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Abstract 
The uncertainty, incomplete and inconsistent information can lead to some difficulties of decision making 
under the single valued neutrosophic set (SVNS) environment. Information measure plays an important role 
in SVNS theory, which has received more and more attention in recent years. In this study, we develop a 
multi-attribute decision making (MADM) method based on the single valued neutrosophic information 
measures. Under the single valued neutrosophic environment, three axiomatic definitions of information 
measures are first introduced, including entropy, similarity measure and cross-entropy. Then, we construct 
some information measure formulas on the basis of the cosine function. The relationship among the entropy, 
similarity measure and cross-entropy is discussed, from which we find that three information measures can 
be transformed by each other. Moreover, an approach to single valued neutrosophic MADM is proposed, 
which is based on the constructed information measure formulas. Finally, a numerical example for city 
pollution evaluation is provided to explore the applicability and effectiveness of the proposed method. Results 
show that the proposed MADM approach can derive the more accurate decision making results and obtain 
the reasonable and credible ranking result in some cases. 
Keywords: single valued neutrosophic set, entropy, similarity measure, cross-entropy, decision making 
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INTRODUCTION 
Since Zadeh introduced his remarkable theory of 

fuzzy sets (FSs) (Zadeh 1965), it has been applied 
successfully in various fields. However, FS is a set with 
each element only has a membership degree which is 
represented by a real number between zero and one. In 
order to overcome the lack of knowledge of non-
membership degrees, the concept of intuitionistic fuzzy 
sets (IFSs) put forward by Atanassov (1986, 2000), 
which is a generalization of the FSs. The introduction 
of IFSs proved to be very meaningful and practical, and 
has been found to be highly useful to deal with 
incomplete information. In IFSs, the data information 
is expressed by means of 2-tuples, and each 2-tuples 
simultaneously take into account the membership 
degree and non-membership degree. The sum of 
membership degree and non-membership degree of 
each 2-tuple is less than or equal to 1 (Atanassov 1989). 
To accommodate more complex environment, 
Atanassov and Gargov further introduced the concept 
of interval-valued intuitionistic fuzzy sets (IVIFSs) 

(Atanassov et al. 1989), whose components are intervals 
rather than exact numbers. The introduction of IFSs 
and IVIFSs proved to be very meaningful and practical, 
and have been found to be highly useful to cope with 
uncertainty and vagueness (Hu et al. 2015, Meng et al. 
2015, Onar et al. 2015, Wu and Chiclana 2014, Zhou et 
al. 2014, 2016). 

IFSs and IVIFSs can handle incomplete 
information, however, in real decision making, the 
decision information is often incomplete, 
indeterminate and inconsistent, which cannot be deal 
with by IFSs and IVIFSs. Therefore, Smarandache 
(Smarandache 1999, 2003) originally introduced the 
concept of neutrosophic sets (NSs) from philosophical 
point of view. The NSs simultaneously take into 
account the truth membership, the indeterminacy 
membership and the falsity membership, and they are 
independent. Owing to the NS is difficult to apply in 
real science and engineering fields, then Wang et al. 
(2010) proposed the single valued neutrosophic set 
(SVNS), which is a subclass of NSs. 
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Motivated by the concepts of hesitant fuzzy entropy, 
similarity measures and cross-entropy, we introduce 
three axiomatic definitions of information measures for 
single valued neutrosophic values (SVNVs), and then 
we construct some information measure formulas based 
on cosine function. The relationship among these 
information measures for SVNVs is discussed. 
Moreover, an approach to MADM is investigated.  

The rest of the paper is organized as follows. In 
Section 2, we review some related work of the SVNSs. 
Section 3 introduces the axiomatic definitions of 
entropy, similarity measures and cross-entropy for 
SVNVs, and constructs several single valued 
neutrosophic information measure formulas. In Section 
3, we also study the relationship among these 
information measures of SVNVs. Section 4 develops an 
approach to MADM with the constructed information 
measure formulas, a numerical example is presented to 
illustrate the application of the developed method. 
Finally, some conclusions and future research 
possibilities are provided in Section 5. 

STATE OF THE ART 
Entropy, similarity measures, and cross-entropy are 

three important research topics in the fuzzy theory, 
which have been widely used in practical applications 
(Wei et al. 2011), such as decision-making, information 
fusion system, medical diagnosis and image processing. 
Entropy is very important for measuring uncertain 
information. Since its appearance, entropy has received 
great attentions. Zadeh first introduced the fuzzy 
entropy (Zadeh 1968) to measure the fuzziness of 
decision making information. Moreover, Luca and 
Termini (1972) presented the axioms with which the 
fuzzy entropy should comply, and defined the entropy 
of a FS. Based on the ratio of intuitionistic fuzzy 
cardinalities, Szmidt and Kacprzyk (2001) given the 
axiomatic requirements of intuitionistic fuzzy entropy 
measure and introduced a non-probabilistic-type 
entropy measure for IFSs. Ye (2010) proposed two 
entropy measures for IVIFSs and established an entropy 
weighted model to determine the entropy weights. 
Based on the continuous ordered weighted averaging 
(COWA) operator, Jin et al. and Ye (2010) investigated 
an interval-valued intuitionistic fuzzy continuous 
weighted entropy, and then an approach is developed to 
cope with interval-valued intuitionistic fuzzy MADM 
problems. Majumdar and Samant (2014) introduced an 
entropy to measure the uncertainty involved in a SVNV. 

Similarity measures and cross-entropy are mainly 
used to measure the discrimination information. Up to 

now, a lot of research has been done about this issue 
(Grzegorzewski 2004, Hung et al. 2007, Ye 2017, Zhou 
et al. 2013, 2014). Liu (1992) gave the axiomatic 
definitions of entropy, distance measure, and similarity 
measure of FSs and systematically discussed their basic 
relations. Vlachos and Sergiadis (2007) introduced the 
concept intuitionistic fuzzy cross-entropy, and 
discussed relations between cross-entropy and entropy. 
Beliakov et al. (2014) investigated a new approach for 
defining similarity measures for IFSs, in which a 
similarity measure has two components indicating the 
similarity and hesitancy aspects. Based on the Jaccard, 
Dice, and cosine similarity measures in vector space, Ye 
(2014) proposed three vector similarity measures 
between SVNSs to obtain the ranking order of all 
alternatives in MADM problems. Ye (2015) constructed 
the modified cosine similarity measures for SVNSs on 
the basis of cosine function. With the help of the 
distance between two SVNSs, Majumdar and Samant 
(2009) presented several similarity measures for SVNSs 
and discussed their characteristics. Under the single 
valued neutrosophic environment, Ye (2014) proposed 
a cross entropy to establish a MADM method. The 
relationship among the entropy, similarity measures 
and cross-entropy has attracted many attentions. Zhang 
et al. and Zeng and Li (2006) showed that entropies and 
similarity measures of IVFSs can be transformed by 
each other. 

From above analysis, we can see that information 
measures are very useful tools to cope with uncertainty 
and vagueness. On the one hand, it is known that 
uncertainty, incomplete and inconsistent information 
exists in human decision making process. Therefore, 
just as FSs, IFSs and IVIFSs, researches on the entropy, 
similarity measures and cross-entropy for SVNSs are 
the important issues. On the other hand, more and 
more MADM methods and theories have been 
developed on the basis of SVNSs. To the best of our 
knowledge, there are few studies focused on the 
relationship among the entropy, similarity measures 
and cross-entropy for SVNSs. Therefore, it is necessary 
and meaningful to study some issues. For example, 
what is it like the expression of the single valued 
neutrosophic information measures? What is the 
relationship among the single valued neutrosophic 
information measures? 
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MATERIAL AND METHODS 

SVNSs 
In this section, we review some basic concepts 

related to SVNSs, which will be used in the rest of the 
paper. 

Definition 1: Smarandache (1999) Let 𝑋𝑋 be a 
universal set, with a generic element in 𝑋𝑋 denoted by 𝑥𝑥. 
A neutrosophic set 𝐴𝐴 in 𝑋𝑋 is characterized by a truth-
membership function 𝑇𝑇𝐴𝐴(𝑥𝑥), an indeterminacy-
membership function 𝐼𝐼𝐴𝐴(𝑥𝑥), and a falsity-membership 
function 𝐹𝐹𝐴𝐴(𝑥𝑥), where 𝑇𝑇𝐴𝐴(𝑥𝑥), 𝐼𝐼𝐴𝐴(𝑥𝑥) and 𝐹𝐹𝐴𝐴(𝑥𝑥) are real 
standard or nonstandard subsets of ]−0, 1+[, such that 
𝑇𝑇𝐴𝐴(𝑥𝑥):𝑋𝑋 →]−0, 1+[, 𝐼𝐼𝐴𝐴(𝑥𝑥):𝑋𝑋 →]−0, 1+[ and 𝐹𝐹𝐴𝐴(𝑥𝑥):𝑋𝑋 → 
]−0, 1+[, and the sum of 𝑇𝑇𝐴𝐴(𝑥𝑥), 𝐼𝐼𝐴𝐴(𝑥𝑥) and 𝐹𝐹𝐴𝐴(𝑥𝑥) satisfies 
the condition  −0 ≤ sup𝑇𝑇𝐴𝐴(𝑥𝑥) +sup𝐼𝐼𝐴𝐴(𝑥𝑥) +
sup𝐹𝐹𝐴𝐴(𝑥𝑥) ≤ 3+. 

