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ABSTRACT
In this paper, two optimisation models are established to determine the criterion weights in multi-criteria
decision-making situations where knowledge regarding the weight information is incomplete and the cri-
terion values are interval neutrosophic numbers. The proposed approach combines interval neutrosophic
sets and TOPSIS, and the closeness coefficients are expressed as interval numbers. Furthermore, the relative
likelihood-based comparison relations are constructed to determine the ranking of alternatives. A fuzzy
cross-entropy approach is proposed to calculate the discrimination measure between alternatives and the
absolute ideal solutions, after a transformation operator has been developed to convert interval neutro-
sophic numbers into simplified neutrosophic numbers. Finally, an illustrative example is provided, and a
comparative analysis is conducted between the approach developed in this paper and other existingmeth-
ods, to verify the feasibility and effectiveness of the proposed approach.

1. Introduction
Fuzzy sets (FSs), which were proposed by Zadeh (1965), are
regarded as a comprehensive tool for solving multi-criteria
decision-making (MCDM) problems (Bellman & Zadeh, 1970).
In order to resolve the uncertainty of non-membership degrees,
Atanassov (1986) introduced intuitionistic fuzzy sets (IFSs),
which are an extension of Zadeh’s FSs. IFSs have been widely
applied in solving MCDM problems to date (Chen & Chang,
2015;Chen,Cheng,&Chiou, 2016;Wang et al., 2014; Yue, 2014).
Moreover, interval-valued intuitionistic fuzzy sets (IVIFSs)
(Atanassov &Gargov, 1989) were proposed, which are an exten-
sion of FSs and IFSs. In recent years, MCDM problems with
IVIFSs have attracted much attention from researchers (Chen,
2014; Liu, Shen, Zhang, Chen, & Wang, 2015; Tan et al., 2014;
Wan & Dong, 2014). Furthermore, the TOPSIS method, pro-
posed byHwang andYoon (1981), has also been used for solving
MCDM problems (Cao, Wu, & Liang, 2015; Yue, 2014; Zhang
& Yu, 2012). Moreover, fuzzy linear programming models have
been constructed to address MCDM problems with incomplete
criterion weight information (Chen, 2014; Dubey, Chandra, &
Mehra, 2012; Wan,Wang, Lin & Dong, 2015; Wan, Xu,Wang, &
Dong, 2015; Zhang & Yu, 2012).

Although the theories of FSs and IFSs have been developed
and generalised, they cannot deal with all types of uncertain-
ties in real problems. Indeed certain types of uncertainties, such
as indeterminate and inconsistent information, cannot be man-
aged. For example, FSs and IFSs cannot effectively deal with a sit-
uation where a paper is sent to a reviewer, and he or she says it is
70% acceptable and 60% unacceptable, and his or her statement
is 20% uncertain; therefore, some new theories are required.

Since neutrosophic sets (NSs) (Smarandache, 1999) con-
sider the truth membership, indeterminacy membership and
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falsity membership simultaneously, it is more practical and flex-
ible than FSs and IFSs in dealing with uncertain, incomplete
and inconsistent information. For the aforementioned exam-
ple, the reviewer’s opinion can be presented as x(0.7, 0.2, 0.6)
by means of NSs. However, without a specific description, it
is hard to apply NSs in actual scientific and engineering situ-
ations. Hence, single-valued neutrosophic sets (SVNSs), which
are an extension of NSs, were introduced by Wang et al. (2010).
Subsequently, the similarity and entropy measures (Majum-
dar & Samant, 2014), the correlation coefficient (Ye, 2013)
and the cross-entropy (Ye, 2014c) of SVNSs have been devel-
oped. Additionally, Ye (2014a) introduced simplified neutro-
sophic sets (SNSs), and Peng, Wang, Wang, Zhang, and Chen
(2015) and Peng, Wang, Zhang, and Chen (2014) defined their
novel operations and aggregation operators. Finally, further
extensions of NSs, such as interval neutrosophic sets (INSs)
(Wang et al., 2005), bipolar neutrosophic sets (BNSs) (Deli,
Ali, & Smarandache, 2015) and multivalued neutrosophic sets
(MVNSs) (Peng, Wang, Wu, Wang, & Chen, 2015; Wang & Li,
2015), have also been proposed.

In certain real-life situations, the INS, as a particular exten-
sion of an NS, can be more flexible in assessing objections than
an SNS. Recently, the studies relating to INSs have been focused
on particular areas, which can be roughly classified into two
groups.

The first group is based on interval neutrosophic aggregation
operators, such as interval neutrosophic number weighted aver-
aging (INNWA) and interval neutrosophic number weighted
geometric (INNWG) operators (Zhang, Wang, & Chen, 2014),
interval neutrosophic number Choquet integral (INNCI) oper-
ator (Sun et al., 2015), interval neutrosophic number ordered
weighted averaging (INNOWA) and interval neutrosophic
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number ordered weighted geometric (INNWG) operators (Ye,
2015) and interval neutrosophic prioritised ordered weighted
aggregation (INPOWA) operator (Liu &Wang, 2015).

The second group is based on interval neutrosophic mea-
sures (Broumi & Smarandache, 2014a, 2014b; Chi & Liu, 2013;
Ye, 2014b; Zhang, Ji, Wang, & Chen 2015a; Zhang et al. 2015b).
Specifically, Chi and Liu (2013) extended TOPSIS to an INS
based on a distance measure. Broumi and Smarandache (2014a,
2014b) defined a new cosine similarity measure and a correla-
tion coefficient of an INS. Moreover, Ye (2014b) defined two
interval neutrosophic similarity measures based on the Ham-
ming and Euclidean distances. Zhang et al. (2015b) defined sev-
eral interval neutrosophic outranking relations based on ELEC-
TRE IV. Finally, Zhang et al. (2015a) proposed an improved
weighted correlation coefficient based on the integrated weight
for an INS.

The aforementioned methods are effective when managing
interval neutrosophic MCDM problems; however, they have
some drawbacks which are outlined below.

(1) The existingMCDMmethods require the criterionweight
information to be completely known (Broumi & Smarandache,
2014b; Ye, 2014b, 2015; Zhang et al., 2014, 2015a, 2015b), or are
supported by fuzzy measures of criteria (Sun et al., 2015). How-
ever, due to the increasing complexity of MCDM problems, it is
difficult and subjective to provide exact criterion weight infor-
mation or fuzzy measures. (2) The MCDMmethods (Broumi &
Smarandache, 2014b; Chi & Liu, 2013; Ye, 2014b; Zhang et al.,
2015a, 2015b) utilise the weighted measures, such as distance,
correlation coefficient and similarity measures, to rank alter-
natives; in these processes, the interval neutrosophic informa-
tion is measured with crisp real numbers. However, the means
of aggregating interval numbers into real numbers may lead to
some operational deficiencies and a large amount of informa-
tion loss. (3) All of the developed aggregation operators (Liu &
Wang, 2015; Sun et al., 2015; Ye, 2015; Zhang et al., 2014) directly
process the assessment information with INNs. However, these
approaches are complex and tedious, and not enough attention
is given to reducing the computational complexity when pro-
cessing the evaluation information.

