1, , , , ,a Ex En He T I F=  and ( ) ( )2 2 2 2 2 2, , , , ,b Ex En He T I F=  be two 

SNCs, then the operations of SNC are defined as 

(1) 

( ) ( )

( ) ( ) ( ) ( )

2 2 2 2

1 1 1 1 2 2 2 22 2 2 2

1 2 1 2 1 2 2 2 2 2

1 2 1 1 2 2

2 2 2 2 2 2 2 2

1 1 1 1 2 2 2 2 1 1 1 1 2 2 2 2

2 2 2 2 2

1 2 1 1 2 2 1 2 1

, , , ,

   ,

T Ex En He T Ex En He
a b Ex Ex En En He He

Ex Ex En He En He

I Ex En He I Ex En He F Ex En He F Ex En He

Ex Ex En He En He Ex Ex En

 + + + + +
 = + + +
 + + + + +


+ + + + + + + + + +

+ + + + + + + 2 2 2

1 2 2

;
He En He



+ + +


 

(2) ( )1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2, , , , , ;a b Ex Ex En En He He T T I I I I F F F F = + − + −  

(3) ( )1 1 1 1 1 1, , , , , ;a Ex En He T I F   =  and 

(4) ( ) ( )( )1 1 1 1 1 1, , , ,1 1 ,1 1 .a Ex En He T I F
     = − − − −  

Theorem 1. Let ( ) ( )1 1 1 1 1 1, , , , ,a Ex En He T I F= , ( ) ( )2 2 2 2 2 2, , , , ,b Ex En He T I F=  and 

( ) ( )3 3 3 3 3 3, , , , ,c Ex En He T I F=  be three SNCs. Then, the following properties should be satisfied 

(1) a b b a+ = + ; 

(2) ( ) ( )a b c a b c+ + = + + ; 

(3) ( )a b a b  + = + ; 

(4) ( )1 2 1 2a a a   + = + ; 

(5) a b b a =  ; 

(6) ( ) ( )a b c a b c  =   ; 

(7) 1 2 1 2a a a
   +
 = ; 
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(8) ( )a b a b
   =  . 

3.2. Distance for SNCs 

Definition 11. Let ( ) ( )1 1 1 1 1 1, , , , ,a Ex En He T I F=  and ( ) ( )2 2 2 2 2 2, , , , ,b Ex En He T I F=  be two 

SNCs, then the generalized distance between a and b is defined as 

( ) ( ) ( ) ( ) ( )(

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ))

1 1 2 2 1 1 1 2 2 2

1

1 1 1 2 2 2 1 1 1 2 2 2

1
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2 2 2 2

1 1 2 2

En He

En He En He


+
=

+ + +
. When λ = 1 and 2, the 

generalized distance above becomes the Hamming distance and the Euclidean distance, respectively. 

Theorem 2. Let ( ) ( )1 1 1 1 1 1, , , , ,a Ex En He T I F= , ( ) ( )2 2 2 2 2 2, , , , ,b Ex En He T I F= , and 

( ) ( )3 3 3 3 3 3, , , , ,c Ex En He T I F=  be three SNCs. Then, the distance given in Definition 11 satisfies the 

following properties: 

(1) ( ), 0d a b  ; 

(2) ( ) ( ), ,d a b d b a= ; and 

(3) If 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3, , , ,  ,Ex Ex Ex En En En He He He T T T I I I             , and 1 2 3F F F  , 

then ( ) ( ), ,d a b d a c , and ( ) ( ), ,d b c d a c . 

Proof. It is easy to prove that (1) and (2) in Theorem 2 are true. The proof of (3) in Theorem 2 is 

depicted in the following. 

Let 
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Thus, we have 
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( , )1 1 1 ( , )2 3 3

( , )1 1 1 ( , )2 3 3

1

( , )1 1 1 ( , )2 3 3

( , )1 1 1 ( , )2 2 2

( , )1 1 1 ( , )2 2 2

( , )1 1 1

1
1 1

3

1 1 1 1

1 1 1 1

1
1 1

3

1 1 1 1

1 1

a c a c

a c a c

a c a c

a b a b

a b a b

a b

q Ex T Ex T

Ex I Ex I

Ex F Ex F

Ex T Ex T

Ex I Ex I

Ex F





 





 

 

 

 

 




= − − −


+ − − − − −

+ − − − − − 



− − − −


+ − − − − −

+ − − ( ) ( ) )
1

( , )2 2 21 1 ,a b Ex F
 

 − − − 


  

then ( ) ( ), ,d a c d a b p q− = + . 

Simplifying the above equations, the following results can be obtained.  

2 22 2

3 32 2

1 1
2 2 2 2 2 2 2 2

1 1 2 2 1 1 3 3

2 2 2 2

1 1 1 1

3 2
2 2 2 2 2 2 2 2

1 1 3 3 1 1 2 2

.

En HeEn He
p Ex Ex

En He En He En He En He

En He En He
Ex Ex

En He En He En He En He

++
= −

+ + + + + +

+ +
+ −

+ + + + + +

  

Since 1 2 3Ex Ex Ex  , 1 2 3En En En  , and 1 2 3He He He  , we have 

2 22 2

3 32 2

1 1
2 2 2 2 2 2 2 2

1 1 2 2 1 1 3 3

0,
En HeEn He

Ex Ex
En He En He En He En He

++
− 

+ + + + + +
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2 2 2 2

1 1 1 1

3 2
2 2 2 2 2 2 2 2

1 1 3 3 1 1 2 2

0.
En He En He

Ex Ex
En He En He En He En He

+ +
− 

+ + + + + +
  

Thus, 0p   is determined. 