In order to apply NS easily in science and 
engineering applications, Wang et al. and Wang et al. 
(2010) presented the concept of SVNSs, which is an 
instance of the NS. 

Definition 2: Wang et al. (2010) Let 𝑋𝑋 be a 
universal set, with a generic element in 𝑋𝑋 denoted by 𝑥𝑥. 
A SVNS 𝐴𝐴 in 𝑋𝑋 is characterized by a truth-membership 
function 𝑇𝑇𝐴𝐴(𝑥𝑥), an indeterminacy-membership 
function 𝐼𝐼𝐴𝐴(𝑥𝑥), and a falsity-membership function 
𝐹𝐹𝐴𝐴(𝑥𝑥), then a SVNS 𝐴𝐴 can be denoted by 𝐴𝐴 =
{〈𝑥𝑥,𝑇𝑇𝐴𝐴(𝑥𝑥), 𝐼𝐼𝐴𝐴(𝑥𝑥),𝐹𝐹𝐴𝐴(𝑥𝑥)〉|𝑥𝑥 ∈ 𝑋𝑋}, where 𝑇𝑇𝐴𝐴(𝑥𝑥), 
𝐼𝐼𝐴𝐴(𝑥𝑥),𝐹𝐹𝐴𝐴(𝑥𝑥) ∈ [0,1], and 𝑇𝑇𝐴𝐴(𝑥𝑥) + 𝐼𝐼𝐴𝐴(𝑥𝑥) + 𝐹𝐹𝐴𝐴(𝑥𝑥) ∈
[0,3]. 

For convenience, we refer to 𝛼𝛼 = 〈𝑇𝑇𝛼𝛼 , 𝐼𝐼𝛼𝛼 ,𝐹𝐹𝛼𝛼〉 as a 
single valued neutrosophic value (SVNV), which is a 
basic unit of SVNS. Let Ω� be the set of all the SVNVs in 
𝑋𝑋. 

Definition 3: Peng et al. (2014) Let 𝛼𝛼 = 〈𝑇𝑇𝛼𝛼 , 𝐼𝐼𝛼𝛼 ,𝐹𝐹𝛼𝛼〉 
be a SVNV, then the complement of 𝛼𝛼is denoted by 
𝛼𝛼𝑐𝑐and 𝛼𝛼𝑐𝑐 = 〈1 − 𝑇𝑇𝛼𝛼 , 1 − 𝐼𝐼𝛼𝛼 , 1 − 𝐹𝐹𝛼𝛼〉. 

Let 𝛼𝛼 = 〈𝑇𝑇𝛼𝛼 , 𝐼𝐼𝛼𝛼 ,𝐹𝐹𝛼𝛼〉 ≜ 〈𝛼𝛼1,𝛼𝛼2,𝛼𝛼3〉, then 𝛼𝛼𝑐𝑐 = 〈1 −
𝛼𝛼1, 1 − 𝛼𝛼2, 1 − 𝛼𝛼3〉, i.e., 𝛼𝛼𝑡𝑡𝑐𝑐 = 1 − 𝛼𝛼𝑡𝑡, 𝑡𝑡 = 1,2,3. 

Single Valued Neutrosophic Information 
Measures 

Single valued neutrosophic entropy 
The entropy of a SVNS is defined by Majumdar and 

Samanta as follows (Majumdar, 2014): 

Definition 4: The entropy of a SVNS 𝐴𝐴 =
{〈𝑥𝑥,𝑇𝑇𝐴𝐴(𝑥𝑥), 𝐼𝐼𝐴𝐴(𝑥𝑥),𝐹𝐹𝐴𝐴(𝑥𝑥)〉|𝑥𝑥 ∈ 𝑋𝑋} is a function 𝜀𝜀:𝐴𝐴 →
[0,1] which satisfies the following axioms: 

(i) 𝜀𝜀(𝐴𝐴) = 0 if 𝐴𝐴 is a crisp set; 

(ii) 𝜀𝜀(𝐴𝐴) = 1 if 〈𝑥𝑥,𝑇𝑇𝐴𝐴(𝑥𝑥), 𝐼𝐼𝐴𝐴(𝑥𝑥),𝐹𝐹𝐴𝐴(𝑥𝑥)〉 =
〈0.5,0.5,0.5〉 for ∀𝑥𝑥 ∈ 𝑋𝑋; 

(iii) 𝜀𝜀(𝐴𝐴) = 𝜀𝜀(𝐴𝐴𝑐𝑐); 

(iv) 𝜀𝜀(𝐴𝐴) ≥ 𝜀𝜀(𝐵𝐵), if 𝐴𝐴 more uncertain than 𝐵𝐵, i.e., 

𝑇𝑇𝐴𝐴(𝑥𝑥) + 𝐹𝐹𝐴𝐴(𝑥𝑥) ≤ 𝑇𝑇𝐵𝐵(𝑥𝑥) + 𝐹𝐹𝐵𝐵(𝑥𝑥) and |𝐼𝐼𝐴𝐴(𝑥𝑥) −
𝐼𝐼𝐴𝐴𝑐𝑐(𝑥𝑥)| ≤ |𝐼𝐼𝐵𝐵(𝑥𝑥) − 𝐼𝐼𝐵𝐵𝑐𝑐(𝑥𝑥)|. 

However, in some situations, the axiomatic 
requirement (iv) in Definition 4 might be impractical. 
This is demonstrated in Example 1. 

Example 1: Let 𝐴𝐴 = {〈𝑥𝑥, 1,0,0〉|𝑥𝑥 ∈ 𝑋𝑋} and 𝐵𝐵 =
{〈𝑥𝑥, 0.5,0,0.6〉|𝑥𝑥 ∈ 𝑋𝑋} be two SVNSs. According to the 
axiomatic requirement (iv) in Definition 4, since 
𝑇𝑇𝐴𝐴(𝑥𝑥) + 𝐹𝐹𝐴𝐴(𝑥𝑥) = 1 + 0 = 1 < 1.1 = 0.5 + 0.6 =
𝑇𝑇𝐵𝐵(𝑥𝑥) + 𝐹𝐹𝐵𝐵(𝑥𝑥) and |𝐼𝐼𝐴𝐴(𝑥𝑥) − 𝐼𝐼𝐴𝐴𝑐𝑐(𝑥𝑥)| = 1 = |𝐼𝐼𝐵𝐵(𝑥𝑥) −
𝐼𝐼𝐵𝐵𝑐𝑐(𝑥𝑥)|, which indicates that 𝐴𝐴 is more uncertain than 
𝐵𝐵, then we have 𝜀𝜀(𝐴𝐴) ≥ 𝜀𝜀(𝐵𝐵). However, it is clear that 
𝐴𝐴 = {〈𝑥𝑥, 1,0,0〉|𝑥𝑥 ∈ 𝑋𝑋} is a crisp set, then the entropy of 
𝐴𝐴 is 𝜀𝜀(𝐴𝐴) = 0 and 𝐴𝐴 less uncertain than 𝐵𝐵. Therefore, 
the contradiction exists in the Definition 4, and 
Definition 4 is unreasonable. 

In this case, the definition of entropy for SVNSs 
needs to be improved. In the following, we first 
introduce the axiomatic definition of entropy for 
SVNVs, and then investigate an entropy formula of a 
SVNV. 

Definition 5: An entropy on SVNV 𝛼𝛼 =
〈𝛼𝛼1,𝛼𝛼2,𝛼𝛼3〉 is a function 𝐸𝐸:Ω� → [0,1], which satisfying 
the following axiomatic requirements: 

(E1) 𝐸𝐸(𝛼𝛼) = 0, if and only if 𝛼𝛼𝑡𝑡 = 0 or 𝛼𝛼𝑡𝑡 = 1, 𝑡𝑡 =
1,2,3; 

(E2) 𝐸𝐸(𝛼𝛼) = 1, if and only if 〈𝛼𝛼1,𝛼𝛼2,𝛼𝛼3〉 =
〈0.5,0.5,0.5〉; 

(E3) 𝐸𝐸(𝛼𝛼) = 𝐸𝐸(𝛼𝛼𝑐𝑐); 

(E4) 𝐸𝐸(𝛼𝛼) ≤ 𝐸𝐸(𝛽𝛽), if 𝛽𝛽 more uncertain than 𝛼𝛼, i.e., 

𝛼𝛼𝑡𝑡 ≤ 𝛽𝛽𝑡𝑡 when 𝛽𝛽𝑡𝑡 − 𝛽𝛽𝑡𝑡𝑐𝑐 ≤ 0, 𝑡𝑡 = 1,2,3, 

or 

𝛼𝛼𝑡𝑡 ≥ 𝛽𝛽𝑡𝑡 when 𝛽𝛽𝑡𝑡 − 𝛽𝛽𝑡𝑡𝑐𝑐 ≥ 0, 𝑡𝑡 = 1,2,3. 

Based on the cosine function, an information 
measure formula for SVNVs is constructed as follows: 
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𝐸𝐸1(𝛼𝛼)

=
1

3(√2 − 1)
��√2𝑐𝑐𝑐𝑐𝑐𝑐

𝛼𝛼𝑡𝑡 − 𝛼𝛼𝑡𝑡𝑐𝑐

4
𝜋𝜋 − 1�

3

𝑡𝑡=1

 
(1) 

In what follows, we show that 𝐸𝐸1(𝛼𝛼) is an entropy 
measure of SVNV 𝛼𝛼. 

