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MULTI-CRITERIA DECISION MAKING METHOD BASED ON SIMILARITY
MEASURES UNDER SINGLE VALUED NEUTROSOPHIC REFINED AND INTERVAL
NEUTROSOPHIC REFINED ENVIRONMENTS

FARUK KARAASLAN

ABSTRACT. In this paper, we propose three similarity measure methods for single valued neutrosophic refined
sets and interval neutrosophic refined sets based on Jaccard, Dice and Cosine similarity measures of single valued
neutrosophic sets and interval neutrosophic sets. Furthermore, we suggest two multi-criteria decision making
method under single valued neutrosophic refined environment and interval neutrosophic refined environment,
and give applications of proposed multi-criteria decision making methods. Finally we suggested a consistency
analysis method for similarity measures between interval neutrosophic refined sets and give an application to
demonstrate process of the method.

1. INTRODUCTION

To overcome situations containing uncertainty and inconsistency data has been very important matter for
researchers that study on mathematical modeling and decision making which is very important in some areas
such as operations research, social economics, and management science, etc. From past to present many studies
on mathematical modeling have been performed. Some of well-known approximations are fuzzy set (FS) theory
proposed by Zadeh [24], intuitionistic fuzzy set (IFS) theory introduced by Atanassov [I] and interval valued
intuitionistic fuzzy set theory suggested by Atanassov and Gargov [2]. A FS is identified by its membership
function, IFS which is a generalization of the FSs is characterized by membership and nonmembership func-
tions. Even though these set theories are very successful to model some decision making problems containing
uncertainty and incomplete information, but they may not suffice to model indeterminate and inconsistent infor-
mation encountered in real world. Therefore, Smarandache [19] introduced the concept of neutrosophic set which
is very useful to model problems containing indeterminate and inconsistent information based on neutrosophy
which is a branch of philosophy. A neutrosophic set is characterized by three functions called truth-membership
function (7T'(z)), indeterminacy-membership function (I(x)) and falsity membership function (F'(z)). These
functions are real standard or nonstandard subsets of |~0,1%[, i.e., T(z) : X —]70,17[,I(z) : X —]70,17[, and
F(z) : X —]70,17[. Basic of the neutrosophic set stands up to the non-standard analysis given by Abraham
Robinson in 1960s [I7]. Smarandache [20] discussed comparisons between neutrosophic set, paraconsistent set
and intuitionistic fuzzy set and he shown that the neutrosophic set is a generalization of paraconsistent set and
intuitionistic fuzzy set. In some areas such as engineering and real scientific fields, modeling of problems by using
real standard or nonstandard subsets of |70, 17| may not be easy sometimes, to overcome this issue concepts of
single valued neutrosophic set (SVN-set) and interval neutrosophic set (IN-set) were defined by Wang et al. in
[22] and [23], respectively. Zhang et al. [25] presented an application of IN-set in multi criteria decision making
problems. Some novel operations on interval neutrosophic sets were defined by Broumi and Smarandache [g].
Bhowmik and Pal [6] defined concept of intuitionistic neutrosophic set by combining intuitionistic fuzzy set and
neutrosophic set, and gave some set theoretical operations of the intuitionistic neutrosophic set such as comple-
ment, union and intersection. Ansari et al. [3] gave an application of neutrosophic set theory to medical Al
Ye [34] proposed concept of trapezoidal neutrosophic set by combining trapezoidal fuzzy set with single valued
neutrosophic set. He also presented some operational rules related to this novel sets and proposed score and
accuracy function for trapezoidal neutrosophic numbers.

Set theories mentioned above are based on idea which each element of a set appear only one time in the set.
However, in some situations, a structure containing repeated elements may be need. For instance, while search
in a dad name-number of children-occupation relational basis. To model such cases, a structure called bags
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was defined by Yager [26]. In 1998, Baowen [5] defined concepts of fuzzy bags and their operations based on
Peizhuang’s theory of set-valued statistics [16] and Yager’s bags theory [26]. Concept of intuitionistic fuzzy bags
(multi set) and its operations were defined by Shinoj and Sunil [I8], and they gave an application in medical
diagnosis under intuitionistic fuzzy multi environment.