According to ( ) ( ) ( ) ( )( , )1 1 ( , )2 3 ( , )1 1 ( , )2 21 1 1 1 0a c a c a b a bp Ex Ex Ex Ex   = − − − − − − −  , the 

following inequalities can be deduced. 

( ) ( ) ( ) ( )( , )1 1 ( , )2 3 ( , )1 1 ( , )2 21 1 1 1 ,a c a c a b a bEx Ex Ex Ex   − − −  − − −   

( ) ( ) ( ) ( )( , )1 1 ( , )2 3 ( , )1 1 ( , )2 21 1 1 1 .a c a c a b a bEx Ex Ex Ex
 

   − − −  − − −   

Since 1 2 3T T T  , the following inequality is true. 

( ) ( ) ( ) ( )( , )1 1 1 ( , )2 3 3 ( , )1 1 1 ( , )2 2 21 1 1 1 .a c a c a b a bEx T Ex T Ex T Ex T
 

   − − −  − − −   

In a similar manner, we can also obtain 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( , )1 1 1 ( , )2 3 3 ( , )1 1 1 ( , )2 2 21 1 1 1 1 1 1 1 ,a c a c a b a bEx I Ex I Ex I Ex I
 

   − − − − −  − − − − −   

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( , )1 1 1 ( , )2 3 3 ( , )1 1 1 ( , )2 2 21 1 1 1 1 1 1 1 .a c a c a b a bEx F Ex F Ex F Ex F
 

   − − − − −  − − − − −   

Thus, there is 

( ) ( )(
( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) )

( ) ( )(
( ) ( ) ( ) ( )

( )

( , )1 1 1 ( , )2 3 3

( , )1 1 1 ( , )2 3 3

1

( , )1 1 1 ( , )2 3 3

( , )1 1 1 ( , )2 2 2

( , )1 1 1 ( , )2 2 2

( , )1 1

1
1 1

3

1 1 1 1

+ 1 1 1 1

1
1 1

3

1 1 1 1

1 1

a c a c

a c a c

a c a c

a b a b

a b a b

a b

q Ex T Ex T

Ex I Ex I

Ex F Ex F

Ex T Ex T

Ex I Ex I

Ex F





 





 

 

 

 

 




= − − −


+ − − − − −

− − − − − 



− − − −


+ − − − − −

+ − −( ) ( ) ( ) )
1

1 ( , )2 2 21 1

0.

a b Ex F
 

 − − − 




 
 

Thus, ( ) ( ), ( , ) 0 , ( , )d a c d a b d a c d a b−    . The inequality ( ), ( , )d a c d b c  can be proved 

similarly. Hence, the proof of Theorem 2 is completed. □ 

Example 1. Let ( ) ( )0.5,0.2,0.1 , 0.7,0.3,0.5a = , and ( ) ( )0.6,0.1,0.1 , 0.8,0.2,0.4b =  be two SNCs. 

Then, according to Definition 11, the Hamming distance ( )min ,Ham gd a b  and Euclidean distance 

( ),Euclideand a b  are calculated as 

( )min , 0.4304Ham gd a b = , and ( ), 0.3224Euclideand a b = . 
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4. SNCs Aggregation Operators 

Maclaurin [38] introduced the MSM aggregation operator firstly. In this section, the MSM 

operator is expanded to process SNC information, and the SNCMSM operator and the weighted 

SNCMSM operator are then proposed. 

Definition 12 ([38]). Let ( )1,2, ,ix i n=  be the set of nonnegative real numbers. A MSM aggregation 

operator of dimension n is mapping 
( ) ( ):

nm
MSM R R+ +→ , and it can be defined as 

( ) 1

1

1 1

1 2( , , , ) ,
j

m

m m

i

i i n jm

n m

n

x

MSM x x x
C

   =

 
 
 =
 
 
 

 
 (6) 

where ( )1 2, , , mi i i  traverses all the m-tuple combination of ( )1,2, ,i n= , 
( )

!

! !

m

n

n
C

m n m
=

−
 is the 

binomial coefficient. In the subsequent analysis, assume that 1 2 ,..., mi i i   . In addition, 
jix  refers to the  

ji th element in a particular arrangement. 

It is clear that ( )m
MSM  has the following properties: 

(1) Idempotency. If 0x   and ix x=  for all i , then ( ) ( ), ,...,
m

MSM x x x x= . 

(2) Monotonicity. If i ix y , for all i , ( ) ( ) ( ) ( )1 2 1 2, ,..., , ,...,
m m

n nMSM x x x MSM y y y , where xi and yi are 

nonnegative real numbers. 

(3) Boundedness.   ( ) ( )  1 2 1 2 1 2, ,..., , ,..., , ,..., .
m

n n nMIN x x x MSM x x x MAX x x x   

4.1. SNCMSM Operator 

In this subsection, the traditional ( )m
MSM  operator is extended to accommodate the situations 

where the input variables are made up of SNCs. Then, the SNCMSM operator is developed. 

Definition 13. Let ( ) ( ) ( ), , , , , 1,2,...,i i i i i i ia Ex En He T I F i n= =  be a collection of SNCs. Then, the 

SNCMSM operator can be defined as 

1

1

1 1( )

1 2( , , , ) ,
j

m

m m

i
i i n jm

n m

n

a

SNCMSM a a a
C

   =

  
   

 =  
 
 
 

 (7) 

where 1,2,...,m n=  and ( )1 2, , , mi i i  traverses all the m-tuple combination of ( )1,2, ,i n= , 

( )

!

! !

m

n

n
C

m n m
=

−
 is the binomial coefficient. 

In light of the operations of SNCs depicted in Definition 10, Theorem 3 can be acquired. 