Theorem 1. The mapping 𝐸𝐸1(𝛼𝛼), defined by Eq. 
(1), is an entropy measure for SVNV 𝛼𝛼. 

Proof. In order for Eq. (1) to be qualified as a 
sensible measure of single valued neutrosophic entropy, 
it must satisfy the conditions (E1)-(E4) in Definition 5. 

Let 𝑓𝑓(𝑥𝑥) = 1
√2−1

�√2cos 𝜋𝜋
4
𝑥𝑥 − 1� , 𝑥𝑥 ∈ [−1,1], then 

we have 

 
𝑑𝑑𝑓𝑓(𝑥𝑥)
𝑑𝑑𝑥𝑥

= −
√2𝜋𝜋

4(√2 − 1)
𝑐𝑐𝑠𝑠𝑠𝑠

𝜋𝜋
4
𝑥𝑥 (2) 

If 𝑥𝑥 ∈ [−1,0], then 𝑑𝑑𝑑𝑑(𝑥𝑥)
𝑑𝑑𝑥𝑥

≥ 0, which means that 

𝑓𝑓(𝑥𝑥) is an increasing function of 𝑥𝑥, for 𝑥𝑥 ∈ [−1,0]; If 
𝑥𝑥 ∈ [0,1], then 𝑑𝑑𝑑𝑑(𝑥𝑥)

𝑑𝑑𝑥𝑥
≤ 0, which means that 𝑓𝑓(𝑥𝑥) is a 

decreasing function of 𝑥𝑥, for 𝑥𝑥 ∈ [0,1]. Since 𝑓𝑓(𝑥𝑥) ∈
[0,1], then 𝑓𝑓min(𝑥𝑥) = 0, if and only if 𝑥𝑥 = −1 or 𝑥𝑥 = 1; 
𝑓𝑓max(𝑥𝑥) = 1, if and only if 𝑥𝑥 = 0. 

(E1) If 𝛼𝛼𝑡𝑡 = 0 or 𝛼𝛼𝑡𝑡 = 1, 𝑡𝑡 = 1,2,3, then 𝛼𝛼𝑡𝑡 − 𝛼𝛼𝑡𝑡𝑐𝑐 =
−1 or 𝛼𝛼𝑡𝑡 − 𝛼𝛼𝑡𝑡𝑐𝑐 = 1, 𝑡𝑡 = 1,2,3. From the above analysis, 
we have 𝐸𝐸1(𝛼𝛼) = 0. 

On the other hand, assume that 𝐸𝐸1(𝛼𝛼) = 0. 

As 𝛼𝛼𝑡𝑡 − 𝛼𝛼𝑡𝑡𝑐𝑐 = 𝛼𝛼𝑡𝑡 − (1 − 𝛼𝛼𝑡𝑡) = 2𝛼𝛼𝑡𝑡 − 1 and 0 ≤
𝛼𝛼𝑡𝑡 ≤ 1, 𝑡𝑡 = 1,2,3, then we have 𝛼𝛼𝑡𝑡 − 𝛼𝛼𝑡𝑡𝑐𝑐 ∈ [−1,1], 𝑡𝑡 =
1,2,3. Therefore, every term in the summation of 𝐸𝐸1(𝛼𝛼) 
is non-negative. While 𝐸𝐸1(𝛼𝛼) = 0, then every term 
should be zero in 𝐸𝐸1(𝛼𝛼), i.e., 

 
1

√2 − 1
�√2𝑐𝑐𝑐𝑐𝑐𝑐

𝛼𝛼𝑡𝑡 − 𝛼𝛼𝑡𝑡𝑐𝑐

4
𝜋𝜋 − 1� = 0, 𝑡𝑡

= 1,2,3 
(3) 

From the above analysis, we know that Eq. (3) holds, 
if and only if 𝛼𝛼𝑡𝑡 − 𝛼𝛼𝑡𝑡𝑐𝑐 = −1 or 𝛼𝛼𝑡𝑡 − 𝛼𝛼𝑡𝑡𝑐𝑐 = 1, 𝑡𝑡 = 1,2,3. 
Hence, 𝛼𝛼𝑡𝑡 = 0 or 𝛼𝛼𝑡𝑡 = 1, 𝑡𝑡 = 1,2,3. 

(E2) If 〈𝛼𝛼1,𝛼𝛼2,𝛼𝛼3〉 = 〈0.5,0.5,0.5〉, we have 𝛼𝛼𝑡𝑡 −
𝛼𝛼𝑡𝑡𝑐𝑐 = 0, 𝑡𝑡 = 1,2,3, then based on Eq. (1), 𝐸𝐸1(𝛼𝛼) = 0 is 
obtained. 

On the other hand, from the above analysis, we have 
𝛼𝛼𝑡𝑡 − 𝛼𝛼𝑡𝑡𝑐𝑐 ∈ [−1,1], 𝑡𝑡 = 1,2,3, it is obvious that 0 ≤
𝐸𝐸1(𝛼𝛼) ≤ 1. If 𝐸𝐸1(𝛼𝛼) = 1, then 𝛼𝛼𝑡𝑡 − 𝛼𝛼𝑡𝑡𝑐𝑐 = 0, 𝑡𝑡 = 1,2,3. 

It follows that 𝛼𝛼𝑡𝑡 = 0.5, 𝑡𝑡 = 1,2,3, i.e., 〈𝛼𝛼1,𝛼𝛼2,𝛼𝛼3〉 =
〈0.5,0.5,0.5〉. 

(E3) Since 𝛼𝛼𝑐𝑐 = 〈𝑇𝑇𝛼𝛼𝑐𝑐 , 𝐼𝐼𝛼𝛼𝑐𝑐 ,𝐹𝐹𝛼𝛼𝑐𝑐〉 = 〈1 − 𝛼𝛼1, 1 −
𝛼𝛼2, 1 − 𝛼𝛼3〉, then (𝛼𝛼𝑐𝑐)𝑐𝑐 = 𝛼𝛼. Thus 

 

𝐸𝐸1(𝛼𝛼𝑐𝑐)

=
1

3�√2 − 1�
��√2𝑐𝑐𝑐𝑐𝑐𝑐

𝛼𝛼𝑡𝑡𝑐𝑐 − (𝛼𝛼𝑡𝑡𝑐𝑐)𝑐𝑐

4
𝜋𝜋 − 1�

3

𝑡𝑡=1

 

=
1

3(√2 − 1)
��√2cos

𝛼𝛼𝑡𝑡𝑐𝑐 − 𝛼𝛼𝑡𝑡
4

𝜋𝜋 − 1�
3

𝑡𝑡=1

 

=
1

3(√2 − 1)
��√2cos

𝛼𝛼𝑡𝑡 − 𝛼𝛼𝑡𝑡𝑐𝑐

4
𝜋𝜋 − 1�

3

𝑡𝑡=1

 

= 𝐸𝐸1(𝛼𝛼) 

(4) 

(E4) Assume that 𝛼𝛼𝑡𝑡 ≤ 𝛽𝛽𝑡𝑡 when 𝛽𝛽𝑡𝑡 − 𝛽𝛽𝑡𝑡𝑐𝑐 ≤ 0, 𝑡𝑡 =
1,2,3, then 1 ≥ 1 − 𝛼𝛼𝑡𝑡 ≥ 1 − 𝛽𝛽𝑡𝑡 ≥ 0, i.e., 1 ≥ 𝛼𝛼𝑡𝑡𝑐𝑐 ≥
𝛽𝛽𝑡𝑡𝑐𝑐 ≥ 0, 𝑡𝑡 = 1,2,3. It follows that 

 −1 ≤ 𝛼𝛼𝑡𝑡 − 𝛼𝛼𝑡𝑡𝑐𝑐 ≤ 𝛽𝛽𝑡𝑡 − 𝛽𝛽𝑡𝑡𝑐𝑐 ≤ 0, 𝑡𝑡 = 1,2,3 (5) 

Notice that 

 𝑓𝑓(𝑥𝑥) =
1

√2 − 1
�√2𝑐𝑐𝑐𝑐𝑐𝑐

𝜋𝜋
4
𝑥𝑥 − 1� (6) 

is an increasing function of 𝑥𝑥, for 𝑥𝑥 ∈ [−1,0], 
therefore 𝐸𝐸1(𝛼𝛼) ≤ 𝐸𝐸1(𝛽𝛽). 

Similarly, if 𝛼𝛼𝑡𝑡 ≥ 𝛽𝛽𝑡𝑡 when 𝛽𝛽𝑡𝑡 − 𝛽𝛽𝑡𝑡𝑐𝑐 ≥ 0, 𝑡𝑡 = 1,2,3, 
we have 𝐸𝐸(𝛼𝛼) ≤ 𝐸𝐸(𝛽𝛽). This completes the proof of 
Theorem 1. 

Definition 6: Suppose that 𝛼𝛼 is a SVNV, then 
𝐸𝐸1(𝛼𝛼), defined by Eq. (1), is called the entropy of SVNV 
𝛼𝛼. 

Single valued neutrosophic similarity measure 
In this subsection, we give the axiomatic definition 

of similarity measure of the SVNVs, and then develop 
similarity measure formula for SVNVs. 