In 2013, Smarandache [2I] put forward n-symbol or numerical valued neutrosophic logic which is as gener-
alization of n-symbol or numerical valued logic that is most general case of 2-valued Boolean logic, Kleene’s
and Lukasiewicz’ 3-symbol valued logics and Belnap’s 4-symbol valued logic. Although existing set theoretical
approximations are generally successful in order to model some problems encountered in real world, in some
cases they may not allow modeling of problems. For example, when elements in a set are evaluated by SVN-
values in different times as t1,t2, ..., t,, SVN-set may not be sufficient in order to express such a case. Therefore,
Ye and Ye [29] defined concept of single valued neutrosophic multiset (refined) (SVNR-set) as a generalization
of single valued neutrosophic sets, and gave operational rules for proposed novel set. In a SVNR-set, each
of truth membership values, indeterminacy membership values and falsity membership values are expressed
sequences called truth membership sequence, indeterminacy membership sequence and falsity membership se-
quence, respectively. SVNR-set allows modeling of problems containing changing values with respect to times
under SVN-environment. In this regard, SVNR-set is an important tool to model some problems. Bromi et al.
[11] proposed concept of n-valued interval neutrosophic set and set theoretical operations on n-valued interval
neutrosophic set (or interval neutrosophic set) such as union, intersection, addition, multiplication, scalar mul-
tiplication, scalar division, truth-favorite. Also they developed a multi-criteria group decision making method
and gave its an application in medical diagnosis.

Similarity measure has an important role many areas such as medical diagnosis, pattern recognition, clustering
analysis, decision making and so on. There are many studies on similarity measures of neutrosophic sets and
IN-sets. For example, Broumi and Smarandache [7] developed some similarity measure methods between two
neutrosophic sets based on Hausdorff distances and used these methods to calculate similarity degree between two
neutrosophic sets. Ye [28] proposed three similarity measure methods used simplified neutrosophic sets (SN-sets)
which is a subclass of neutrosophic set that is more useful than neutrosophic set some applications in engineering
and real sciences. He also applied the these methods to decision making problem under SN-environment. Ye and
Zhang [27] suggested similarity measure between SVN-sets based on minimum and maximum operators. They
also developed a multi-attribute decision making method based on weighted similarity measure of SVN-sets,
and gave applications to demonstrate effectiveness of the proposed methods. Ye [31] proposed two similarity
measures between SVN-sets by defining a generalized distance measure, and presented a clustering algorithm
based on proposed similarity measure. In 2015, Ye [34] pointed out some drawbacks of similarity measures
given in [28] and proposed improved cosine similarity measures of simplified neutrosophic sets (SN-sets) based
on cosine function. Moreover, he defined weighted cosine similarity measures of SN-sets and gave an application
in medical diagnosis problem containing SN-information. Ye and Fub [32] proposed a similarity measure of
SVN-sets based on tangent function and put forward a medical diagnosis method called multi-period medical
diagnosis method based on suggested similarity measure and weighted aggregation of multi-period information.
They also gave a comparison tangent similarity measures of SVN-sets with existing similarity measures of SVN-
sets. Furthermore, Ye [33] introduced a similarity measure of SVN-sets based on cotangent function and gave an
application in the fault diagnosis of steam turbine, and he gave comparative analysis between cosine similarity
measure and cotangent similarity measure in the fault diagnosis of steam turbine. Majumdar and Samanta [13]
defined notion of distance between two SVN-sets and investigated its some properties. They also put forward
the a measure of entropy for a SVN-set. Aydogdu [4] introduced a similarity measure between two SVN-sets
and developed an entropy of SVN-sets. Bromi and Smarandache [10] extended similarity measures proposed in
[31] to IN-sets. Ye [30] proposed a similarity measure between two IN-sets based on Hamming and Euclidian
distances and gave a multi-criteria decision making method.