Theorem 3. Let ( ) ( ) ( ), , , , , 1,2,...,i i i i i i ia Ex En He T I F i n= =  be a collection of SNCs, the aggregated value 

acquired by the SNCMSM operator is also a SNC and can be expressed as 
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
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    

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k j

C m m m
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k j j j
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j j j j

Ex En He
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= =

= = = =

= = = =
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       
     

  + +   
       

       
  − − + +     

        − −

 

   

   

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

1

1

2 2

1 1 1 1

2 2

1 1 1 1 1

1

,

1 1

1 1

m
n

m
n

k k k

j j j

m
n

k k k k
j j j j

k k

j j

m
C

k

C m m m

i i i
k j j j

C m m m m

i i i i
k j j j j

m

i i
j j

Ex En He

F Ex En He

Ex En

=

= = = =

= = = = =

= =

 
 
 

 
     

  + +   
       
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

  
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
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   
     

 


 
      
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     
  + +   

       

    
 + +   
     

    

   
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         



    

   

 

The proof of Theorem 3 is completed. □ 

Theorem 4. (Idempotency) If ( ), , , , ,i a a a a a aa a Ex En He T I F= =  for all 1,2,...,i n= , then 

( )( ) ( , , , ) , , , , ,m

a a a a a aSNCMSM a a a a Ex En He T I F= = . 
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Proof. Since ia a= , there are 

( ) ( ), , ,
m

SNCMSM a a a  

1 1
1

2 2

1 1 1 11 1
, , ,

m mm
n nn

m m
C Cm mC mm

a aa
k j k jk j

m m m
n n n

En HeEx

C C C

= = = == =


                          =                      

    


   
 

1
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,

m
n

m
n

m
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a a a a
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C m m m
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k j j j

T Ex En He
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= = = = =
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   + +   
         
     

  + +   
       

    

   

 

( )

1

2 2

1 1 1 1 1

2 2

1 1 1 1

1 1

 1 1 ,

m
n

k
j

m
n

m
C m m m m

a a ai
k j j j j

C m m m

a a a

k j j j

I Ex En He

Ex En He

= = = = =

= = = =

        
   − − + +     
           − −
     

  + +   
       

    

   

 

( )

1

2 2

1 1 1 1 1

2 2

1 1 1 1

1 1

1 1

m
n

k
j

m
n

m
C m m m m

a a ai
k j j j j

C m m m

a a a

k j j j

I Ex En He

Ex En He

= = = = =

= = = =


         
   − − + +      
            − − 
      

  + +    
         



    

   

 

( ), , , , , .a a a a a aEx En He T I F a= =  

 

□ 

Theorem 5 (Commutativity). Let ( )1 2' , ' , , 'na a a  be any permutation of ( )1 2, , , na a a . Then, 

( ) ( ) ( ) ( )1 2 1 2' , ' , , ' , , ,
m m

n nSNCMSM a a a SNCMSM a a a= . 

Theorem 5 can be proved easily in accordance with Definition 13 and Theorem 3. 

Three special cases of the SNCMSM operator are discussed below by selecting different values 

for the parameter m. 

(1) If m = 1, then the SNCMSM operator becomes the simplest arithmetic average aggregation 

operator as follows: 

( ) ( )1 1
1 2, , ,

n

i i
n

a
SNCMSM a a a

n

=
=   

( )

( )

2 2

2 2 1

2 21 1 1

1

, , , ,

n

i i i in n n
i

i i i n
i i i

i i i

i

T Ex En He

Ex En He

Ex En He

=

= = =

=

+ +
= 

 + +


  


  

(9) 
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( )

( )

( )

( )

2 2 2 2

1 1

2 2 2 2

1 1

, .

n n

i i i i i i i i

i i

n n

i i i i i i

i i

I Ex En He F Ex En He

Ex En He Ex En He

= =

= =


+ + + + 




+ + + + 


 

 
 

(2) If m = 2, then the SNCMSM operator is degenerated to the following form: 

( ) ( )

1

2
2 , 1,

1 2, , ,
( 1)

n

i j i j i j

n

a a
SNCMSM a a a

n n

= 
  

=   − 

 

( ) ( )

1 11
2 22 2 2

, 1 , 1 , 1

, , ,
( 1) ( 1) ( 1)

n n n

i j i j i j

i j i j i j
i j i j i j

Ex Ex En En He He

n n n n n n

= = =
  


     
    
    
   =  

− − −    
             



  

 

( )

( )

1

2
2 2 2 2

, 1

2 2 2 2

, 1

,

n

i j i j i j i j

i j
i j

n

i j i j i j

i j
i j

TT Ex Ex En En He He

Ex Ex En En He He

=


=


 
+ + 

 
 
 + +
 
 




 

( ) ( ) ( )

( )

1

2
2 2 2 2

, 1

2 2 2 2

, 1

1 1 1

1 1 ,

n

i j i j i j i j

i j
i j

n

i j i j i j

i j
i j

I I Ex Ex En En He He

Ex Ex En En He He

=


=


 
 − − − + +  

 
− − 
 + +
 
 




 

( ) ( ) ( )

( )

1

2
2 2 2 2

, 1

2 2 2 2

, 1

1 1 1

1 1 .

n

i j i j i j i j

i j
i j

n

i j i j i j

i j
i j

F F Ex Ex En En He He

Ex Ex En En He He

=


=



   − − − + +   
  

− −  
 + + 
  
  






 

(10) 

(3) If m = n, then the SNCMSM operator becomes the geometric average aggregation operator as 

follows: 

( ) ( ) ( )

( ) ( )

1

1 2 1

1 1 1

1 1 1

1 1 1

1 1 1

, , ,

, , ,

, 1 1 , 1 1 .

n n n
n i i

n n nn n n

i i i

i i i

n n nn n n

i i i

i i i

SNCMSM a a a a

Ex En He

T I F

=

= = =

= = =

= 


     =            




      − − − −            



  

  

 
(11) 
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4.2. Weighted SNCMSM Operator 

In this subsection, a weighted SNCMSM operator is investigated. Moreover, some desirable 

properties of this operator are analyzed. 