Definition 7: Suppose that 𝛼𝛼 and 𝛽𝛽 are two SVNVs, 
the similarity measure between 𝛼𝛼 and 𝛽𝛽, denoted as 
𝑆𝑆(𝛼𝛼,𝛽𝛽), should satisfy the following axiomatic 
requirements: 

(S1) 𝑆𝑆(𝛼𝛼,𝛽𝛽) = 0, if and only if 𝛼𝛼𝑡𝑡 − 𝛽𝛽𝑡𝑡 = 1 or 𝛼𝛼𝑡𝑡 −
𝛽𝛽𝑡𝑡 = −1, 𝑡𝑡 = 1,2,3; 

(S2) 𝑆𝑆(𝛼𝛼,𝛽𝛽) = 1, if and only if 〈𝛼𝛼1,𝛼𝛼2,𝛼𝛼3〉 =
〈𝛽𝛽1,𝛽𝛽2,𝛽𝛽3〉; 

(S3) 𝑆𝑆(𝛼𝛼,𝛽𝛽) = 𝑆𝑆(𝛽𝛽,𝛼𝛼); 
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(S4) 𝑆𝑆(𝛼𝛼, 𝛾𝛾) ≤ 𝑆𝑆(𝛼𝛼,𝛽𝛽), 𝑆𝑆(𝛼𝛼, 𝛾𝛾) ≤ 𝑆𝑆(𝛽𝛽, 𝛾𝛾), if 𝛼𝛼𝑡𝑡 ≤
𝛽𝛽𝑡𝑡 ≤ 𝛾𝛾𝑡𝑡 or 𝛼𝛼𝑡𝑡 ≥ 𝛽𝛽𝑡𝑡 ≥ 𝛾𝛾𝑡𝑡 , 𝑡𝑡 = 1,2,3. 

Let 𝛼𝛼,𝛽𝛽 ∈ Ω�, based on the cosine function, an 
information measure formula for SVNVs 𝛼𝛼 and 𝛽𝛽 is 
established as follows: 

 

𝑆𝑆1(𝛼𝛼,𝛽𝛽)

=
1

3(√2 − 1)
��√2𝑐𝑐𝑐𝑐𝑐𝑐

𝛼𝛼𝑡𝑡 − 𝛽𝛽𝑡𝑡
4

𝜋𝜋 − 1�
3

𝑡𝑡=1

 
(7) 

Then we have the following theorem. 

Theorem 2: Suppose that 𝛼𝛼 and 𝛽𝛽 are two SVNVs, 
then the mapping 𝑆𝑆1(𝛼𝛼,𝛽𝛽), defined by Eq. (7), is the 
similarity measure between 𝛼𝛼 and 𝛽𝛽. 

Proof. Now we testify that 𝑆𝑆1(𝛼𝛼,𝛽𝛽) satisfies the 
four axiomatic requirements listed in Definition 3.4. 

According to Theorem 1, we know that 𝑓𝑓(𝑥𝑥) =
1

√2−1
�√2cos 𝜋𝜋

4
𝑥𝑥 − 1� is an increasing function of 𝑥𝑥, for 

𝑥𝑥 ∈ [−1,0]; 𝑓𝑓(𝑥𝑥) is a decreasing function of 𝑥𝑥, for 𝑥𝑥 ∈
[0,1]. Moreover, 𝑓𝑓min(𝑥𝑥) = 0, if and only if 𝑥𝑥 = −1 or 
𝑥𝑥 = 1; 𝑓𝑓max(𝑥𝑥) = 1, if and only if 𝑥𝑥 = 0. 

(S1) If 𝛼𝛼𝑡𝑡 − 𝛽𝛽𝑡𝑡 = 1 or 𝛼𝛼𝑡𝑡 − 𝛽𝛽𝑡𝑡 = −1, 𝑡𝑡 = 1,2,3, then 
𝑆𝑆1(𝛼𝛼,𝛽𝛽) = 0 is definitely validated according to Eq. (7). 

Since 𝛼𝛼𝑡𝑡 ,𝛽𝛽𝑡𝑡 ∈ [0,1], 𝑡𝑡 = 1,2,3, then 𝛼𝛼𝑡𝑡 − 𝛽𝛽𝑡𝑡 ∈
[−1,1], which implies that every term in the summation 
of 𝑆𝑆1(𝛼𝛼,𝛽𝛽) is non-negative. Suppose that 𝑆𝑆1(𝛼𝛼,𝛽𝛽) = 0, 
then every term should equal zero, i.e., 

 
1

√2 − 1
�√2𝑐𝑐𝑐𝑐𝑐𝑐

𝛼𝛼𝑡𝑡 − 𝛽𝛽𝑡𝑡
4

𝜋𝜋 − 1� = 0, 𝑡𝑡

= 1,2,3 
(8) 

From the above analysis, Eq. (8) holds, if and only if 
𝛼𝛼𝑡𝑡 − 𝛽𝛽𝑡𝑡 = 1 or 𝛼𝛼𝑡𝑡 − 𝛽𝛽𝑡𝑡 = −1, 𝑡𝑡 = 1,2,3. 

(S2) If 〈𝛼𝛼1,𝛼𝛼2,𝛼𝛼3〉 = 〈𝛽𝛽1,𝛽𝛽2,𝛽𝛽3〉, by Eq. (7), it is 
obvious that 𝑆𝑆1(𝛼𝛼,𝛽𝛽) = 1. 

Assume that 𝑆𝑆1(𝛼𝛼,𝛽𝛽) = 1, then it is deduced that 
every term should equal one, i.e., 

 
1

√2 − 1
�√2𝑐𝑐𝑐𝑐𝑐𝑐

𝛼𝛼𝑡𝑡 − 𝛽𝛽𝑡𝑡
4

𝜋𝜋 − 1� = 1, 𝑡𝑡

= 1,2,3 
(9) 

and Eq. (9) holds, if and only if 𝛼𝛼𝑡𝑡 − 𝛽𝛽𝑡𝑡 = 0, 𝑡𝑡 =
1,2,3. Hence, 〈𝛼𝛼1,𝛼𝛼2,𝛼𝛼3〉 = 〈𝛽𝛽1,𝛽𝛽2,𝛽𝛽3〉. 

(S3) Since cos𝑥𝑥 = cos(−𝑥𝑥) for ∀𝑥𝑥 ∈ 𝑅𝑅, then we 
have 

 

𝑆𝑆1(𝛼𝛼,𝛽𝛽)

=
1

3(√2 − 1)
��√2𝑐𝑐𝑐𝑐𝑐𝑐

𝛼𝛼𝑡𝑡 − 𝛽𝛽𝑡𝑡
4

𝜋𝜋 − 1�
3

𝑡𝑡=1

 

=
1

3(√2 − 1)
��√2cos �−

𝛼𝛼𝑡𝑡 − 𝛽𝛽𝑡𝑡
4

𝜋𝜋�
3

𝑡𝑡=1

− 1� 

=
1

3(√2 − 1)
��√2cos

𝛽𝛽𝑡𝑡 − 𝛼𝛼𝑡𝑡
4

𝜋𝜋 − 1�
3

𝑡𝑡=1

 

= 𝑆𝑆1(𝛽𝛽,𝛼𝛼) 

(10) 

(S4) Suppose that  

 

0 ≤ 𝛼𝛼𝑡𝑡 ≤ 𝛽𝛽𝑡𝑡 ≤ 𝛾𝛾𝑡𝑡 ≤ 1, 𝑡𝑡 = 1,2,3, 
then −1 ≤ 𝛼𝛼𝑡𝑡 − 𝛾𝛾𝑡𝑡 ≤ 𝛼𝛼𝑡𝑡 − 𝛽𝛽𝑡𝑡 ≤ 0 

and −1 ≤ 𝛼𝛼𝑡𝑡 − 𝛾𝛾𝑡𝑡 ≤ 𝛽𝛽𝑡𝑡 − 𝛾𝛾𝑡𝑡 ≤
0, 𝑡𝑡 = 1,2,3 

(11) 

As 𝑓𝑓(𝑥𝑥) = 1
√2−1

�√2cos 𝜋𝜋
4
𝑥𝑥 − 1� is an increasing 

function of 𝑥𝑥, for 𝑥𝑥 ∈ [−1,0], therefore 

 𝑆𝑆1(𝛼𝛼, 𝛾𝛾) ≤ 𝑆𝑆1(𝛼𝛼,𝛽𝛽), 𝑆𝑆1(𝛼𝛼, 𝛾𝛾)
≤ 𝑆𝑆1(𝛽𝛽, 𝛾𝛾) 

(12) 

Similarly, if 𝛼𝛼𝑡𝑡 ≥ 𝛽𝛽𝑡𝑡 ≥ 𝛾𝛾𝑡𝑡 , 𝑡𝑡 = 1,2,3, we have 
𝑆𝑆1(𝛼𝛼, 𝛾𝛾) ≤ 𝑆𝑆1(𝛼𝛼,𝛽𝛽), 𝑆𝑆1(𝛼𝛼,𝛾𝛾) ≤ 𝑆𝑆1(𝛽𝛽, 𝛾𝛾). 

This completes the proof of Theorem 2. 

Definition 8. Suppose that 𝛼𝛼 and 𝛽𝛽 are two SVNVs, 
then 𝑆𝑆1(𝛼𝛼,𝛽𝛽), defined by Eq. (7), is called the similarity 
measure between 𝛼𝛼 and 𝛽𝛽. 

Single valued neutrosophic cross-entropy 
In the following, we shall propose the axiomatic 

definition of single valued neutrosophic cross-entropy, 
and then construct a cross-entropy formula between 
SVNVs. 