Similarity measure on the NR-sets was studied Bromi and Smarandache [9]. Bromi and Smarandache extended
improved cosine similarity measure of SVN-sets to NR-sets and gave its an application in medical diagnosis.
Mondal and Pramanik [I4] introduced cotangent similarity measure of NR-sets and studied on its properties,
and applied cotangent similarity measure to educational stream selection. Also they proposed a similarity
measure method [I5] for NR-sets based on tangent function and gave an application in multi-attribute decision
making. In 2015. Bromi and Smarandache [I0] presented a new similarity measure method by extending the
Hausdorff distance to NR-sets, and gave an application of proposed method in medical diagnosis.
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In this paper, we propose three similarity measure methods for single valued refined sets (SVNR-sets) and
interval neutrosophic refined sets (INR-sets) by extending Jaccard, Dice and Cosine similarity measures under
SVN-value and IN-value given by Ye in [28]. Also we give two multi-criteria decision making methods by
defining ideal solutions for best and cost criteria under SVNR-environment and INR-environment. Furthermore,
to determine which similarity measure under INR-environment is more appropriate for considered problems, we
give a consistency analysis method based on developed similarity measure methods. To demonstrate processes
of the similarity measure methods and consistency analysis method, we present real examples based on criteria
and attributes given in [28]. The rest of the article is organized as follows. In section 2 some concepts related to
the SVN-sets and IN-sets and formulas Jaccard, Dice and Cosine similarity measures under SVN-environment
are given. In section 3 for SVNR-set and INR-sets similarity measures methods are developed as an extension
of vector similarity measures between SVN-sets and between IN-sets given in [28]. In section 4 multicritera
decision making methods are developed under SVNR-environment and INR-environment, and given examples
related to the developed methods. In section 5 for similarity measures between two INR-sets, a consistency
analysis method is suggested and an application of this method is given. In section 6 conclusions of the paper
and studies that can be made in future are presented.

2. PRELIMINARY

In this section, concepts of SVN-set, IN-set, SVNR-set and INR-set and some set theoretical operations of
them are presented required in subsequent sections.

Throughout the paper, X denotes initial universe, E is a set of parameters and I, = {1,2,...p} is an index
set.

Definition 1. [23] Let X be a nonempty set (initial universe), with a generic element in X denoted by x. A
single-valued neutrosophic set (SV N-set) A is characterized by a truth membership function t4(x), an indetermi-
nacy membership function ia(x), and a falsity membership function fa(x) such that ta(z), ia(x), fa(z) € [0,1]
for all x € X, as follows:

When X is continuous, a SVN-sets A can be written as follows:

A:/ (ta(z),ia(x), fa(z)) /z, forallz € X.
X

If X is crisp set, a SV N-set A can be written as follows:

A= "(ta(2),ia(x), fa(x)) [z, forallz € X.

Also, finite SV N-set A can be presented as follows:

A={(x1,ta(x1),ia(xz1), fa(z1)), .., {zr, talxnr),ia(xar), falzar))} for all x € X,
Here 0 < ta(z) +ia(z) + fa(z) <3forall z € X.
Throughout this paper, initial universe will be considered as a finite and crisp set.
From now on set of all SV N-sets over X will be denoted by SV Nx.

Definition 2. [23] Let A, B € SVNx. Then,
(1) AC B if and only if ta(z) <tp(x), ia(z) > ip(x), fa(z) > fe(x) for any z € X.
(2) A=B if and only if AC B and BC A for allx € X.
(3) Ac={{z, fa(x),1 —ia(x),ta(z)):z € X}.
(4) AUB= {(z, (ta(x) V t(x)), (ia(2) A in(2), (f4(@) A [5(2) : = € X}
(5) AN B={{z, (ta(x) A (). (ia(2) Vin(@), (fa(@) V @) :z € X}.

Definition 3. [29] Let X be a nonempty set with generic elements in X denoted by x. A single valued neutro-
sophic refined set (SVNR-set) A is defined as follows:

A= {(a, th(@), (@), st (@), ((4(2), (@), o 5 @), (Fh @), F (@), o Sh(@))) 1w € X .