To overcome these disadvantages, in this paper, a novel and
comprehensive approach for managing MCDM with INNs is
developed. The main novelties and the significant contributions
are summarised below.

(1) In order to derive the criterion weights, two mathemati-
cal programmingmodels are constructed to determine the opti-
mal weight values, and decision-makers (DMs) may provide
incomplete or inconsistent opinions on the weight information.
(2) A novel form of the closeness coefficient with interval val-
ues is derived on the basis of TOPSIS and a cross-entropy of
INSs. Furthermore, the weighted interval closeness coefficients
are employed to determine the ranking of alternatives. (3) To
lower the computational complexity, a modified transforma-
tion operator is developed for converting INNs into simplified
neutrosophic numbers (SNNs). Nevertheless, the parameters of
the transformation operator are not artificially set, but obtained
through mathematical derivation.

The rest of the paper is organised as follows. In Section 2,
interval numbers, as well as the concepts of NSs, SNSs and INSs,
are briefly reviewed. In Section 3, on the basis of an operator that

can transform each INN into an SNN, a cross-entropy for SNNs
is proposed. Subsequently, a TOPSIS approach in the context of
INSs for solvingMCDMproblemswith incompletely known cri-
terion information is developed in Section 4. In Section 5, an
illustrative example is provided and a comparative analysis is
conducted between the proposed approach and other existing
methods. Finally, conclusions are drawn in Section 6.

2. Preliminaries
In this section, some basic concepts and definitions related to
INSs, including interval numbers, definitions and operational
laws of NSs, SNSs and INSs are introduced; these will be utilised
in the latter analysis.

2.1. Interval numbers
Interval numbers and their operations are of utmost significance
when exploring the operations of INSs. In the following para-
graphs, some definitions and operational laws of interval num-
bers are provided.

Definition 1 (Sengupta & Pal, 2000; Xu, 2008): Let ã =
[aL, aU ] = {x|aL ≤ x ≤ aU }, and then ã is called an interval
number. In particular, ã = [aL, aU ] will be degenerated to a real
number, if aL = aU .

Consider two non-negative interval numbers ã = [aL, aU ]
and b̃ = [bL, bU ], where 0 ≤ aL ≤ x ≤ aU and 0 ≤ bL ≤ x ≤
bU . Subsequently, their operations are defined as follows (Sen-
gupta & Pal, 2000; Xu, 2008):

(1) ã + b̃ = [aL + bL, aU + bU ],
(2) λã = [λaL, λaU ], λ > 0.

Definition 2 (Xu & Da, 2003): For any two interval numbers
ã = [aL, aU ] and b̃ = [bL, bU ], the possibility of ã ≥ b̃ is for-
mulated by p(ã ≥ b̃) = max{1 − max{ bU−aL

L(ã)+L(b̃)
, 0}, 0}, where

L(ã) = aU − aL and L(b̃) = bU − bL.

The possibility degree of ã ≥ b̃ has the following properties
(Xu & Da, 2003):

(1) 0 ≤ p(ã ≥ b̃) ≤ 1;
(2) p(ã ≥ b̃) = p(b̃ ≥ ã) = 0.5, if p(ã ≥ b̃) = p(b̃ ≥ ã);
(3) p(ã ≥ b̃) + p(b̃ ≥ ã) = 1;
(4) p(ã ≥ b̃) = 0 if aU ≤ bL, p(ã ≥ b̃) = 1, if aL ≥ bU ;
(5) For any interval numbers ã, b̃ and c̃, p(ã ≥ c̃) ≥ 0.5, if

p(ã ≥ b̃) ≥ 0.5 and p(b̃ ≥ c̃) ≥ 0.5; p(ã ≥ c̃) = 0.5, if
and only if p(ã ≥ b̃) = p(b̃ ≥ c̃) = 0.5.

2.2. NSs and SNSs
Due to the influence of subjective factors, it is difficult for DMs
to explicitly express preferences if indeterminacy and inconsis-
tency exist. NS can effectively capture such information (Guo
& Şengür, 2014; Mohan, Krishnaveni, & Guo, 2013; Solis &
Panoutsos, 2013).
Definition 3 (Smarandache, 1999): Let X be a space of points
(objects) with a generic element in X , denoted by x. An NS A
in X is characterised by a truth-membership function tA(x),
an indeterminacy-membership function iA(x) and a falsity-
membership function fA(x). tA(x), iA(x) and fA(x) are real
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standard or non-standard subsets of ]0−, 1+[; that is, tA(x) :
X →]0−, 1+[, iA(x) : X →]0−, 1+[, and fA(x) : X →]0−,

1+[. There is no restriction on the sum of tA(x), iA(x) and
fA(x), thus 0− ≤ sup tA(x) + sup iA(x) + sup fA(x) ≤ 3+.

Since it is difficult to apply NSs to practical problems, Ye
(2014a) reduced NSs of non-standard interval numbers into a
type of SNS of standard interval numbers.

Definition 4 (Rivieccio, 2008; Ye, 2014a): Let an NS A in X be
characterised by tA(x), iA(x) and fA(x), which are single subin-
tervals/subsets in the real standard [0, 1]; that is, tA(x) : X →
[0, 1], iA(x) : X → [0, 1], and fA(x) : X → [0, 1]. Also, the
sumof tA(x), iA(x) and fA(x) satisfies the condition 0 ≤ tA(x) +
iA(x) + fA(x) ≤ 3. Then, a simplification of A is denoted by
A = {(x, tA(x), iA(x), fA(x))|x ∈ X}, which is called an SNS
and is a subclass of NSs. If ‖X‖ = 1, an SNS will be degenerated
to an SNN.
Definition 5 (Rivieccio, 2008; Ye, 2014a): An SNS A is con-
tained in the other SNS B, denoted by A ⊆ B, if and only if
tA(x) ≤ tB(x), iA(x) ≥ iB(x) and fA(x) ≥ fB(x), for anyx ∈ X .
The complement set of A, denoted by Ac, is defined as Ac =
{(x, fA(x), iA(x), tA(x))|x ∈ X}.

2.3. INSs
In actual applications, sometimes it is not easy to express
the truth membership, indeterminacy membership and falsity
membership by crisp values, but they may be easily described
by interval numbers. Wang et al. (2005) further defined INSs.