Definition 14. Let ( ) ( ) ( ), , , , , 1,2,...,i i i i i i ia Ex En He T I F i n= =  be a collection of SNCs, and 

( )1 2, ,...
T

nw w w w=  be the weight vector, with  0,1iw   and 
1

1
n

ii
w

=
= . Then, the weighted simplified 

neutrosophic clouds Maclaurin symmetric mean (WSNCMSM) operator is defined as 

( )
1

1

1 1( )

1 2( , , , ) ,
j j

m

m m

i i
i i n jm

w n m

n

nw a

WSNCMSM a a a
C

   =

  
    

 =  
 
 
 

 (12) 

where 1,2,...,m n=  and ( )1 2, , , mi i i  traverses all the m-tuple combination of ( )1,2, ,i n= , 

( )

!

! !

m

n

n
C

m n m
=

−
 is the binomial coefficient. 

The specific expression of the WSNCMSM operator can be obtained in accordance with the 

operations provided in Definition 10. 

Theorem 6. Let ( ) ( ) ( ), , , , , 1,2,...,i i i i i i ia Ex En He T I F i n= =  be a collection of SNCs, and 1,2,...,m n=

. Then, the aggregated value acquired by the WSNCMSM operator can be expressed as 

( ) ( )1 2, , ,
m

w nWSNCMSM a a a  

( ) ( ) ( )

1 1
1

2 2

1 1 1 11 1
, , ,

m mm
n nn

k kk j jj j jj

m m
C Cm mC mm

i ii i ii
k j k jk j

m m m
n n n

nw En nw Henw Ex

C C C

= = = == =


                          =                      

    


   
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     

  + +   
       

    
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   − − + +     
           − −
     

  + +   
       

    

   

 

(13) 
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.
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


 

Theorem 6 can be proved similarly according to the proof procedures of Theorem 3. 

Theorem 7. (Reducibility) Let 
1 1 1

, ,...,

T

w
n n n

 
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   
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The proof of Theorem 7 is completed. □ 

Definition 15. Let ( ) ( ), , , , ,i i i i i i ia Ex En He T I F=  ( )1,2,...,i n=  be a collection of SNCs, and 

1 2( , ,..., )T

nw w w w=  be the weight vector, which satisfies 
1

1
n

i

i

w
=

= , and 0iw   ( 1,2,..., )i n= . Then the 

generalized weighted simplified neutrosophic clouds Maclaurin symmetric mean (GWSNCMSM) operator is 

defined as 

( )
( )( ) 1

1
1 2

1

1 1
, , ,...,

1( ,..., ) ,

j m

m j j
m

p p pm

i i n j i i
m p p p

n m

n

nw a

GWSNCMSM a a
C

++

   =

 
   

=  
 
 

 (14) 

where 1,2,...,m n= . 

The specific expression of the GWSNCMSM operator can be obtained in accordance with the 

operations provided in Definition 10. 

Theorem 8. Let ( ) ( ), , , , ,i i i i i i ia Ex En He T I F=  ( )1,2,...,i n=  be a collection of SNCs, and 1,2,...,m n= . 

Then, the aggregated value acquired by the GWSNCMSM operator can be expressed as 
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Theorem 8 can be proved similarly according to the proof procedures of Theorem 3. 

5. MCDM Approach under Simplified Neutrosophic Linguistic Circumstance 

In this section, a MCDM approach is developed on the basis of the proposed simplified 

neutrosophic cloud aggregation operators to solve real-world problems. Consider a MCDM problem 

with simplified neutrosophic linguistic evaluation information, which can be converted to SNCs. 

Then, let  1 2, ,..., mA a a a=  be a discrete set of alternatives, and  1 2, ,..., nC c c c=  be the set of 

criteria. Suppose that the weight of the criteria is ( )1 2, ,...,
T

sw w w w= , where 0kw  , and 
1

1
s

k

k

w
=

= . 

The original evaluation of alternative ai under criterion cj is expressed as SNLNs ( ), , ,ij ij ij ij ijs T I F =  

(i = 1, 2, …, m; j = 1, 2, …, n). The primary procedures of the developed method are presented in the 

following. 

Step 1: Normalize the evaluation information. 

Usually, two kinds of criteria—benefit criteria and cost criteria—exist in MCDM problems. Then, 

in accordance with the transformation principle of SNLNs [42], the normalization of original 

evaluation information can be shown as 

( )

( )( ) ( )
2 1

, , , , for benifit criterion,

, , , , for cost criterion.
ij

ij ij ij ij

ij

ij ij ijt sub s

s T I F

h T I F


+ −




= 



 (16) 

Step 2: Convert SNLNs to SNCs. 

Based on the transformation method described in Section 2.4 and Definition 9, we can convert 

SNLNs to SNCs. The SNC evaluation information can be obtained as 

( ) ( ), , , , ,ij ij ij ij ij ij ija Ex En He T I F=  (i = 1, 2, …, m; j = 1, 2, …, n). 

Step 3: Acquire the comprehensive evaluation for each alternative. 