Definition 9. Suppose that 𝛼𝛼 and 𝛽𝛽 are two SVNVs, 
the single valued neutrosophic cross-entropy between 𝛼𝛼 
and 𝛽𝛽, denoted as 𝐶𝐶(𝛼𝛼,𝛽𝛽), should satisfy the following 
two axiomatic requirements: 

(C1) 𝐶𝐶(𝛼𝛼,𝛽𝛽) ≥ 0; 

(C2) 𝐶𝐶(𝛼𝛼,𝛽𝛽) = 0 if 〈𝛼𝛼1,𝛼𝛼2,𝛼𝛼3〉 = 〈𝛽𝛽1,𝛽𝛽2,𝛽𝛽3〉. 

Let 𝛼𝛼,𝛽𝛽 ∈ Ω�, based on the cosine function, an 
information measure formula between SVNVs 𝛼𝛼 and 𝛽𝛽 
is developed as follows: 
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𝐶𝐶1(𝛼𝛼,𝛽𝛽)
= 1

−
1

3(√2 − 1)
��√2𝑐𝑐𝑐𝑐𝑐𝑐

𝛼𝛼𝑡𝑡 − 𝛽𝛽𝑡𝑡
4

𝜋𝜋 − 1�
3

𝑡𝑡=1

 
(13) 

Theorem 3. Suppose that 𝛼𝛼 and 𝛽𝛽 are two SVNVs, 
then the mapping 𝐶𝐶1(𝛼𝛼,𝛽𝛽), defined by Eq. (13), is the 
cross-entropy between 𝛼𝛼 and 𝛽𝛽. 

Proof. The proof of Theorem 3 is similar to that of 
Theorem 2, it is easy to know that the mapping 𝐶𝐶1(𝛼𝛼,𝛽𝛽) 
satisfy the axiomatic requirements (C1)-(C2) listed in 
Definition 9. So it is omitted here. 

Definition 10. Suppose that 𝛼𝛼 and 𝛽𝛽 are two 
SVNVs, then 𝐶𝐶1(𝛼𝛼,𝛽𝛽), defined by Eq. (13), is called the 
cross-entropy between 𝛼𝛼 and 𝛽𝛽. 

Relationship among the Single Valued 
Neutrosophic Information Measures 

In this section, we study the interrelations among 
the single valued neutrosophic entropy, similarity 
measure and cross-entropy. 

Theorem 4. Let 𝛼𝛼 be a SVNV, then 𝑆𝑆(𝛼𝛼,𝛼𝛼𝑐𝑐) is a 
single valued neutrosophic entropy, i.e. 

 𝐸𝐸(𝛼𝛼) = 𝑆𝑆(𝛼𝛼,𝛼𝛼𝑐𝑐) (14) 

Proof. It is sufficient to show that 𝑆𝑆(𝛼𝛼,𝛼𝛼𝑐𝑐) satisfies 
the requirements (E1)-(E4) listed in Definition 3.2. 

 (E1) 𝐸𝐸(𝛼𝛼) = 0 ⇔ 𝑆𝑆(𝛼𝛼,𝛼𝛼𝑐𝑐) = 0 ⇔ 𝛼𝛼𝑡𝑡 − 𝛼𝛼𝑡𝑡𝑐𝑐 = 1 

or 𝛼𝛼𝑡𝑡 − 𝛼𝛼𝑡𝑡𝑐𝑐 = −1, 𝑡𝑡 = 1,2,3, i.e., 

𝛼𝛼𝑡𝑡 − (1 − 𝛼𝛼𝑡𝑡) = 1 or  

 𝛼𝛼𝑡𝑡 − (1 − 𝛼𝛼𝑡𝑡) = −1, 𝑡𝑡 = 1,2,3 (15) 

Therefore, Eq. (15) holds, if and only if 

𝛼𝛼𝑡𝑡 = 0 or 𝛼𝛼𝑡𝑡 = 1, 𝑡𝑡 = 1,2,3. 

 (E2) 𝐸𝐸(𝛼𝛼) = 1 ⇔ 𝑆𝑆(𝛼𝛼,𝛼𝛼𝑐𝑐) = 1 ⇔ 〈𝛼𝛼1,𝛼𝛼2,𝛼𝛼3〉 =
〈𝛼𝛼1𝑐𝑐,𝛼𝛼2𝑐𝑐,𝛼𝛼3𝑐𝑐〉 

⇔ 〈𝛼𝛼1,𝛼𝛼2,𝛼𝛼3〉 = 〈1 − 𝛼𝛼1, 1 − 𝛼𝛼2, 1 − 𝛼𝛼3〉 

⇔ 𝛼𝛼𝑡𝑡 = 1 − 𝛼𝛼𝑡𝑡 , 𝑡𝑡 = 1,2,3 ⇔ 𝛼𝛼𝑡𝑡 = 0.5, 𝑡𝑡 = 1,2,3 

 ⇔ 〈𝛼𝛼1,𝛼𝛼2,𝛼𝛼3〉 = 〈0.5,0.5,0.5〉 (16) 

(E3) 𝐸𝐸(𝛼𝛼𝑐𝑐) = 𝑆𝑆(𝛼𝛼𝑐𝑐, (𝛼𝛼𝑐𝑐)) = 𝑆𝑆(𝛼𝛼𝑐𝑐,𝛼𝛼) = 𝑆𝑆(𝛼𝛼,𝛼𝛼𝑐𝑐) =
𝐸𝐸(𝛼𝛼). 

(E4) If 𝛼𝛼𝑡𝑡 ≤ 𝛽𝛽𝑡𝑡 when 𝛽𝛽𝑡𝑡 − 𝛽𝛽𝑡𝑡𝑐𝑐 ≤ 0, 𝑡𝑡 = 1,2,3, then 
𝛽𝛽𝑡𝑡 − (1 − 𝛽𝛽𝑡𝑡) ≤ 0, 𝑡𝑡 = 1,2,3, i.e., 𝛽𝛽𝑡𝑡 ≤ 1 − 𝛽𝛽𝑡𝑡 , 𝑡𝑡 =
1,2,3, and we have 

 𝛼𝛼𝑡𝑡 ≤ 𝛽𝛽𝑡𝑡 ≤ 1 − 𝛽𝛽𝑡𝑡 ≤ 1 − 𝛼𝛼𝑡𝑡 , 𝑡𝑡 = 1,2,3 (17) 

i.e. 

 𝛼𝛼𝑡𝑡 ≤ 𝛽𝛽𝑡𝑡 ≤ 𝛽𝛽𝑡𝑡𝑐𝑐 ≤ 𝛼𝛼𝑡𝑡𝑐𝑐, 𝑡𝑡 = 1,2,3 (18) 

According to the axiomatic requirement (S4) in 
Definition 3.4, it is deduced that 

 𝑆𝑆(𝛼𝛼,𝛼𝛼𝑐𝑐) ≤ 𝑆𝑆(𝛽𝛽,𝛼𝛼𝑐𝑐) ≤ 𝑆𝑆(𝛽𝛽,𝛽𝛽𝑐𝑐) (19) 

then 

𝐸𝐸(𝛼𝛼) ≤ 𝐸𝐸(𝛽𝛽). 

Similarly, if 𝛼𝛼𝑡𝑡 ≥ 𝛽𝛽𝑡𝑡 when 𝛽𝛽𝑡𝑡 − 𝛽𝛽𝑡𝑡𝑐𝑐 ≥ 0, 𝑡𝑡 = 1,2,3, 
one can obtain that 𝐸𝐸(𝛼𝛼) ≤ 𝐸𝐸(𝛽𝛽), which completes the 
proof of Theorem 4. 

According to the Theorem 4, then we have the 
following corollary. 

Corollary 1. Let 𝛼𝛼 be a SVNV, then 

 𝐸𝐸1(𝛼𝛼) = 𝑆𝑆1(𝛼𝛼,𝛼𝛼𝑐𝑐) (20) 

Now we discuss the relationship between single 
valued neutrosophic similarity measure and single 
valued neutrosophic cross-entropy. 

Theorem 5. Let 𝛼𝛼 and 𝛽𝛽 be two SVNVs, then 1 −
𝑆𝑆(𝛼𝛼,𝛽𝛽) is a single valued neutrosophic cross-entropy, 
i.e., 

 𝐶𝐶(𝛼𝛼,𝛽𝛽) = 1 − 𝑆𝑆(𝛼𝛼,𝛽𝛽) (21) 

Proof. It is sufficient to prove that 1 − 𝑆𝑆(𝛼𝛼,𝛽𝛽) holds 
the two conditions of Definition 3.6. 

(C1) Since single valued neutrosophic similarity 
measure 𝑆𝑆(𝛼𝛼,𝛽𝛽) ∈ [0,1], then 

 𝐶𝐶(𝛼𝛼,𝛽𝛽) = 1 − 𝑆𝑆(𝛼𝛼,𝛽𝛽) ∈ [0,1] (22) 

thus we can obtain 𝐶𝐶(𝛼𝛼,𝛽𝛽) ≥ 0. 

(C2) 𝐶𝐶(𝛼𝛼,𝛽𝛽) = 0 ⇔ 1 − 𝑆𝑆(𝛼𝛼,𝛽𝛽) = 0 ⇔ 𝑆𝑆(𝛼𝛼,𝛽𝛽) =
1. By the axiomatic requirement (S2) of Definition 9, 
𝑆𝑆(𝛼𝛼,𝛽𝛽) = 1, if and only if 〈𝛼𝛼1,𝛼𝛼2,𝛼𝛼3〉 = 〈𝛽𝛽1,𝛽𝛽2,𝛽𝛽3〉. 