Definition 6 (Rivieccio, 2008; Wang et al., 2005): Let X be a
space of points (objects) with generic elements in X , denoted
by x. An INS Ã in X is characterised by a truth-membership
function tÃ(x), an indeterminacy-membership function iÃ(x)
and a falsity-membership function fÃ(x). For each point x in
X , tÃ(x) = [tL

Ã
, tU

Ã
], iÃ(x) = [iL

Ã
, iU

Ã
] and fÃ(x) = [ f L

Ã
, f U

Ã
], and

0 ≤ tU
Ã

+ iU
Ã

+ f U
Ã

≤ 3. In particular, an INS will be reduced to
an SNS, if tL

Ã
= tU

Ã
, iL

Ã
= iU

Ã
and f L

Ã
= f U

Ã
. In addition, if ‖X‖ =

1, an INS will be degenerated to an INN.

Definition 7 (Rivieccio, 2008; Wang et al., 2005): An INS Ã
is contained in the other INS B̃, denoted by Ã ⊆ B̃, if and
only if tL

Ã
≤ tL

B̃
, tU

Ã
≤ tU

B̃
, iL

Ã
≥ iL

B̃
, iU

Ã
≥ iU

B̃
, f L

Ã
≥ f L

B̃
and f U

Ã
≥

f U
B̃
, for any x ∈ X . In particular, Ã = B̃, if Ã ⊆ B̃ and Ã ⊇ B̃.

The complement set of Ã, denoted by Ãc, is defined as Ãc =
{(x, [ f L

Ã
, f U

Ã
], [iL

Ã
, iU

Ã
], [tL

Ã
, tU

Ã
])|x ∈ X}.

3. A transformation operator and a cross-entropy
measure of SNNs
In this section, a transformation operator is developed to con-
vert INNs into SNNs.Moreover, a simplifiedneutrosophic cross-
entropy measure is defined.

3.1. A transformation operator between INNs and SNNs
Bustince and Burillo (1995) proposed an operator Hp,q, which
can transform each IVFS into an IFS. As an improved extension
of Hp,q, an operator Hp,q,r is defined for converting each INN
into an SNN.

Definition8 Let p, q, r ∈ [0, 1] be three fixednumbers; any INN
can be transformed into an SNN through the operator Hp,q,r :

Hp,q,r(Ã) =
(
tLÃ + pWtÃ, i

L
Ã + qWiÃ, f

L
Ã + rWfÃ

)
,

where WtÃ = tU
Ã

− tL
Ã
, WiÃ = iU

Ã
− iL

Ã
and WfÃ = f U

Ã
− f L

Ã
.

Obviously,Hp,q,r(Ã) is an SNN, determined with respect to p, q
and r; that is, Hp,q,r(Ã) is well defined in all value ranges of p, q
and r.

Example 1: Assume two INNs Ã = ([0.7, 0.8], [0, 0.1],
[0.1, 0.2]) and B̃ = ([0.4, 0.5], [0.2, 0.3], [0.3, 0.4]). Then, the
following transformation results can be obtained utilising the
operator Hp,q,r :

Hp,q,r(Ã) = (0.7 + p× 0.1, 0 + q × 0.1, 0.1 + r × 0.1) and
Hp,q,r(B̃) = (0.4 + p× 0.1, 0.2 + q × 0.1, 0.3 + r × 0.1).

It is shown that Hp,q,r(Ã) and Hp,q,r(B̃) will be two spe-
cific SNNs if the values of p, q and r are given; the method to
determine the parameter values will be discussed in detail in
Section 4.

3.2. A cross-entropymeasure of SNNs
Shang and Jiang (1997) proposed a fuzzy cross-entropy and a
symmetric discrimination information measure between two
FSs. Vlachos and Sergiadis (2007) then proposed an intuition-
istic fuzzy cross-entropy for IFSs, and Ye (2011) defined a
fuzzy cross-entropy for IVIFSs. Furthermore, the fuzzy cross-
entropy has been employed for various purposes including
deriving criterion weights by constructing mathematical pro-
gramming models (Zhang & Yu 2012); technical efficiency
analysis (Macedo & Scotto, 2014); multi-objective optimisa-
tion (Caballero, Hernández-Díaz, Laguna, &Molina, 2015); and
MCDM problems (Meng & Chen, 2015; Peng, Wang, Wu, et al.,
2014; Ye, 2014c; Zhao et al., 2013).

In a similar manner to the proposals of Ye (2014c) and Vla-
chos and Sergiadis (2007), the following definition of a fuzzy
cross-entropy for SNNs is proposed.

Definition 9 Let A,B ∈ SNS, and then the cross-entropy
INS(A,B) between A and B should satisfy the following condi-
tions:

(1) INS(A,B) = INS(B,A);
(2) INS(A,B) = INS(Ac,Bc), where Ac and Bc are the com-

plement sets of A and B, respectively, as defined in Defi-
nition 5; and

(3) INS(A,B) ≥ 0 and INS(A,B) = 0, if and only if A = B.

Definition 10 Let A = (tA, iA, fA) and B = (tB, iB, fB) be two
SNNs, and then the cross-entropy of A and B can be defined as
follows:

INS(A,B) = tAln
2tA

tA + tB
+ iAln

2iA
iA + iB

+ fAln
2 fA

fA + fB
. (1)

Equation (1) can indicate the degree of discrimination of
A from B. It is obvious that INS(A,B) is not symmetrical with
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respect to its arguments. Therefore, a modified symmetric dis-
crimination information measure based on INS(A,B) can be
defined as

DNS(A,B) = INS(A,B) + INS(B,A). (2)

The larger DNS(A,B) is, the larger the difference between A
and B will be, and vice versa.
Proposition 1: Themeasures defined in Equations (1) and (2) are
the simplified neutrosophic cross-entropy, and satisfy conditions
(1)–(3) given in Definition 9.

Proof: Clearly, conditions (1) and (2) are obvious. The proof
of condition (3) is shown below.

Consider the function f (x) = x ln x, where x ∈ (0, 1].
Then, f ′(x) = 1 + ln x and f ′′(x) = 1/x > 0, where x ∈ (0, 1].
Accordingly, f (x) = x ln x is a convex function. Therefore,
for any two points x1, x2 ∈ (0, 1], the inequality f (x1)+ f (x2)

2 ≥
f ( x1+x2

2 ) holds.
Utilise f (x) = x ln x in the above inequality and x1 ln x1 +

x2 ln x2 − (x1 + x2) ln x1+x2
2 ≥ 0 can be obtained; in this case,

the equality holds only if x1 = x2. Similarly, the following equa-
tion can be obtained:

DNS(A,B) = INS(A,B) + INS(B,A)

= (tA ln tA+tB ln tB) − (tA+tB) ln
tA+tB
2︸ ︷︷ ︸

T

+ (iA ln iA+iB ln iB) − (iA+iB) ln
iA+iB
2︸ ︷︷ ︸

I

+ ( fA ln fA+ fB ln fB) − ( fA+ fB) ln
fA+ fB
2︸ ︷︷ ︸

F

.