The WSNCMSM operator or the GWSNCMSM operator can be employed to integrate the 

evaluation of ( 1,2,..., )ija j n=  under all criteria and acquire the comprehensive evaluation 

( ) ( ), , , , ,i i i i i i ia Ex En He T I F=  for the alternative 
ia . 

Step 4: Compute the distance between the comprehensive evaluation of 
ia  and the PIS/NIS. 

First, in accordance with the obtained overall evaluation values, the positive ideal solution (PIS) 

a+  and negative ideal solution (NIS) a−  are determined as  

( ) ( )max ( ),min ( ),min ( ) , max ( ),min ( ),min ( ) ,i i i i i i i i i i i ia Ex En He T I F+ =   

( ) ( )min ( ),max ( ),max ( ) , min ( ),max ( ),max ( ) .i i i i i i i i i i i ia Ex En He T I F− =   
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Second, in accordance with the proposed distance of SNCs, the distance ( ),id a a+
 between 

ia  

and a+ , and the distance ( ),id a a−
 between 

ia  and a−  can be calculated. 

Step 5: Compute the relative closeness of each alternative. 

In the following, the relative closeness of each alternative can be calculated as 

( )
( ) ( )

,

, ,

i

i

i i

d a a
I

d a a d a a

+

+ −
=

+
 (17) 

where ( ),id a a+
 and ( ),id a a−

 are obtained in Step 4. 

Step 6: Rank all the alternatives. 

In accordance with the relative closeness 
iI  of each alternative, we can rank all the alternatives. 

The smaller the value of 
iI , the better the alternative 

ia  is. 

6. Illustrative Example 

This section provides a real-world problem of hotel selection (adapted from Wang et al. [49]) to 

demonstrate the validity and feasibility of the developed approach. 

6.1. Problem Description 

Nowadays, consumers often book hotels online when traveling or on business trip. After they 

leave the hotel, they may evaluate the hotel and post the online reviews on the website. In this case, 

the online reviews are regard as the most important reference for the hotel selection decision of 

potential consumers. In order to enhance the accuracy of hotel recommendation in line with lots of 

online reviews, this study devotes to applying the proposed method to address hotel 

recommendation problems effectively. In practical hotel recommendation problems, many hotels 

(e.g., 10 hotels) need to be recommended for consumers. In order to save space, we select five hotels 

from a tourism website for recommendation here. The developed approach can be similarly applied 

to address hotel recommendation problems with many hotels. The five hotels are represented as a1, 

a2, a3, a4 and a5. The employed linguistic term set is described as follows: 

S = {s1, s2, s3, s4, s5, s6, s7} = {extremely poor, very poor, poor, fair good, very good, 

extremely good} 
 

In this paper, we focus on the four hotel evaluation criteria including, c1, location (such as near 

the downtown and is the traffic convenient or not); c2, service (such as friendly staff and the 

breakfast); c3, sleep quality (such as the soundproof effect of the room); and c4, comfort degree (such 

as the softness of the bed and the shower). Wang et al. [49] introduced a text conversion technique to 

transform online reviews to neutrosophic linguistic information. Motivated by this idea, the online 

reviews of five hotels under four criteria can be described as SNLNs, as shown in Table 1. For 

simplicity, the weight information of the four criteria is assumed to be w = (0.25, 0.22, 0.35, 0.18)T. 

Table 1. Evaluation values in SNLNs. 

ai c1 c2 c3 c4 

a1 ( )4 , 0.6,0.6,0.1s  ( )5 , 0.6,0.4,0.3s  ( )4 , 0.8,0.5,0.1s  ( )2 , 0.8,0.3,0.1s  

a2 ( )2 , 0.7,0.5,0.1s  ( )4 , 0.6,0.4,0.2s  ( )3 , 0.6,0.2,0.4s  ( )4 , 0.7,0.4,0.3s  

a3 ( )3 , 0.5,0.1,0.2s  ( )4 , 0.6,0.5,0.3s  ( )6 , 0.7,0.6,0.1s  ( )2 , 0.5,0.5,0.2s  

a4 ( )2 , 0.4,0.5,0.3s  ( )3 , 0.5,0.3,0.4s  ( )4 , 0.6,0.8,0.2s  ( )5 , 0.9,0.3,0.1s  
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a5 ( )5 , 0.6,0.4,0.4s  ( )5 , 0.8,0.3,0.1s  ( )3 , 0.7,0.5,0.1s  ( )4 , 0.6,0.5,0.2s  

6.2. Illustration of the Developed Methods 

According to the steps of the developed method presented in Section 5, the optimal alternative 

from the five hotels can be determined. 

6.2.1. Case 1—Approach based on the WSNCMSM Operator. 

Let linguistic scale function be f1(hx), and m = 2 in Equation (13) in the subsequent calculation. 

Then, the hotel selection problem can be addressed according to the following procedures. 

Step 1: Normalize the evaluation information. 

Obviously, the four criteria are the benefit type in the hotel selection problem above. Thus, the 

evaluation information does not need to be normalized. 

Step 2: Convert SNLNs to SNCs. 

Utilize the transformation method presented in Section 2.4, we transform the linguistic term is  

in SNLNs to the cloud model ( ), ,i i iEx En He . The obtained results are shown as follows: 

( ) ( )1 1 1 1, , 0.833,1.25,0.231s Ex En He→ = , 

( ) ( )2 2 2 2, , 1.667,1.11,0.278s Ex En He→ = , 

( ) ( )3 3 3 3, , 2.5,0.833,0.37s Ex En He→ = , 

( ) ( )4 4 4 4, , 3.33,0.556,0.463s Ex En He→ = , 

( ) ( )5 5 5 5, , 4.167,0.278,0.556s Ex En He→ = , 

( ) ( )6 6 6 6, , 5,0.741,0.401s Ex En He→ = , 

( ) ( )7 7 7 7, , 5.833,0.972,0.324s Ex En He→ = . 