Corollary 2. Let 𝛼𝛼 and 𝛽𝛽 be two SVNVs, then 

 𝐶𝐶1(𝛼𝛼,𝛽𝛽) = 1 − 𝑆𝑆1(𝛼𝛼,𝛽𝛽) (23) 

By Theorem 4.1 and Theorem 5, we have the 
following theorem: 

Theorem 6. Let 𝛼𝛼 be a SVNV, then 1 − 𝐶𝐶(𝛼𝛼,𝛼𝛼𝑐𝑐) is 
a single valued neutrosophic entropy, i.e., 

 𝐸𝐸(𝛼𝛼) = 1 − 𝐶𝐶(𝛼𝛼,𝛼𝛼𝑐𝑐) (24) 



 
 
 Multi-Criteria Decision Making Approach Using the Fuzzy Measures for Environmental Improvement … 
 

 
Ekoloji 28(107): 1605-1615 (2019)  1611 
 

Corollary 3. Let 𝛼𝛼 be a SVNV, then 

 𝐸𝐸1(𝛼𝛼) = 1 − 𝐶𝐶1(𝛼𝛼,𝛼𝛼𝑐𝑐) (25) 

An Approach to MADM 
With the rapid development of society and 

economy, the MADM problems facing DM are 
becoming more complicated, uncertain and fuzzy than 
ever, and the uncertainty, imprecise, incomplete and 
inconsistent information is included. Then SVNS can 
represent these information. In what follows, we 
present a handling method for MADM problems under 
single valued neutrosophic environment. 

Assume that 𝑋𝑋 = {𝑋𝑋1,𝑋𝑋2,⋯ ,𝑋𝑋𝑚𝑚} is the set of 
alternatives, 𝐶𝐶 = {𝐶𝐶1,𝐶𝐶2,⋯ ,𝐶𝐶𝑛𝑛} is a collection of 
attributes. The DM is required to provide the 
information that the alternative 𝑋𝑋𝑖𝑖 satisfies the attribute 
𝐶𝐶𝑗𝑗, then the decision making information can be 

represented as a SVNV 𝛼𝛼𝑖𝑖𝑗𝑗 = 〈𝛼𝛼1
𝑖𝑖𝑗𝑗,𝛼𝛼2

𝑖𝑖𝑗𝑗 ,𝛼𝛼3
𝑖𝑖𝑗𝑗〉. When all 

the performances of the alternatives are provided, the 
single valued neutrosophic decision matrix 𝐷𝐷 =
(𝛼𝛼𝑖𝑖𝑗𝑗)𝑚𝑚×𝑛𝑛 can be constructed. Assume that the weight 
vector of attribute is 𝑊𝑊 = (𝑤𝑤1 ,𝑤𝑤2,⋯ ,𝑤𝑤𝑛𝑛)Τ, where 0 ≤
𝑤𝑤𝑗𝑗 ≤ 1, 𝑗𝑗 = 1,2,⋯ ,𝑠𝑠, and ∑ 𝑤𝑤𝑗𝑗𝑛𝑛

𝑗𝑗=1 = 1. In the process 
MADM, sometimes, the information about attribute 
weights is completely unknown or incompletely known 
because of lack of knowledge or data, the influence of 
the decision environment and the expert’s limited 
expertise about the decision making problem domain 
(Jin et al., 2016). 

The method to determine the attribute weights 
In order to get the optimal alternatives, first of all, 

we propose a method to determine the weight vector of 
attributes based on the entropy and cross-entropy. 

One the one hand, considering of the entropy of the 
attribute 𝐶𝐶𝑗𝑗, the averaging entropy 𝐸𝐸(𝐶𝐶𝑗𝑗) of the attribute 
𝐶𝐶𝑗𝑗 is given as: 

 𝐸𝐸(𝐶𝐶𝑗𝑗) =
1
𝑚𝑚
�𝐸𝐸1(𝛼𝛼𝑖𝑖𝑗𝑗)
𝑚𝑚

𝑖𝑖=1

 (26) 

and each 𝐸𝐸1(𝛼𝛼𝑖𝑖𝑗𝑗) can be calculated by Eq. (1). 
According to the entropy theory, we know that the 
entropy of an attribute is smaller across alternatives, 
which implies that it can provide DM with the effective 
information, and the attribute should be assigned a 
bigger weight (Jin et al. 2016). 

On the other hand, for the attribute 𝐶𝐶𝑗𝑗, the averaging 
cross-entropy of the alternative 𝑋𝑋𝑖𝑖 to all the other 
alternatives can be given as: 

 
1

𝑚𝑚 − 1
� 𝐶𝐶1(𝛼𝛼𝑖𝑖𝑗𝑗 ,𝛼𝛼𝑘𝑘𝑗𝑗)
𝑚𝑚

𝑘𝑘=1,𝑘𝑘≠𝑖𝑖

 (27) 

and the averaging cross-entropy for the attribute 𝐶𝐶𝑗𝑗 
can be given as: 

 

𝐶𝐶(𝐶𝐶𝑗𝑗)

=
1
𝑚𝑚
��

1
𝑚𝑚− 1

� 𝐶𝐶1(𝛼𝛼𝑖𝑖𝑗𝑗 ,𝛼𝛼𝑘𝑘𝑗𝑗)
𝑚𝑚

𝑘𝑘=1,𝑘𝑘≠𝑖𝑖

�
𝑚𝑚

𝑖𝑖=1

 
(28) 

which can be described as the divergence measures 
among all alternatives under the attribute 𝐶𝐶𝑗𝑗, and each 
𝐶𝐶1(𝛼𝛼𝑖𝑖𝑗𝑗 ,𝛼𝛼𝑘𝑘𝑗𝑗) can be calculated by Eq. (13). As we all 
know that cross-entropy of an attribute is bigger across 
alternatives, it can provide DM with the useful 
information. Therefore, the attribute should be 
assigned a bigger weight. 

If the information about weight 𝑤𝑤𝑗𝑗 =
1−𝐸𝐸(𝐶𝐶𝑗𝑗)+𝐶𝐶(𝐶𝐶𝑗𝑗)

∑ �1−𝐸𝐸(𝐶𝐶𝑗𝑗)+𝐶𝐶(𝐶𝐶𝑗𝑗)�𝑛𝑛
𝑗𝑗=1

, 𝑗𝑗 = 1,2,⋯ ,𝑠𝑠 of the attribute 𝑤𝑤𝑗𝑗 =
1−𝐸𝐸(𝐶𝐶𝑗𝑗)+𝐶𝐶(𝐶𝐶𝑗𝑗)

∑ �1−𝐸𝐸(𝐶𝐶𝑗𝑗)+𝐶𝐶(𝐶𝐶𝑗𝑗)�𝑛𝑛
𝑗𝑗=1

, 𝑗𝑗 = 1,2,⋯ ,𝑠𝑠 is completely 

unknown, we utilize the following entropy weight 
approach to determine attribute weights: 

 
𝑤𝑤𝑗𝑗 =

1 − 𝐸𝐸(𝐶𝐶𝑗𝑗) + 𝐶𝐶(𝐶𝐶𝑗𝑗)
∑ �1 − 𝐸𝐸(𝐶𝐶𝑗𝑗) + 𝐶𝐶(𝐶𝐶𝑗𝑗)�𝑛𝑛
𝑗𝑗=1

, 𝑗𝑗

= 1,2,⋯ ,𝑠𝑠 
(29) 

If the information about weight 𝑀𝑀𝑀𝑀𝑥𝑥𝐸𝐸𝑊𝑊 =
∑ 𝑤𝑤𝑗𝑗�1 − 𝐸𝐸(𝐶𝐶𝑗𝑗) + 𝐶𝐶(𝐶𝐶𝑗𝑗)�𝑛𝑛
𝑗𝑗=1  of the attribute 𝑀𝑀𝑀𝑀𝑥𝑥𝐸𝐸𝑊𝑊 =

∑ 𝑤𝑤𝑗𝑗�1 − 𝐸𝐸(𝐶𝐶𝑗𝑗) + 𝐶𝐶(𝐶𝐶𝑗𝑗)�𝑛𝑛
𝑗𝑗=1  is partly known by DM, 

we construct the following optimization model to get 
the optimal weight vector: 

𝑀𝑀𝑀𝑀𝑥𝑥𝐸𝐸𝑊𝑊 = �𝑤𝑤𝑗𝑗�1 − 𝐸𝐸(𝐶𝐶𝑗𝑗) + 𝐶𝐶(𝐶𝐶𝑗𝑗)�
𝑛𝑛

𝑗𝑗=1

 

= �𝑤𝑤𝑗𝑗 �1 −
1
𝑚𝑚
�𝐸𝐸1(𝛼𝛼𝑖𝑖𝑗𝑗)
𝑚𝑚

𝑖𝑖=1

𝑛𝑛

𝑗𝑗=1

+
1
𝑚𝑚
��

1
𝑚𝑚 − 1

� 𝐶𝐶1(𝛼𝛼𝑖𝑖𝑗𝑗 ,𝛼𝛼𝑘𝑘𝑗𝑗)
𝑚𝑚

𝑘𝑘=1,𝑘𝑘≠𝑖𝑖

�
𝑚𝑚

𝑖𝑖=1

� 

 𝑐𝑐. 𝑡𝑡.