Because T ≥ 0, I ≥ 0 and F ≥ 0, DNS(A,B) ≥ 0 holds;
DNS(A,B) = 0 holds only if tA = tB, iA = iB and fA = fB,
namelyA = B.

Example 2: Assume two SNNs A = (0.8, 0.1, 0.2) and B =
(0.5, 0.3, 0.4). Then, the following result can be obtained by
applying Equations (1) and (2):

DNS(A,B) = INS(A,B) + INS(B,A) = 0.1212.

4. AnMCDM approach based on the cross-entropy
and TOPSIS
This section presents an approach that is based on the cross-
entropy and TOPSIS for solving interval neutrosophic MCDM
problems with incomplete weight information.

For an MCDM problem, let A = {a1, a2, . . . , am}
be a set consisting of m alternatives, and let C =
{c1, c2, . . . , cn} be a set consisting of n criteria. Assume
that w = (w1,w2, . . . ,wn) is the weight vector of crite-
ria, where w j ∈ [0, 1] and

∑n
j=1 w j = 1. Let B̃ = [b̃i j] =

[([tLi j, tUi j ], [iLi j, iUi j ], [ f Li j, f Ui j ])]m×n be the decision matrix, where
[b̃i j] = [([tLi j, tUi j ], [iLi j, iUi j ], [ f Li j, f Ui j ])]m×n is the evaluation

information of each alternative ai(i = 1, 2, . . . ,m) on the
criterion c j( j = 1, 2, . . . , n) in the form of INNs.

In general, there are two types of criterion, namely maximis-
ing andminimising criteria. In order tomake the criterion types
constant, the minimising criteria need to be transformed into
maximising ones. Suppose the standardised matrix is expressed
as R̃ = [r̃i j]. The original decision matrix B̃ can then be con-
verted into R̃ based on the primary transformation principle of
Xu and Hu (2010), where

r̃i j =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

b̃i j = ([
tLi j, tUi j

]
,
[
iLi j, iUi j

]
,
[
f Li j, f Ui j

])
,

for maximising criterion c j
b̃ci j = ([

f Li j, f Ui j
]
,
[
iLi j, iUi j

]
,
[
tLi j, tUi j

])
,

for minimising criterion c j

, (3)

in which b̃ci j is the complement set of b̃i j, defined in Definition 7.

4.1. A fuzzy cross-entropy based on TOPSIS
The absolute positive ideal solution (PIS) and the absolute nega-
tive ideal solution (NIS) of INSs are, respectively, denoted by a+

and a−, and can be expressed as follows (Chi & Liu, 2013):

a+ = ([1, 1], [0, 0], [0, 0]) and a− = ([0, 0], [1, 1], [1, 1]) .

In order to obtain the cross-entropy or degree of discrimina-
tion between ai(i = 1, 2, . . . ,m) and the ideal solutions, each
INN is transformed into an SNN based on the operator Hp,q,r ,
which was introduced in Definition 8. Let pi j, qi j, ri j ∈ [0, 1],
and then any INN, denoted by ([tLi j, tUi j ], [iLi j, iUi j ], [ f Li j, f Ui j ]), can
be transformed into the following form:

Hp,q,r(r̃i j) = (
tLi j + pi jWti j , i

L
i j + qi jWii j , f

L
i j + ri jWfi j

)
, (4)

whereWtij = tUi j − tLi j,Wiij = iUi j − iLi j andWfij = f Ui j − f Li j .
Using Equations (1), (2) and (4), the degree of discrimination

of ai(i = 1, 2, . . . ,m) from the ideal solutions a+ and a_ with
respect to c j( j = 1, 2, . . . , n) can be, respectively, calculated as
follows:

D+
i j = (tLi j + pi jWti j )ln

2(tLi j + pi jWti j )

(tLi j + pi jWti j + 1)

+ ln
2

(tLi j + pi jWti j + 1)
+ (iLi j + qi jWii j )ln2

+ ( f Li j + ri jWfi j )ln2, (5)

D−
i j = (tLi j + pi jWti j ) ln 2 + (iLi j + qi jWii j ) ln

2(iLi j + qi jWii j )

(iLi j + qi jWii j + 1)

+ ln
2

(iLi j + qi jWii j + 1)

+ ( f Li j + ri jWfi j ) ln
2( f Li j + ri jWfi j )

( f Li j + ri jWfi j + 1)

+ ln
2

( f Li j + ri jWfi j + 1)
. (6)
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In the TOPSIS method, the closeness coefficient
Di j = D−

i j/(D
−
i j + D+

i j ) denotes the performance of ai(i = 1, 2,
. . . ,m) on c j ( j = 1, 2, · · · , n). Then, the performance of ai,
denoted byDi, can be obtained by using Equations (5) and (6):

Di =
n∑
j=1

w jDi j =
n∑
j=1

w j
D−

i j

D−
i j + D+

i j
, (7)

where w j represents the weight of c j. Therefore, the larger Di is,
the better ai will be.

In view of the fact that an INS is characterised by a truth-
membership function, a indeterminacy-membership function
and a falsity-membership function, whose values are intervals
rather than specific numbers, it is infeasible to designate an SNN
for the given INNby artificially choosing only certain pi j, qi j and
ri j in Equation (4) to indicate the evaluation information. This
is because it may lead to the distortion or loss of the original
information (Zhang & Yu, 2012).

By combining Equations (5) and (6),Di j becomes a compos-
ite function and may take different values as the numerical vari-
ations pi j, qi j and ri j change. In order to avoid information loss,
an interval D̃i j = [DL

i j,DU
i j ] is applied to represent the perfor-

mance of ai(i = 1, 2, . . . ,m) on c j( j = 1, 2, . . . , n), where DL
i j

and DU
i j are the lower and upper bounds, respectively.

In the following paragraphs, DL
i j and DU

i j are determined
through mathematical derivation.