 

Then, according to Definition 9, SNLNs can be converted to SNCs, as presented in Table 2. 

Table 2. Evaluation information in SNCs. 

ai c1 c2 c3 c4 

a1 ( ) ( )3.33,0.556,0.463 , 0.6,0.6,0.1  ( ) ( )4.167,0.278,0.556 , 0.6,0.4,0.3  ( ) ( )3.33,0.556,0.463 , 0.8,0.5,0.1  ( ) ( )1.667,1.11,0.278 , 0.8,0.3,0.1  

a2 ( ) ( )1.667,1.11,0.278 , 0.7,0.5,0.1  ( ) ( )3.33,0.556,0.463 , 0.6,0.4,0.2  ( ) ( )2.5,0.833,0.37 , 0.6,0.2,0.4  ( ) ( )3.33,0.556,0.463 , 0.7,0.4,0.3  

a3 ( ) ( )2.5,0.833,0.37 , 0.5,0.1,0.2  ( ) ( )3.33,0.556,0.463 , 0.6,0.5,0.3  ( ) ( )5,0.741,0.401 , 0.7,0.6,0.1  ( ) ( )1.667,1.11,0.278 , 0.5,0.5,0.2  

a4 ( ) ( )1.667,1.11,0.278 , 0.4,0.5,0.3  ( ) ( )2.5,0.833,0.37 , 0.5,0.3,0.4  ( ) ( )3.33,0.556,0.463 , 0.6,0.8,0.2  ( ) ( )4.167,0.278,0.556 , 0.9,0.3,0.1  

a5 ( ) ( )4.167,0.278,0.556 , 0.6,0.4,0.4  ( ) ( )4.167,0.278,0.556 , 0.8,0.3,0.1  ( ) ( )2.5,0.833,0.37 , 0.7,0.5,0.1  ( ) ( )3.33,0.556,0.463 , 0.6,0.5,0.2  

Step 3: Acquire the comprehensive evaluation for each alternative. 

The WSNCMSM operator is employed to integrate the evaluations of alternative 
ia  under all 

the criteria. Then, the overall evaluation *

ia  for each alternative are obtained as 

( ) ( )*

1 3.1311,0.6228,0.4509 , 0.6866,0.4765,0.1589a = , 

( ) ( )*

2 0.7909 0.3881 0.642 0.2 3621 0.2638.5946, , , , ,a = , 

( ) ( )*

3 3.1691 0.801 0.3835 0.5986 0.458, , , , ,4 0.1895a = , 

( ) ( )*

4 2.6569 0.727 0.4159 0.6231 0.530, , , , ,8 0.2358a = , 

( ) ( )*

5 3.4126 0.5065 0.4786 0.6766 0.420, , , , ,8 0.2091a = . 
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Step 4: Compute the distance between the comprehensive evaluation of ia  and the PIS/NIS. 

First, the PIS a+  and the NIS a−  are determined as ( )3.4126 0.5, ,065 0.3 5 ,83a+ =  

( )0.6866 0.3621 0., , 1586 , and ( )2.5946 0., ,801 0.4 6 ,78a− =  ( )0.5986 0.5308 0., , 2638 , respectively. Then, 

based on Equation (5), the distance ( )*,id a a+
, and the distance ( )*,id a a−

 are computed as 

( )*

1 , 0.8324d a a+ = , ( )*

2 , 1.5966d a a+ = , ( )*

3 , 1.2447d a a+ = , ( )*

4 , 1.4864d a a+ = , and 

( )*

5 , 0.3361d a a+ = ; ( )*

1 , 1.0135d a a− = , ( )*

2 , 0.2137d a a− = , ( )*

3 , 0.6535d a a− = , 

( )*

4 , 0.3012d a a− = , and ( )*

5 , 1.5101d a a− = . 

 

Step 5: Calculate the relative closeness of each alternative. 

By using Equation (17), the relative closeness of each alternative is computed as 

1 0.4509I = , 
2 0.882I = , 

3 0.6557I = , 
4 0.8315I = , and 

5 0.1821I = .  

Step 6: Rank all the alternatives. 

On the basis of the comparison rule, the smaller the value of iI , the better the alternative ia  

is. We can rank the alternatives as 5 1 3 4 2a a a a a . The best one is 5a . 

When 3m=  is used in Equation (13), the overall assessment value for each alternative ia  are 

derived as follows:  

( ) ( )*

1 5.2615 0.454 0.291, , , ,5 0.5675 0. ,6174 0.229a =
, 

( ) ( )*

2 4.1045 0.6629 0.238, , , ,4 0.5177 0.503 0 8, .36 8a =
, 

( ) ( )*

3 5.1405 0.6986 0.2307 0.4449 0.593, , , , ,6 0.2832a =
, 

( ) ( )*

4 4.0855 0.5792 0.2593 0.468 0.679, , , , ,1 0.3475a =
, 

( ) ( )*

5 6.2421 0.3334 0.328 0.5531 0.564, , , , ,5 0.2977a =
. 

 

And the positive ideal point is determined as ( )6.2421 0.3, ,334 0.2 7 ,30a+ =  

( )0.5675 0.503 0, , .229 , the negative ideal point is determined as ( )4.0855 0.6986 0. 8, ,2, 3a− =

( )0.4449 0.6791 0., , 3688 . Then, the results of the distance between *

ia  and a+ , and the distance 

between *

ia  and a−  are obtained as 

( )*

1 , 2.1919d a a+ = , ( )*

2 , 4.064d a a+ = , ( )*

3 , 3.7056d a a+ = , ( )*

4 , 3.7812d a a+ = , and 

( )*

5 , 0.8571d a a+ = ; ( )*

1 , 2.4095d a a− = , ( )*

2 , 0.4656d a a− = , ( )*

3 , 1.085d a a− = , 

( )*

4 , 0.6172d a a− = , and ( )*

5 , 3.8179d a a− = . 