⎩
⎪
⎨

⎪
⎧
𝑊𝑊 ∈ 𝛺𝛺,

�𝑤𝑤𝑗𝑗

𝑛𝑛

𝑗𝑗=1

= 1,

𝑤𝑤𝑗𝑗 ≥ 0, 𝑗𝑗 = 1,2,⋯ ,𝑠𝑠.

 (30) 

where Ω represents the set of incomplete 
information about attribute weights. 
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An approach to MADM with information measures 
In MADM problems, the concepts of ideal and anti-

ideal alternatives may not exist, but it does provide a 
useful tool to select the best alternative(s). Let 𝑋𝑋+ =
{𝛼𝛼1+,𝛼𝛼2+,⋯, 𝛼𝛼𝑛𝑛+} and 𝑋𝑋− = {𝛼𝛼1−,𝛼𝛼2−,⋯ ,𝛼𝛼𝑛𝑛−} be the ideal 
alternative and anti-ideal alternative, respectively, where 
𝛼𝛼𝑗𝑗+ = 〈1,0,0〉,𝛼𝛼𝑗𝑗− = 〈0,1,1〉, 𝑗𝑗 = 1,2,⋯ ,𝑠𝑠. 

Based on the above analysis, we develop an approach 
to MADM under single valued neutrosophic 
environment, the main steps are as follows: 

Step 1: If all the attributes 𝐶𝐶𝑗𝑗(𝑗𝑗 = 1,2,⋯ ,𝑠𝑠) are of 
the benefit types, then the attribute values need not be 
normalized. Otherwise, we transform the single valued 
neutrosophic decision matrix 𝐷𝐷 = (𝛼𝛼𝑖𝑖𝑗𝑗)𝑚𝑚×𝑛𝑛 into the 
normalized single valued neutrosophic decision matrix 
𝐷𝐷� = (𝛼𝛼�𝑖𝑖𝑗𝑗)𝑚𝑚×𝑛𝑛, where 

 𝛼𝛼�𝑖𝑖𝑗𝑗 = �
𝛼𝛼𝑖𝑖𝑗𝑗 , 𝑓𝑓𝑐𝑐𝑓𝑓 𝑏𝑏𝑏𝑏𝑠𝑠𝑏𝑏𝑓𝑓𝑠𝑠𝑡𝑡 𝑀𝑀𝑡𝑡𝑡𝑡𝑓𝑓𝑠𝑠𝑏𝑏𝑎𝑎𝑡𝑡𝑏𝑏 𝐶𝐶𝑗𝑗
 𝛼𝛼𝑖𝑖𝑗𝑗𝑐𝑐 , 𝑓𝑓𝑐𝑐𝑓𝑓 𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡 𝑀𝑀𝑡𝑡𝑡𝑡𝑓𝑓𝑠𝑠𝑏𝑏𝑎𝑎𝑡𝑡𝑏𝑏 𝐶𝐶𝑗𝑗     , 𝑠𝑠

= 1,2,⋯ ,𝑚𝑚, 𝑗𝑗 = 1,2,⋯ ,𝑠𝑠 
(31) 

Step 2: Utilize Eq. (29) or model (30) to determine 
the weight vector of attribute: 𝐷𝐷� = (𝛼𝛼�𝑖𝑖𝑗𝑗)𝑚𝑚×𝑛𝑛. 

Step 3: Based on the decision matrix 𝐷𝐷� = (𝛼𝛼�𝑖𝑖𝑗𝑗)𝑚𝑚×𝑛𝑛, 
we calculate the similarity measures between the 
alternative 𝑋𝑋𝑖𝑖 and the ideal alternative 𝑋𝑋+ and the anti-
ideal alternative 𝑋𝑋− as follows: 

 
𝑆𝑆+(𝑋𝑋𝑖𝑖) = �𝑤𝑤𝑗𝑗

𝑛𝑛

𝑗𝑗=1

𝑆𝑆1(𝛼𝛼�𝑖𝑖𝑗𝑗 ,𝛼𝛼𝑗𝑗+), 𝑠𝑠

= 1,2,⋯ ,𝑚𝑚 

(32) 

 
𝑆𝑆−(𝑋𝑋𝑖𝑖) = �𝑤𝑤𝑗𝑗

𝑛𝑛

𝑗𝑗=1

𝑆𝑆1(𝛼𝛼�𝑖𝑖𝑗𝑗 ,𝛼𝛼𝑗𝑗−), 𝑠𝑠

= 1,2,⋯ ,𝑚𝑚 

(33) 

where 𝑆𝑆1(𝛼𝛼�𝑖𝑖𝑗𝑗 ,𝛼𝛼𝑗𝑗+) and 𝑆𝑆1(𝛼𝛼�𝑖𝑖𝑗𝑗 ,𝛼𝛼𝑗𝑗−) can be calculated 
by Eq. (7); 

Step 4: Compute the closeness degree of the 
alternative 𝑋𝑋𝑖𝑖 to the ideal alternative by using 

 𝑇𝑇(𝑋𝑋𝑖𝑖) =
𝑆𝑆+(𝑋𝑋𝑖𝑖)

𝑆𝑆+(𝑋𝑋𝑖𝑖) + 𝑆𝑆−(𝑋𝑋𝑖𝑖)
, 𝑠𝑠

= 1,2,⋯ ,𝑚𝑚 
(34) 

Step 5: Rank all the closeness degree 𝑇𝑇(𝑋𝑋𝑖𝑖)(𝑠𝑠 =
1,2,⋯ ,𝑚𝑚) in descending order; 

Step 6: Select the best alternative(s) in accordance 
with the closeness degree 𝑇𝑇(𝑋𝑋𝑖𝑖) (𝑠𝑠 = 1,2,⋯ ,𝑚𝑚). The 
best alternative(s) is the one with max

𝑖𝑖
𝑇𝑇(𝑋𝑋𝑖𝑖); 

Step 7: End. 

RESULTS AND DISCUSSION 
With the development of economy and acceleration 

of urbanization in China, fog-haze is becoming more 
and more frequent weather phenomenon, which is 
directly related to the ecological environment (Jin et al., 
2016). Fog-haze pollution is particularly serious in 
some cities, especially Beijing (𝑋𝑋1), Shanghai (𝑋𝑋2), 
Wuhan (𝑋𝑋3), Nanjing (𝑋𝑋4), Guangzhou (𝑋𝑋5), and the 
scientists found that the fog-haze is evaluated by means 
of four main attributes, i.e., 𝐶𝐶1: mass concentration of 
PM2.5, 𝐶𝐶2: the concentration of gaseous pollutants, 𝐶𝐶3: 
meteorological conditions and 𝐶𝐶4: geographical 
conditions. Consider the case that the ministry of 
environmental protection of China wants to know the 
most serious city polluted by fog-haze according to the 
main attributes of fog-haze, then a domain committee 
evaluates the five cities 𝑋𝑋𝑖𝑖(𝑠𝑠 = 1,2,3,4,5) with respect to 
the above four attribute 𝐶𝐶𝑗𝑗(𝑗𝑗 = 1,2,3,4) using the 

SVNVs 𝛼𝛼𝑖𝑖𝑗𝑗 = 〈𝛼𝛼1
𝑖𝑖𝑗𝑗,𝛼𝛼2

𝑖𝑖𝑗𝑗,𝛼𝛼3
𝑖𝑖𝑗𝑗〉. The single valued 

neutrosophic decision matrix 𝐷𝐷 = (𝛼𝛼𝑖𝑖𝑗𝑗)5×4 can be 
constructed as follows: 

𝐷𝐷 =

⎝

⎜
⎛

〈0.4,0.6,0.0〉 〈0.3,0.2,0.5〉 〈0.1,0.3,0.7〉 〈0.4,0.3,0.3〉
〈0.7,0.3,0.0〉 〈0.2,0.2,0.6〉 〈0.0,0.1,0.9〉 〈0.1,0.1,0.8〉
〈0.1,0.2,0.7〉 〈0.2,0.4,0.4〉 〈0.8,0.2,0.3〉 〈0.2,0.3,0.6〉
〈0.2,0.1,0.8〉 〈0.2,0.4,0.5〉 〈0.8,0.1,0.4〉 〈0.2,0.2,0.7〉
〈0.3,0.4,0.3〉 〈0.6,0.3,0.1〉 〈0.2,0.1,0.7〉 〈0.2,0.2,0.6〉⎠

⎟
⎞

 

In the following, to select the most serious city 
polluted by fog-haze, we utilize the proposed method 
to deal with this single valued neutrosophic MADM 
problems. The main steps are as follows: 

Step 1: Since all the attributes 𝐶𝐶𝑗𝑗(𝑗𝑗 = 1,2,3,4) are of 
the cost types, then we transform 𝐷𝐷 = (𝛼𝛼𝑖𝑖𝑗𝑗)5×4 into the 
normalized single valued neutrosophic decision matrix 
𝐷𝐷� = (𝛼𝛼�𝑖𝑖𝑗𝑗)5×4 by using Eq. (31): 

𝐷𝐷� =

⎝

⎜
⎛

〈0.6,0.4,1.0〉 〈0.7,0.9,0.5〉 〈0.9,0.7,0.3〉 〈0.6,0.7,0.7〉
〈0.3,0.7,1.0〉 〈0.8,0.8,0.4〉 〈1.0,0.9,0.1〉 〈0.9,0.9,0.2〉
〈0.9,0.8,0.3〉 〈0.8,0.6,0.6〉 〈0.2,0.8,0.7〉 〈0.8,0.7,0.4〉
〈0.8,0.9,0.2〉 〈0.8,0.6,0.5〉 〈0.2,0.9,0.6〉 〈0.8,0.8,0.3〉
〈0.7,0.6,0.7〉 〈0.4,0.7,0.9〉 〈0.8,0.9,0.3〉 〈0.8,0.8,0.4〉⎠

⎟
⎞

 

Step 2: Because the information about weight 𝑤𝑤𝑗𝑗  of 
the attribute 𝐶𝐶𝑗𝑗, 𝑗𝑗 = 1,2,3,4 is completely unknown, 
then we utilize Eq. (29) to calculate the weight vector of 
attribute as follows: 

𝑤𝑤1 = 0.2107,𝑤𝑤2 = 0.3011,𝑤𝑤3 = 0.1067,𝑤𝑤4 =
0.3815. 