As shown in Equations (5) and (6), bothD+
i j andD

−
i j are mul-

tivariate continuous functions with respect to pi j, qi j and ri j.
They can also reach themaximum andminimum in the domain
pi j, qi j, ri j ∈ [0, 1]. Then, calculate the partial derivative of D+

i j
and D−

i j on pi j, qi j and ri j:

∂D+
i j

∂ pi j
= Wtij ln

2(tLi j + pi jWti j )

(tLi j + pi jWti j + 1)
,
∂D+

i j

∂qi j
= Wiij ln 2 ≥ 0, and

∂D+
i j

∂ri j
= Wfij ln 2 ≥ 0.

Since 2(tLi j + pi jWti j ) ≤ tLi j + pi jWti j + 1, ∂D+
i j

∂ pi j
≤ 0.

Similarly, ∂D−
i j

∂ pi j
= Wtij ln 2 ≥ 0, ∂D−

i j

∂qi j
= Wiij ln

2(iLi j+qi jWii j )

(iLi j+qi jWii j+1) ≤
0, and ∂D−

i j

∂ri j
= Wfij ln

2( f Li j+ri jWfi j )

( f Li j+ri jWfi j+1) ≤ 0.
This means that D+

i j is a monotone decreasing function
with respect to pi j and a monotone increasing function with
respect to qi j or ri j. Moreover, D−

i j is a monotone increasing
function with respect to pi j and a monotone decreasing func-

tion with respect to qi j or ri j. Thus, D+
i j can reach its max-

imum and D−
i j can reach the minimum if pi j = 0 and qi j =

ri j = 1. Likewise, D+
i j reaches its minimum and D−

i j reaches
the maximum if pi j = 1 and qi j = ri j = 0. As a result, it is
easy to understand that Di j reaches its minimum when pi j = 0
and qi j = ri j = 1, and reaches its maximum when pi j = 1 and
qi j = ri j = 0.

Then, DL
i j and DU

i j can be obtained by integrating Equa-
tions (5) and (6) into Di j, respectively:

DL
i j =

tLi j ln 2 + iUi j ln
2iUi j

(iUi j+1) + f Ui j ln
2 f Ui j

( f Ui j +1) + ln 2
(iUi j+1) + ln 2

( f Ui j +1)

(tLi j + iUi j + f Ui j ) ln 2 + tLi j ln
2tLi j

(tLi j+1) + iUi j ln
2iUi j

(iUi j+1) + f Ui j ln
2 f Ui j

( f Ui j +1) + ln 2
(tLi j+1) + ln 2

(iUi j+1) + ln 2
( f Ui j +1)

, (8)

DU
i j =

tUi j ln 2 + iLi j ln
2iLi j

(iLi j+1) + f Li j ln
2 f Li j

( f Li j+1) + ln 2
(iLi j+1) + ln 2

( f Li j+1)

(tUi j + iLi j + f Li j ) ln 2 + tUi j ln
2tUi j

(tUi j +1) + iLi j ln
2iLi j

(iLi j+1) + f Li j ln
2 f Li j

( f Li j+1) + ln 2
(tUi j +1) + ln 2

(iLi j+1) + ln 2
( f Li j+1)

, (9)

whereDL
i j andDU

i j are also theminimumandmaximumofDi j =
D−

i j/(D
−
i j + D+

i j ), respectively.
Based on the analysis above, Equation (7) can be rewritten

as

D̃i =
n∑
j=1

w jDi j =
n∑
j=1

w j

[
DL

i j,D
U
i j

]
, (10)

where D̃i ≥ D̃ j means that ai(i = 1, 2, . . . ,m) is not inferior to
a j( j = 1, 2, . . . ,m), and theweight information is incompletely
known. Obviously, D̃i represents the comprehensive evaluation
values, and stands for the preference of ai; that is, the larger D̃i
is, the better ai will be.

4.2. Fuzzy linear programmingmodels for determining
criterionweights
In the decision-making process, the importance of different cri-
teria should be taken into consideration. Suppose�0 denotes the
set of all the weight vectors, and

�0 =
⎧⎨
⎩(w1, w2, . . . , wn)

∣∣∣∣∣∣w j ≥ 0( j = 1, 2, . . . , n),

n∑
j=1

w j = 1

⎫⎬
⎭ .

In some actual decision-making situations, the incomplete
information regarding the criterion weights provided by DMs
can usually be constructed using several basic ranking forms
(Dubey et al., 2012; Li, 2011). These weight information struc-
tures may be expressed in the following five basic relations,
which are denoted by the subsets �s(s = 1, 2, . . . , 5) in �0,
respectively (Chen, 2014).

(1) A weak ranking:

�1 = {
(w1, w2, . . . , wn) ∈ �0

∣∣w j1 ≥ w j2 forall j1 ∈ γ1 and j2 ∈ �1
}
,

where γ1 and �1 are two disjoint subsets of the subscript index
set N = {1, 2, . . . , n} of all criteria.
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(2) A strict ranking:

�2 = {(w1,w2, . . . ,wn) ∈ �0|w j1 − w j2 ≥ δ j1 j2 for all
j1 ∈ γ2 and j2 ∈ �2},

where δ j1 j2 > 0 is a constant, and γ2 and�2 are two disjoint sub-
sets of N.

(3) A ranking of differences:

�3 = {(w1,w2, . . . ,wn) ∈ �0|w j1 − w j2 ≥ w j3 − w j4 for all
j1 ∈ γ3, j2 ∈ �3, j3 ∈ �3 and j4 ∈ 	3},

where γ3, �3, �3 and 	3 are four disjoint subsets of N.
(4) An interval form:

�4 = {
(w1,w2, . . . ,wn) ∈ �0

∣∣η j1 ≥ w j1 ≥ δ j1 for all j1 ∈ γ4
}
,

where η j1 > 0 and δ j1 > 0 are constants, satisfying η j1 > δ j1 ,
and γ4 is a subset of N.

(5) A ranking with multiples:

�5 = {(w1,w2, . . . ,wn) ∈ �0|w j1 ≥ δ j1 j2w j2 for all
j1 ∈ γ5 and j2 ∈ �5},

where δ j1 j2 > 0 is a constant, and γ5 and�5 are two disjoint sub-
sets of N.

Let � denote a set of the known information on the crite-
rion weights, and � = �1 ∪ �2 ∪ �3 ∪ �4 ∪ �5. Given the con-
ditions in�, the optimal weight values of the criteria in Equation
(10) can be determined via the following linear programming
models:

maxD = ∑n
i=1

∑n
j=1 w jDM

i j
s.t. (w1,w2, . . . ,wn) ∈ �

, (M1)

where DM
i j = (DL

i j + DU
i j )/2.