 

Therefore, the relative closeness of each alternative is calculated as 

1 0.4764I = , 2 0.8972I = , 3 0.7735I = , 4 0.8597I = , and 5 0.1833I =   

According to the results of iI , we can rank the alternatives as 5 1 3 4 2a a a a a . 

The best one is 5a , which is the same as the obtained result in the situation 2m = . 
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6.2.2. Case 2—Approach based on the GWSNCMSM Operator. 

Let the linguistic scale function be ( )1 xhf , and 2m = , 1 1p = , 2 2p =  in Equation (15) in the 

subsequent calculation. Then, the hotel selection problem can be addressed according to the 

following procedures. 

Step 1: Normalize the evaluation information. 

Obviously, the four criteria are the benefit type in the hotel selection problem above. Thus, the 

evaluation information does not need to normalize. 

Step 2: Convert SNLNs to SNCs. 

The obtained SNCs are the same as those in Case 1. 

Step 3: Acquire the comprehensive evaluation for each alternative. 

The GWSNCMSM operator is employed to integrate the evaluations of alternative ia  under all 

the criteria. Then, the overall evaluation 
*

ia  for each alternative are obtained as 

( ) ( )*

1 3.2899 0.7006 0.4668 0.7068 0.481, , , , ,2 0.1544a = , 

( ) ( )*

2 2.693 0.805 0.396, , , ,8 0.6395 0.3374 29,0.a = , 

( ) ( )*

3 3.7063 0.8318 0.3958 0.6366 0.508, , , , ,1 0.1637a = , 

( ) ( )*

4 2.9311 0.7165 0.4401 0.6654 0.519, , , , ,7 0.2125a = , 

( ) ( )*

5 3.3078 0.5638 0.4675 0.6871 0.422, , , , ,7 0.1846a =  

 

Step 4: Compute the distance between the comprehensive evaluation of ia  and the PIS/NIS. 

First, the PIS a+  and the NIS a−  are determined as ( )3.7063 0.5, ,638 0.3 8 ,95a+ =  

( )0.7068 0.3374 0., , 1544 , and ( )2.693 0.8, ,318 0.4 5 ,67a− =  ( )0.6366 0.5, ,197 0.29  respectively. Then, 

based on Equation (5), the distance ( )*,id a a+ , and the distance ( )*,id a a−  are computed as 

( )*

1 , 1.0407d a a+ = , ( )*

2 , 1.6913d a a+ = , ( )*

3 , 1.0619d a a+ = , ( )*

4 , 1.371d a a+ = , and 

( )*

5 , 0.6054d a a+ = ; ( )*

1 , 0.9235d a a− = , ( )*

2 , 0.2183d a a− = , ( )*

3 , 0.9925d a a− = , 

( )*

4 , 0.5323d a a− = , and ( )*

5 , 1.2871d a a− = . 

 

Step 5: Calculate the relative closeness of each alternative. 

By using Equation (17), the relative closeness of each alternative is calculated as 

1 0.5298I = , 2 0.8857I = , 3 0.5169I = , 4 0.7203I = , and 4 0.7203I =   

Step 6: Rank all the alternatives. 

On the basis of the comparison rule, the smaller the value of iI , the better the alternative ia  is. 

We can rank the alternatives as 5 3 1 4 2a a a a a , the best one is 5a . 

Using the parameters 2m = , 1 1p = , and 2 2p =  in the aggregation operators, the ranking 

results acquired by the developed methods with the WSNCMSM operator and the GWSNCMSM 

operator are almost identical, and these rankings are described in Table 3. The basically identical 

ranking results indicate that the developed methods in this paper have a strong stability. 

Table 3. Ranking results based on different operators. 

Proposed Operators m p1 p2 Rankings 

WSNCMSM 2 \ \ 5 1 3 4 2a a a a a  
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WSNCMSM 3 \ \ 5 1 3 4 2a a a a a  

GWSNCMSM 2 1 2 5 3 1 4 2a a a a a  
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6.3. Comparative Analysis and Sensitivity Analysis 

This subsection implements a comparative study to verify the applicability and feasibility of the 

developed method. The developed method aims to improve the effectiveness of handling simplified 

neutrosophic linguistic information. Therefore, the proposed method can be demonstrated by 

comparing with the approaches in Wang et al. [21] and Tian et al. [20] that deal with SNLNs merely 

depend on the linguistic functions. The comparison between the developed method and two existed 

approaches is feasible because these three methods are based on the same information description 

tool and the aggregation operators developed in these methods have the same parameter 

characteristics. Two existing methods are employed to address the same hotel selection problem 

above, and the ranking results acquired by different approaches are described in Table 4. 

Table 4. Ranking results obtained by different methods. 