Step 3: Utilize Eqs. (32) and (33) to determine the 
similarity measures between the city 𝑋𝑋𝑖𝑖 and the ideal 
city 𝑋𝑋+ and the anti-ideal city 𝑋𝑋−: 
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𝑆𝑆+(𝑋𝑋1) = 0.3317, 𝑆𝑆+(𝑋𝑋2) = 0.3845, 𝑆𝑆+(𝑋𝑋3)
= 0.5319, 𝑆𝑆+(𝑋𝑋4) = 0.4486, 𝑆𝑆+(𝑋𝑋5)
= 0.3627, 

𝑆𝑆−(𝑋𝑋1) = 0.4481, 𝑆𝑆−(𝑋𝑋2) = 0.3977, 𝑆𝑆−(𝑋𝑋3)
= 0.2885, 𝑆𝑆−(𝑋𝑋4) = 0.3419, 𝑆𝑆−(𝑋𝑋5)
= 0.4240. 

Step 4: By using Eq. (34), we obtain the closeness 
degree 𝑇𝑇(𝑋𝑋𝑖𝑖)(𝑠𝑠 = 1,2,3,4,5) of the city 𝑋𝑋𝑖𝑖 to the ideal 
city: 

𝑇𝑇(𝑋𝑋1) = 0.4254,𝑇𝑇(𝑋𝑋2) = 0.4916,𝑇𝑇(𝑋𝑋3)
= 0.6483,𝑇𝑇(𝑋𝑋4) = 0.5675,𝑇𝑇(𝑋𝑋5)
= 0.4610. 

Step 5: Since 𝑇𝑇(𝑋𝑋3) > 𝑇𝑇(𝑋𝑋4) > 𝑇𝑇(𝑋𝑋2) > 𝑇𝑇(𝑋𝑋5) >
𝑇𝑇(𝑋𝑋1), then we obtain the ranking of 𝑋𝑋𝑖𝑖(𝑠𝑠 = 1,2,3,4,5) 
is 𝑋𝑋3 ≻ 𝑋𝑋4 ≻ 𝑋𝑋2 ≻ 𝑋𝑋5 ≻ 𝑋𝑋1, and the most serious city 
polluted by fog-haze is 𝑋𝑋3. 

Step 6: End. 

In the following, in order to validate the proposed 
MADM method, we conduct a comparative study with 
the method proposed by Ye and Fu (2016). Based on the 
tangent function and Hausdorff distance, Ye and Fu 
(2016) developed a new similarity measure to calculate 
the deviations between each alternative and the ideal 
alternative, and then obtain the most desirable 
alternative. Now, we utilize the method to deal with the 
aforementioned problem and select the most serious 
city polluted by fog-haze. 

Step 1’: See Step1. 

Step 2’: Utilizing the following similarity measure 
formula between SVNS 𝐴𝐴 and 𝐵𝐵 (i.e., Eq. (6)): 

 
𝑇𝑇(𝐴𝐴,𝐵𝐵) = 1 −

1
𝑠𝑠�𝑡𝑡𝑀𝑀𝑠𝑠 �

𝜋𝜋
4 ⋅ 𝑚𝑚𝑀𝑀𝑥𝑥

��𝑇𝑇𝐴𝐴(𝑥𝑥𝑗𝑗) − 𝑇𝑇𝐵𝐵(𝑥𝑥𝑗𝑗)�, �𝐼𝐼𝐴𝐴(𝑥𝑥𝑗𝑗)
𝑛𝑛

𝑗𝑗=1

− 𝐼𝐼𝐵𝐵(𝑥𝑥𝑗𝑗)�, �𝐹𝐹𝐴𝐴(𝑥𝑥𝑗𝑗) − 𝐹𝐹𝐵𝐵(𝑥𝑥𝑗𝑗)��� 
(35) 

we can obtain the similarity measures 𝑇𝑇(𝑋𝑋𝑖𝑖 ,𝑋𝑋+)(𝑠𝑠 =
1,2,3,4,5) between the city 𝑋𝑋𝑖𝑖 and the ideal city 𝑋𝑋+: 

𝑇𝑇(𝑋𝑋1,𝑋𝑋+) = 0.2301,𝑇𝑇(𝑋𝑋2,𝑋𝑋+) = 0.1413,𝑇𝑇(𝑋𝑋3,𝑋𝑋+) = 0.3561,
𝑇𝑇(𝑋𝑋4,𝑋𝑋+) = 0.2639,𝑇𝑇(𝑋𝑋5,𝑋𝑋+) = 0.2381.  

Step 3’: According to the results obtained by the 
similarity measures, we have 

𝑇𝑇(𝑋𝑋3,𝑋𝑋+) > 𝑇𝑇(𝑋𝑋4,𝑋𝑋+) > 𝑇𝑇(𝑋𝑋1,𝑋𝑋+) > 𝑇𝑇(𝑋𝑋5,𝑋𝑋+)
> 𝑇𝑇(𝑋𝑋2,𝑋𝑋+), 

then the ranking of all the cities 𝑋𝑋𝑖𝑖(𝑠𝑠 = 1,2,3,4,5) is 
𝑋𝑋3 ≻ 𝑋𝑋4 ≻ 𝑋𝑋1 ≻ 𝑋𝑋5 ≻ 𝑋𝑋2. Therefore, the most serious 
city polluted by fog-haze is 𝑋𝑋3. 

Compared with the method proposed by Ye and Fu 
(2016), although the developed approach in this paper 
and that of Ye and Fu (2016) produce the same result 
that the most serious city polluted by fog-haze is 𝑋𝑋3, the 
method generates a little different ranking of the five 
cities with our approach. In fact, according to the 
normalized single valued neutrosophic decision matrix 
𝐷𝐷� = (𝛼𝛼�𝑖𝑖𝑗𝑗)5×4, we have 𝛼𝛼�21 < 𝛼𝛼�11,𝛼𝛼�22 > 𝛼𝛼�12,𝛼𝛼�23 >
𝛼𝛼�13, 𝛼𝛼�24 > 𝛼𝛼�14 and 𝛼𝛼�21 < 𝛼𝛼�51,𝛼𝛼�22 > 𝛼𝛼�52,𝛼𝛼�23 >
𝛼𝛼�53,𝛼𝛼�24 > 𝛼𝛼�54, which means that 𝑋𝑋2 is preferred to 𝑋𝑋1 
and 𝑋𝑋5. Therefore, our MADM approach is more 
rational than that of Ye and Fu (2016) in this case. 

Through the above example, we find that compared 
with the method developed by Ye and Fu (2016) to 
derive the most serious city polluted by fog-haze, our 
proposed approach has some advantages. 

(1) The application range of the MADM approach 
proposed in this paper is wider than that of existing 
methods, such as that of Ye and Fu (2016). Moreover, 
the proposed MADM method can manage problems in 
which the decision making information is SVNVs. 

(2) Our approach focuses on the information 
measures, the method developed by Ye and Fu (2016) 
focuses on the distance measures which are based on the 
deviations among the decision information, and both of 
them are suitable to deal with the situations in which 
the weight vector of the alternatives is unknown. 
However, the ranking result obtained by the proposed 
MADM approach is reasonable and credible in some 
cases. 

(3) In the process of decision making, the ranking 
results are obtained by the proposed MADM approach, 
which takes all the decision making information into 
account. However, that proposed by Ye and Fu (2016) 
leads to information loss, because the Hausdorff 
distance is used and some middle values are ignored. 
Therefore, the proposed MADM approach in this paper 
can derive the more accurate results. 

(4) We obtain some interesting theorem results 
which indicate the close relationship among entropy, 
similarity measures and cross-entropy. 

CONCLUSIONS 
At present, many information measures are applied 

to MADM problems, but they could not be used to deal 
with the MADM problems with neutrosophic 
information. A single valued neutrosophic set is an 
instance of neutrosophic set which can be used in real 
scientific and engineering applications. Under single 
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valued neutrosophic environment, this paper 
introduces three axiomatic definitions of information 
measures, including the entropy, similarity measures 
and cross-entropy. We construct some information 
measure formulas on the basis of the cosine function. 
Furthermore, the relationship among the single valued 
neutrosophic information measures is discussed. 
Moreover, we utilize the proposed information 
measures to develop an approach to cope with MADM 
problems. Finally, a numerical example is provided to 

demonstrate the effectiveness of the presented 
approach. 

However, there are still lots of work to be done in 
our future research. Based on the results in this paper, 
we will focus on investigate single valued neutrosophic 
linguistic information measures and apply the single 
valued neutrosophic information measures to solve 
practical applications in other areas such as pattern 
recognition, information fusion system, and image 
processing. 
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