TheDMsmight express inconsistent opinions about the pref-
erences and weight information in the case of contingency.
Under these circumstances, a multi-objective nonlinear pro-
gramming model using a goal programming technique can be
used to tackle problems that involve inconsistent weight infor-
mation. For j1 �= j2 �= j3 �= j4,� is revised as�′ by introducing
several non-negative deviation variables:

�′ = {(w1,w2, . . . ,wn) ∈ �0|w j1 + e−(1) j1 j2 ≥ w j2 for all
j1 ∈ γ1 and j2 ∈ �1;

w j1 − w j2 + e−(2) j1 j2 ≥ δ j1 j2 for all j1 ∈ γ2 and j2 ∈ �2;
w j1 − w j2 − w j3 + w j4 + e−(3) j1 j2 j3 j4 ≥ 0 for all
j1 ∈ γ3, j2 ∈ �3, j3 ∈ �3 and j4 ∈ 	3;
w j1 + e−(4) j1 ≥ δ j1 ,w j1 − e+(4) j1 ≤ η j1 for all j1 ∈ γ4;
w j1/w j2 + e−(5) j1 j2 ≥ δ j1 j2 for all j1 ∈ γ5 and j2 ∈ �5}.

Furthermore, based on Model (M1), the following bi-
objective nonlinear programming model can be established in

case of inconsistent preference information:

maxD =
n∑

i=1

n∑
j=1

w jDM
i j

min E =
∑

j1, j2, j3, j4∈N

(
e−(1) j1 j2 + e−(2) j1 j2 + e−(3) j1 j2 j3 j4 + e−(4) j1 + e+(4) j1 + e−(5) j1 j2

)

s.t.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(w1, w2, . . . , wn) ∈ �′

e−
(1) j1 j2 ≥ 0 j1 ∈ γ1 and j2 ∈ �1

e−
(2) j1 j2 ≥ 0 j1 ∈ γ2 and j2 ∈ �2

e−
(3) j1 j2 j3 j4 ≥ 0 j1 ∈ γ3, j2 ∈ �3, j3 ∈ �3 and j4 ∈ 	3

e−
(4) j1 ≥ 0, e+

(4) j1 ≥ 0 j1 ∈ γ4

e−
(5) j1 j2 ≥ 0 j1 ∈ γ5 and j2 ∈ �5

(M2)

whereDM
i j = (DL

i j + DU
i j )/2. By solvingModel (M2), the optimal

weight vector w = (w1,w2, · · · ,wn) and the optimal deviation
values e−

(1) j1 j2 , e
−
(2) j1 j2 , e

−
(3) j1 j2 j3 j4 , e

−
(4) j1 , e

+
(4) j1 and e−

(5) j1 j2 can be
derived.

Considering an MCDM problem that contains incomplete
and consistent preference information, Model (M1) can be
applied to obtain the best weight vector, and the optimisation
model can be easily solved by using the simplex method. For
an MCDM problem that contains incomplete and inconsistent
preference information, Model (M2) can be employed to deter-
mine the optimal solution.

4.3. The proposed algorithmwith incomplete criteria
information
In view of the determination of the weight vector of criteria, the
comprehensive preference of each alternative ai can be denoted
by an interval value; that is, Equation (10) is revised as D̃i =∑n

j=1 w jDi j = [
∑n

j=1 w jDL
i j,

∑n
j=1 w jDU

i j ] by using the opera-
tional laws of interval values given in Definition 1. Then, a
pairwise comparison must be made between the alternatives,
and subsequently the pairwise comparison matrix (likelihood
matrix) P can be constructed as follows:

P = (
pi j

)
m×m =

⎡
⎢⎢⎢⎣

p11 p12 · · · p1m
p21 p22 · · · p2m
...

...
...

...
pm1 pm2 · · · pmm

⎤
⎥⎥⎥⎦ , (11)

where pi j = p(ai ≥ a j) = p(D̃i ≥ D̃ j) = max
{1 − max{ DU

j −DL
i

L(D̃i)+L(D̃ j )
, 0}, 0}, and L(D̃i) = DU

i − DL
i .

According to Xu and Da (2003), the ranking vector of the
likelihood matrix can be defined as follows:

ωi =
∑n

j=1 pi j + m
2 − 1

m(m − 1)
, i = 1, 2, . . . ,m. (12)

Consequently, the ranking of all alternatives can be obtained
according to the descending order of ωi (i = 1, 2, · · · ,m). That
is, the larger ωi is, the better the alternative ai will be.

Based on the above analysis, an approach can be developed
for an MCDM problem that contains three key stages: (1) col-
lection and normalisation stage, (2) determination stage and (3)
selection stage. A conceptual model of the proposed approach is
shown in Figure 1.

The main steps are outlined as follows.

https://www.researchgate.net/publication/273390237_An_intuitionistic_fuzzy_linear_programming_method_for_logistics_outsourcing_provider_selection?el=1_x_8&enrichId=rgreq-24d16b90-25eb-4c2e-89ef-89cbb932c3b4&enrichSource=Y292ZXJQYWdlOzI4MzM0NzczODtBUzoyOTA4NjczNDE0Nzk5MzZAMTQ0NjM1OTU4NjYyMw==
https://www.researchgate.net/publication/273390237_An_intuitionistic_fuzzy_linear_programming_method_for_logistics_outsourcing_provider_selection?el=1_x_8&enrichId=rgreq-24d16b90-25eb-4c2e-89ef-89cbb932c3b4&enrichSource=Y292ZXJQYWdlOzI4MzM0NzczODtBUzoyOTA4NjczNDE0Nzk5MzZAMTQ0NjM1OTU4NjYyMw==
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Collect the criterion weight information 
and normalise the decision matrix

Collection and normalisation stage (Step 1)

Determination stage (Steps 2-4)

Calculate the lower 
and upper bounds

Construct the programming model and 
identify the optimal weight vector 

Calculate the comprehensive performance and obtain the 
ranking vector (Using the likelihood-based comparison method)

Rank all alternatives

Selection stage (Step 5)

Decision-makers
Evaluation values

Normalised evaluation values

Ranking 
vector  

Interval values

Interval values Optimal weights

Figure . A flow chart of the proposed approach.

Step 1: Normalise the decision matrix.
Use Equation (3) to transform B̃ into R̃. For convenience, the

normalised values of ai(i = 1, 2, . . . ,m) with respect to c j( j =
1, 2, . . . , n) are also expressed as ([tLi j, tUi j ], [iLi j, iUi j ], [ f Li j, f Ui j ]).

Step 2: Calculate the lower and upper bounds of D̃i j.
Use Equations (8) and (9) to derive the lower bound DL

i j and
the upper bound DU

i j , respectively.
Step 3: Identify the optimal weight vector and calculate the

preference of each alternative.
Solve Model (M1) or (M2) to identify the optimal weight

vector, and calculate the comprehensive performance D̃i(i =
1, 2, . . . ,m) by using the operational laws of the interval values
in Definition 1.