Methods Rankings 

Wang et al.’s method [21] (m = 2) 5 1 3 2 4a a a a a  

The proposed approach based on ( )( ) 2m

wWSNCMSM m =  5 1 3 4 2a a a a a  

Wang et al.’s method [21] ( )1 22, 1, 1m p p= = =  5 3 1 2 4a a a a a  

Tian et al.’s method [20] ( )1 22, 1, 1m p p= = =  5 3 1 4 2a a a a a  

The proposed approach based on 
( ) ( )1 2, , ,...,

1 22, 1, 1mm p p p
GWSNCMSM m p p= = =  5 1 3 4 2a a a a a  

As described in Table 4, the rankings acquired by the developed approaches and that obtained 

by the existed approaches have obvious difference. However, the best alternative is always 5a , 

which demonstrates that the developed approach is reliable and effective for handling decision-

making problems under simplified neutrosophic linguistic circumstance. There are still differences 

between the approaches developed in this paper and the methods presented by Wang et al. [21] and 

Tian et al. [20], which is that the proposed approaches use the cloud model instead of linguistic 

function to deal with linguistic information. The advantages of the proposed approaches in handling 

practical problems are summarized as follows: 

First, comparing with the existing methods with SNLNs, the proposed approaches uses the 

cloud model to process qualitative evaluation information involved in SNLNs. The existing methods 

handle linguistic information merely depending on the relevant linguistic functions, which may 

result in loss and distortion of the original information. However, the cloud model depicts the 

randomness and fuzziness of a qualitative concept with three numerical characteristics perfectly, and 

it is more suitable to handle linguistic information than the linguistic function because it can reflect 

the vagueness and randomness of linguistic variables simultaneously.  

Second, being compared with the simplified neutrosophic linguistic Bonferroni mean 

aggregation operator given in Tain et al. [20], the simplified neutrosophic clouds Maclaurin 

symmetric mean operator provided in this paper take more generalized forms and contain more 

flexible parameters that facilitate selecting the appropriate alternative. 

In addition, being compared with SNLNs, SNCs not only provide the truth, indeterminacy, and 

falsity degrees for the evaluation object, but also utilize the cloud model to characterize linguistic 

information effectively. 

The ranking results may vary with different values of parameters in the proposed aggregation 

operators. Thus, a sensitivity analysis will be implemented to analyze the influence of the parameter 

pj on ranking results. The obtained results are presented in Table 5. 

Table 5. Ranking results with different pj under m = 2. 

p1 p2 Rankings Based on GWSNCMSM 

1 0 5 1 3 2 4a a a a a
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0 1 4 5 3 2 1a a a a a
 

1 2 5 3 1 4 2a a a a a
 

1 3 3 5 1 4 2a a a a a
 

1 4 3 5 1 4 2a a a a a
 

1 5 3 1 5 4 2a a a a a
 

2 1 5 1 3 4 2a a a a a
 

3 1 5 1 3 4 2a a a a a
 

4 1 1 5 3 4 2a a a a a
 

5 1 1 3 5 4 2a a a a a
 

0.5 0.5 5 1 3 4 2a a a a a
 

1 1 5 1 3 4 2a a a a a
 

2 2 5 1 3 4 2a a a a a
 

3 3 5 1 3 4 2a a a a a
 

4 4 5 1 3 4 2a a a a a
 

5 5 5 1 3 4 2a a a a a
 

The data in Table 5 indicates that the best alternative is a5 or a1, and the worst one is a2 when 

using the GWSNCMSM operator with different pj under m = 2 to fuse evaluation information. When 

p1 = 0, we can find the ranking result has obvious differences with other results. Therefore, p1 = 0 is 

not used in practice. The data in Table 5 also suggests that the ranking vary obviously when the value 

of p1 far exceeds the value of p2. Thus, it can be concluded that the values of p1 and p2 should be 

selected as equally as possible in practical application. The difference of ranking results in Table 5 

reveals that the values of p1 and p2 have great impact on the ranking results. As a result, selecting the 

appropriate parameters is a significant action when handling MCDM problems. In general, the values 

can be set as p1 = p2 = 1 or p1 = p2 = 2, which is not only simple and convenient but it also allows the 

interrelationship of criteria. It can be said that p1 and p2 are correlative with the thinking mode of the 

decision-maker; the bigger the values of p1 and p2, the more optimistic the decision-maker is; the 

smaller the values of p1 and p2, the more pessimistic the decision-maker is. Therefore, decision-makers 

can flexibly select the values of parameters based on the certain situations and their preferences and 

identify the most precise result. 

7. Conclusions 

SNLNs take linguistic terms into account on the basis of NSs, and they make the data description 

more complete and consistent with practical decision information than NSs. However, the cloud 

model, as an effective way to deal with linguistic information, has never been considered in 

combination with SNLNs. Motivated by the cloud model, we put forward a novel concept of SNCs 

based on SNLNs. Furthermore, the operation rules and distance of SNCs were defined. In addition, 

considering distinct importance of input variables, the WSNCMSM and GWSNCMSM operators 

were proposed and their properties and special cases were discussed. Finally, the developed 

approach was successfully applied to handle a practical hotel selection problem, and the validity of 

this approach was demonstrated. 

The primary contributions of this paper can be summarized as follows. First, to process linguistic 

evaluation information involved in SNLNs, the cloud model is introduced and used. In this way, a 

new concept of SNCs is presented, and the operations and distance of SNCs are proposed. Being 

compared with other existing studies on SNLNs, the proposed method is more effective because the 

cloud model can comprehensively reflect the uncertainty of qualitative evaluation information. 

Second, based on the related studies, the MSM operator is extended to simplified neutrosophic cloud 

circumstances, and a series of SNCMSM aggregation operators are proposed. Third, a MCDM 
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method is developed in light of the proposed aggregation operators, and its effectiveness and stability 

are demonstrated using the illustrative example, comparative analysis, and sensitivity analysis. 

In some situations, asymmetrical and non-uniform linguistic information exists in practical 

problems. For example, customers pay more attention to negative comments when selecting hotels. 

In future study, we are going to introduce the unbalanced linguistic term sets to depict online 

linguistic comments and propose the hotel recommendation method. 
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