Step 4: Construct the likelihood matrix and obtain the rank-
ing vector.

Construct the likelihood matrix P by using Equation (11)
and obtain the ranking vector ω = (ω1, ω2, . . . , ωm) based on
Equation (12).

Step 5: Determine the ranking of all alternatives.
Determine the ranking of all alternatives according to the

descending order of ωi = (1, 2, . . . ,m) and select the optimal
one(s).

5. An illustrative example
In this section, the example of an investment appraisal project
is used to demonstrate the application of the proposed MCDM
approach; then its validity and effectiveness will be tested
through a comparative analysis.

The following case is adapted fromWang et al. (2015).
ABC Nonferrous Metals Co. Ltd. is a large state-owned com-

pany whosemain business is the deep processing of non-ferrous

metals. It is also the largest manufacturer of multi-species non-
ferrous metals, with the exception of aluminium, in China. To
expand its main business, the company regularly engages in
overseas investment and a department consisting of executive
managers and several experts in the field has been established to
make decisions regarding global mineral investment. This over-
seas investment department recently decided to select a pool
of alternatives from several foreign countries based on prelimi-
nary surveys. After a thorough investigation, five countries were
taken into consideration, denoted by {a1, a2, · · · , a5}. There are
many factors that affect the investment environment, but four
were chosen based on the experience of the department’s per-
sonnel, namely c1: resources; c2 : politics and policy; c3 : econ-
omy; and c4 : infrastructure.

The members of the overseas investment department
have met to determine the evaluation information. Con-
sequently, following a heated discussion, they came to a
consensus on the final evaluations which were expressed
by INNs shown in Table 1 Moreover, they were only able
to provide incomplete information on the weights, that is,
� = {0.15 ≤ w1 ≤ 0.3, 0.15 ≤ w2 ≤ 0.25, 0.25 ≤ w3 ≤ 0.4,
0.3 ≤ w4 ≤ 0.45, 2.5w1 ≤ w3}.

5.1. Illustration of the proposed approach
In the following steps, the main procedures of obtaining the
optimal ranking of alternatives are presented.

Step 1: Normalise the decision matrix.
As all the criteria are maximising type, the matrix does not

need to be normalised, i.e., R̃ = B̃.
Step 2: Calculate the lower and upper bounds of D̃i j.
Derive the lower boundDL

i j and the upper boundDU
i j by using

Equations (8) and,(9), respectively:

(
D̃i j

)
5×4

=

⎡
⎢⎢⎢⎢⎣

[0.5525, 0.7141]
[0.4966, 0.7571]
[0.5610, 0.7528]
[0.3580, 0.4433]
[0.4406, 0.5637]

[0.5363, 0.6410]
[0.4964, 0.7853]
[0.4462, 0.6148]
[0.4433, 0.5825]
[0.6962, 0.8171]

[0.6130, 0.7571] [0.6726, 0.7613]
[0.5363, 0.6429] [0.5297, 0.6962]
[0.5525, 0.6753] [0.4568, 0.5965]
[0.4350, 0.5525] [0.6962, 0.8171]
[0.5873, 0.7141] [0.4964, 0.6272]

⎤
⎥⎥⎥⎥⎦ .
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Table . The evaluation information.

c1 c2 c3 c4

a1 ([.,.],[.,.],[.,.]) ([.,.],[.,.],[.,.]) ([.,.],[.,.],[.,.]) ([.,.],[.,.], [.,.])
a2 ([.,.],[.,.],[.,.]) ([.,.],[.,.],[.,.]) ([.,.],[.,.],[.,.]) ([.,.],[.,.], [.,.])
a3 ([.,.],[.,.],[.,.]) ([.,.],[.,.],[.,.]) ([.,.],[.,.],[.,.]) ([.,.],[.,.], [.,.])
a4 ([.,.],[.,.],[.,.]) ([.,.],[.,.],[.,.]) ([.,.],[.,.],[.,.]) ([.,.],[.,.], [.,.])
a5 ([.,.],[.,.],[.,.]) ([.,.],[.,.],[.,.]) ([.,.],[.,.],[.,.]) ([.,.],[.,.], [.,.])

Step 3: Identify the optimal weight vector and calculate the
preference of each alternative.

Because no inconsistent weight information exists in the
evaluation, Model (M1) can be applied to identify the optimal
weight vector:

maxD = 2.8198w1 + 3.0295w2 + 3.033w3 + 3.175w4

s.t.

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0.15 ≤ w1 ≤ 0.3
0.15 ≤ w2 ≤ 0.24
0.25 ≤ w3 ≤ 0.4
0.3 ≤ w4 ≤ 0.45
2.5w1 ≤ w3∑4

j=1 w j = 1

The optimal weight vector can be obtained as w =
(0.15, 0.15, 0.375, 0.325). Then, D̃i (i = 1, 2, · · · , 5) can be
calculated by referring to the operational laws of interval values
in Definition 1:

D̃1 = [0.6118, 0.7346], D̃2 = [0.5222, 0.6987],
D̃3 = [0.5067, 0.6522],

D̃4 = [0.5096, 0.6266] and D̃5 = [0.5521, 0.6788].

Step 4: Construct the likelihood matrix and obtain the rank-
ing vector.

Use Equation (11) to construct the likelihood matrix P
and obtain the ranking vector ω = (ω1, ω2, . . . , ω5) based on
Equation (12):

P = (
pi j

)
5×5

=

⎡
⎢⎢⎢⎢⎣

0.5 0.7096 0.8493 0.9384 0.7316
0.2904 0.5 0.5962 0.6444 0.4836
0.1507 0.4038 0.5 0.5434 0.3679
0.0616
0.2684

0.3556
0.5164

0.4566
0.6321

0.5 0.3057
0.6943 0.5

⎤
⎥⎥⎥⎥⎦ ,

ω1 = 0.2614, ω2 = 0.2007, ω3 = 0.1733,
ω4 = 0.1590 and ω5 = 0.2056.

Step 5: Determine the ranking of all alternatives.
According to the descending order of ωi = (1, 2, . . . , 5), the

ranking of all alternatives is a1 � a5 � a2 � a3 � a4 and the
best one is a1.

5.2. Comparative analysis and discussion
In order to further verify the feasibility and effectiveness of the
proposed approach, a comparative analysis is now conducted
using six existing methods with the analysis being based on the
same illustrative example.

(1) Chi and Liu’s method (2013) contains two major phases
(criterion weights determination and ranking obtain-
ment with TOPSIS). First, the maximising deviation
method is developed to determine the criterion weights
and then an extended TOPSIS method is employed to
rank the alternatives.

(2) In Ye’s method (2014b), the distance-based similarity
measures are employed, which involves aggregating the
weighted similarity measures between each alternative
and the PIS.

(3) In Zhang et al.’s methods (2014), first, the comprehensive
INNs are aggregated by using the INNWA or INNWG
operators, and then the ranking vectors can be obtained
by constructing the likelihood matrices based on the
score function. Moreover, Zhang et al. (2015b) devel-
oped an outranking method for MCDM on the basis of
the score function constructing the outranking relation
matrix. Since Zhang et al.’s method (2015b) does not take
the criterion weights into consideration but the illustra-
tive example does, it is necessary to construct the out-
ranking relation matrix after calculating the weighted
evaluation values.

Considering the criterion weights obtained using the pro-
posed programming model, the results obtained by different
methods are summarised in Table 2.

It can be seen that there are some differences between them.
The reasons for the inconsistency of the rankings are explained
as follows.

(1) The difference in the ranking results of the proposed
approach and that of Chi and Liu (2013) is the sequence

Table . The ranking results of the different methods.

Methods Ranking results

Chi and Liu’s method () a1 � a5 � a2 � a4 � a3
Ye’s methods (b)

Similarity measure based on the Hamming
distance

a1 � a5 � a2 � a4 � a3

Similarity measure based on the Euclidean
distance

a1 � a5 � a2 � a3 � a4

Zhang et al.’s methods ()
Method based on the INNWA operator a1 � a5 � a2 � a4 � a3
Method based on the INNWG operator a1 � a5 � a2 � a3 � a4

Zhang et al.’s method (b) (p = 0.2 and
q = 0.1)

a1 � a2 � {a3, a4, a5}

The proposed approach a1 � a5 � a2 � a3 � a4
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Table . The ranking results obtained by revising the methods of Ye (b).

Methods Ranking results

Similarity measure based on the Hamming
distance

a1 � a5 � a2 � a3 � a4

Similarity measure based on the Euclidean
distance

a1 � a5 � a2 � a3 � a4

of a3 and a4. In Chi and Liu’s method (2013), the rela-
tive closeness coefficients (performance of each alterna-
tive) are conducted based on the relative ideal solutions,
which have certain drawbacks. First, it is not easy to
choose the appropriate PIS and NIS with INNs because
each INN has three interval elements. Second, the PIS
and NIS are closely related to the number of alterna-
tives as well as the evaluation values. Thus, theymay vary
as the original information changes. Third, the relative
closeness coefficients are in the form of crisp real num-
bers, which may cause information loss and affect the
ranking results. Finally, suppose that there are m alter-
natives and n criteria to be evaluated. In order to deter-
mine the criterion weights, Chi and Liu’s method (2013)
needs to derive m × m × n distance measures, whereas
the proposed approach only needs to calculate m × n
cross-entropymeasures. Thus, it takes less time than that
of Chi and Liu (2013).

(2) Similarly, the order of a3 and a4 is the only difference
between the proposed approach and the first method of
Ye (2014b). This is because the comparison methods in
Ye (2014b) only consider the weighted similarity mea-
sures between each alternative and the PIS. If only the PIS
is taken into account and the NIS is ignored, the rank-
ing of alternatives may be incorrectly reversed and this
may be amplified in the final results. However, the rank-
ing result in this method will be identical to that of the
proposed approach in a situation where, simultaneously,
the PIS is replaced with the absolute one and the abso-
lute NIS is not ignored; moreover, the closeness coeffi-
cient would have to be utilised to determine the ranking
of alternatives. The updated results are shown in Table 3.
Therefore, the methods in Ye (2014b) are not reliable
enough.

(3) The positions of a3 and a4 obtained by themethod based
on the INNWA operator (Zhang et al., 2014) are not
consistent with either those obtained by the method
based on the INNWG operator (Zhang et al., 2014)
or the proposed approach. This may be caused by the
inherent characteristics of aggregation operators, as the
INNWA operator focuses on the impact of the overall
criterion values, while the INNWG operator emphasises
the impact of a single item. Additionally, the outrank-
ing method of Zhang et al. (2015b) can only yield partial
orders of alternatives, in which a3, a4 and a5 are indis-
tinguishable. This method has to convert the INNs into
real numbers and artificially set both the threshold p and
indifference threshold q before constructing the domi-
nance relations. It is by nature inappropriate to replace
the INNs with real numbers, and it may lead to infor-
mation loss in the transformation process. Furthermore,

when manually providing the parameters p and q, it is
difficult to avoid subjective randomness. Therefore, the
result obtained by the outranking method is not always
reliable.

According to the comparative analysis, the following advan-
tages over the other methods can be outlined.

(1) The calculations required for the proposed approach are
relatively straightforward and time-saving, and the bur-
den of computation can be greatly decreased with the
help of the proven mathematical derivation.

(2) In the proposed approach, the interval closeness coeffi-
cients are conducted to rank alternatives. In this way, the
fuzziness of the original information can be maintained
and fully utilised. Therefore, the proposed approach is
more competent in interval neutrosophic MCDM than
the other methods considered.

(3) In the proposed approach, the transformation opera-
tor is employed to convert INNs into SNNs, which can
avoid various kinds of aggregation operators process-
ing directly with INNs. Furthermore, the parameters
of the transformation operator are determined through
mathematical derivation and not artificially produced.
Thereby, the final ranking obtained by the proposed
approach is more conclusive than those produced by
the other methods, and it is evident that the proposed
approach is accurate and reliable.

6. Conclusions
INSs are flexible at expressing the uncertain, imprecise, incom-
plete and inconsistent information that is very common in scien-
tific and engineering situations; therefore, the study of MCDM
methods with INSs is highly significant. In this paper, a trans-
formation operator and cross-entropy were defined. Conse-
quently, an MCDM method was established based on cross-
entropy and TOPSIS, which calculated the cross-entropy after
transforming INNs into SNNs on the basis of the transforma-
tion operator. Furthermore, it aggregated the performances of
alternatives into interval numbers, from which two mathemati-
cal programming models were constructed to identify the crite-
rion weights. Finally, a ranking result was obtained by compar-
ing these weighted interval numbers with a possibility degree
method.

The advantages of this study are that the approach is both
simple and convenient to compute and effective at decreasing
the loss of evaluation information. The feasibility and validity of
the proposed approach have been verified through the illustra-
tive example and comparative analysis. The comparison results
demonstrated that the proposed approach can provide more
reliable and precise outcomes than other methods. Therefore,
this approach has great application potential in solving MCDM
problems in an interval neutrosophic environment, inwhich cri-
terion values with respect to alternatives are evaluated by the
form of INNs and the criterion weights are incomplete.
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