Here, t4,t%,...,t5 + X — [0,1], iY,¢%,...,a5% + X — [0,1] and fh,f3,... /4 + X — [0,1] such that 0 <
th(z) + iy (z) + fi(z) < 3 forallx € X and i € I,. (t4Y(x),t4(z),....t5h(z)), (i4(x),i4(2),....i5(x)) and
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(fh(x), fA(x), ..., fA(z)) are the truth-membership sequence, indeterminacy-membership sequence and falsity-
membership sequence of the element x. These sequences may be in decreasing or increasing order. Also p is
called the dimension of single valued neutrosophic refined set A.

A SV NR-set A can be represented as follows:
A= {<I,tf4(ar),zf4(:zr),f2(x)> cx€eX,i€ Ip},

From now on, set of all single valued neutrosophic refined sets over X will be denoted by SV N Rx and considered
SVNR-sets will be accepted as p dimension SVNR-set.

Definition 4. [29] Let A, B € SVNRx. Then,
(1) If t4(z) < t (), iy (z) > i (), fi(z) > f]%(:v) for alli € I, and x € X, then A is said to be
SVNR-subset ofB and denoted by ACB.

(2) ACB and BCA if and only if A = B;
(8) The complement of A, denoted by A°, is define as follows:

A= {(a. fi@) 1~ ih @) th(@) s e Xi e L, .

Definition 5. [12] Let A € SVNRx. Then,
(1) if t'y(z) = 0, i%(x) = 1 and fi(x) =1 for alli € I, and x € X, A is called a null SVNR-set, and
denoted by P, 5
(2) if ty(z) =1, i%(x) =0 and fi(z) =0 for alli € I, and x € X, A is called universal SVNR-set, and
denoted by X.

Definition 6. [29] Let A, B € SVNRyx. Then,
(1) union:

A0B = {64 (2) V s (), 14 (2) A i (@), fa(@) A fh(@) v € Xji€ I, },

(2) intersection:
ANB = {<x,tf4(:v) Aty (), iy (x) Vig(x), fa(z) V fa(z)) 1z € X, i€ Ip}.

Example 1. Consider SVNR-sets A, B and C are given as follows:

<x1(.1,.2,.4),(.1,.4,.6),(.0,.3,.3)>, <:c1(5 6,.7), (4,.6,.7), (.3, .3, 4>
A= <x2,(.3,.3,.5),(.2,.3,.7),(.1,.5,.6)>, , B= <x2,(2 4,.4),(.2,.5,.8) (2 6, 7>
<x3,(.2,.4,.8),(.1,.3,.3),(.5,.6,.9)> <x3,(.1,.6,.6) (1,.5,.5), >
and
<x1(.3, 3,.5), (4,.5,.6), (.1,.3, .4)>,
¢ = <x2,(.o,.1,.3),(.2,.3,.6),(.1,.4,.6)>,
<x3,(.1,.4,.7),(.1,.3, .4),(.3,.3,.5)>
<z1(.5,.6,.7),(.4, 6,.7),(.3,.3, .4)>, <m1(.1,.2,.4),(.1,.4,.6),(.0,.3,.3)>,
Then, AOB = <m2,(.2,.3,.4),(.2,.3,.7),(.1,.5,.6)>, , AAB = <m2,(.3, .4,.5),(.2,.5,.8),(.2,.6,.7)>, ,
<x3,(.1,.4, .6),(.1,.3,.3),(.3,.4,.7)> <x3,(.2,.6, .8),(.1,.5,.7),(.5,.6,.9)>
and CCB.

Definition 7. [22] Let D[0,1] be the set of all closed sub-intervals of the interval [0,1] and X be an ordinary
finite non-empty set. An IN-set A over X is set of quadruple given as follows:

A= {(z,ta(@) ia(@), fa(2)) |z € X},
where, ta(z) € D[0,1], ia(x) € D[0,1], and fa(z) € D|0, 1] with the relation
0 < supta(x)+ supia(z)+ sup fa(z) <3, for allz € X.
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Here intervals ta(z)=[th(z),t4(z)] C [0,1], ia(z)=[i](2),i%(z)] C [0,1], fa(z)=[f5(z), f{ ()] C [0,1] de-
note, respectively the degree of truth, indeterminacy, and falsity membership of x € X in A; moreover th(x)=
infta(@), 15 (@)= supta (@), i (c) = infia(@), i (x)= supia(e), fi(x)= inffa(e), Y (@)= supfa() for every
x € X. Thus, the interval neutrosophic set A can be expressed in the following interval format:

A= {(z, [th(x), t5(@)] [i(@), 4 @)] [fh@), fH@)]) |z € X}
where, 0 < supt{(z) + supif(x) + sup f{(z) < 3, Th(x) > 0, I§(z) > 0 and Fk(z) > 0 for all z € X.
Henceforth set of all IN -sets over X will be denoted by INx.

Definition 8. [II] Let X be a nonempty initial universe whose elements are discrete. An n-valued interval
neutrosophic refined set (or interval neutrosophic refined set) A is defined as follows:

A = (o (A @) 5@ (A @), s @D (5 @), S 2 @) e € X andie 1},
where tiﬁ(:zr) < tig(a:),iiﬁ(x) < zzg(x) and fzﬁ(:zr) < fzg(aj) forallz € X.
Here, 0 < tii(x) + iii(x) + flf,(:v) <3 and0< tig(:v) + iig(:v) + fig(:v) <3 forallze X andi€ I,.

([t % (@), 5 (@), [P 4 (), 25 ()], o [Ph (), 5 (),

(6" 4 @), i 4 @), 124 @), 23 @), oo [ (@), 5 (@)])
and
(£ 4@) S 4@ 2R @), @), o [ (@), £ @)
are the truth-membership sequence, indeterminacy-membership sequence and falsity-membership sequence of the
element x, respectively. p is called the dimension of n-valued neutrosophic sets A.

Henceforth, considered INR-sets will be accepted p dimension n-valued interval neutrosophic set, and set of
all interval neutrosophic refined sets over X will be denoted by INRyx. Also notion of interval neutrosophic
refined set (INR-set) will be used instead of notion of n-valued interval neutrosophic set.

2.1. Similarity measures of SVN-sets and IN-sets. Jaccard, Dice, and Cosine similarity measures are
given between two SV N —sets and between two I N —sets defined in [28§].

Definition 9. Let A and B be two SVN-sets in a universe of discourse X ={x1,x2,...,2,}. Then the Jaccard
similarity measure between SVN-sets A and B in the vector space is defined as follows:

1 ta(@i)ts(@i) +ia(@i)is (@) + fa(@i)fB(xi)
(2.1) (AB)y=~> - 5 ; 2 2 2
n= (G (i) + (@) + fa(xi) + (U5 (@) + ip (i) + fE (i)
—(ta(zi)tp(z:) + ia(zi)ip(i) + falzi) ()
Definition 10. Let A and B be two SVN-sets on a universe X ={x1,za,...,x,}. Then the Dice similarity
measure between SVN-sets A and B in the vector space is defined as follows:

n

22) _1 Z 2 (ta(zi)tp(z:) +ia(zi)ip(xi) + fa(zi) fo(z:))
n (5 (i) + 5 (@) + fA(@) + (5 (2:) +i5(2:) + fE(20))]
Definition 11. Let A and B be two SVN-sets in a universe of discourse X ={x1,xa,...,x,}. Then the cosine

similarity measure between SVN-sets A and B in the vector space is defined as follows:

- tA(Il) + ZA(Il) + fA(Il)) \/(tQB(xZ) + ZB(fFi) + f%(ﬂfz)) .

In some applications, each element x; € X may have different weights. Let wy,wa, ..., w, be the weights of
elements z1, z2, ..., x, € X such that w; > 0(Vj € I,,) and Z?:l w; = 1, respectively. Then, formulas of Jaccard,
Dice and Cosine similarity measures between A and B can be extended to weighted Jaccard, Dice and Cosine
similarity measures are defined as follows: defined as follows:

(2.3) (A Bje =+ z": Y (ta(i)ts (2:) + ia(@a)in(@:) + falws) fo(w:)
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» talx)tp(a;) +ia(x)ip(a;) + Fa(z)Fp(z;)
(2.4) W(A,B); = Z l( (82 (i) + 4 () + fA(z0)) + (5 (@) + i%(2) + f3(2)) )7
—(ta(zo)tp(zi) +iazi)i (i) + fa(zi) fB(2:))

v w. 2 (ta(xi)tp (i) +ta(zi)tp(z:) + fa(z:) fp(xi))
(25) WA B)D = 3 iy s ) + ) + ) + () + FE)]

and

(2.6) W(A,B)c = sz ( (talx)tp(a;) +ia(xs)ip(a;) + falz:) fe(x:)) 7

(5 (i) + 5 (i) + F3 () /(B (i) + B (2i) + [B(w:))

respectively.

3. SIMILARITY MEASURES UNDER SVNR AND INR-ENVIRONMENTS

In this section, similarity measures between two SVNR-sets and between two INR-sets are defined based on
similarity measures between two SVN-sets and similarity measures between two IN-sets given in [28].

Definition 12. Let A,B € SVNRx . Then, the Jaccard similarity measure between SVNR-sets A and B is
defined as follows:

Ay, L - (tz( s (5) + % (25)ig (x5) + fhxs) fp(2;))
G0 AR @E( EGT+ Fte T G ) & (e o) T )
it () () + )y (25) P £ (2]

Definition 13. Let A, B € SVNRx. Then the Dice similarity measure between SVNR-sets A and B is defined
as follows:

;= 1 ¢ 2ty (25)t () + 4% ()i () + fa(z) fp(x;))
(3.2) (ABp==->> : : : :
’ "iSi= ([&(%‘)]2 + [1% ()12 + [fiy (25)]2) + ([t (25)]% + [i%(x4)]2 + [ffg(fj)]z)

Definition 14. Let A,B € SVNRx. Then, the cosine similarity measure between SVNR-sets A and B is
defined as follows:

33) (A B _ 1 iz (ty ()t (x)) + 0% (25)i () + Fh() fi(x))) '
"imtim ( ti ()2 + [ ()2 + [Fa(@)P) /([ ()] + (i ()] + [fjg(:vj)]?))
If w; € [0,1] be the weight of each element xz; for j = 1,2,...,n such that Z?:l w; = 1, then the weighted

Jaccard, Dice and Cosine similarity measures between SVNR-sets A and B are defined as follows:

L " (i ()5 () + i (23 () + f (25) f (25)
oy W(A’B)J_;; ( ([ (@)l + [ ()] + [fa(e)lP) + (s ()] + s (@) + o)) >
[ (23) s (5) + i (23)i% (25) + fa (25) i (25)]
A N\ w: 2(t (a5t (x)) + i (a5) i (x5) + fh(as) [ (x5))
65)  WABD =2 D 0 i s o) + Vs F) + (@ + [ () + @)
and
(3.6) W(Aé)c:zn:zp:wj (th (@)t (x;) + i (2,)is (x;) + fh(z;) fi(2)) 7

A5 (VEEF B T U@ TawE + )+ eP)

respectively.
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TABLE 1. Similarity measure under SVNR~environment

Similarity measures Values

(4,B), 0.834
(4,B)p 0.908
(4, B)c 0.928

TABLE 2. Weighted similarity measures under SVNR-environment

Similarity measure Values

W(A4, B), 0.786
W(A, B)p 0.879
W (A, B)c 0.429

Example 2. Consider SVNR-sets A and B given in Example 0. Then, by using Eqs.(31),(32) and (33),
similarity measures between SVNR-sets A and B are obtained as in Table[dl

If weights of the x1,x2 and x3 are taken as w1 = .7 wa = .2 and ws = .1, respectively. Then, by using
Eqs.(34),(30) and (3.0), weighted similarity measures are obtained as in Table[3:

Proposition 1. Let A and B be two SV N R-sets. Then, each similarity measure (A, B)A(A = J, D, C) satisfies
the following properties:
(1) 0<(A B)A<1

(2) (A, B)r = (B, A)a;

(3) (A,B)ys =1if B=Aice. t'a(z;) = t'g(x), i alwi) = i'g(2:), and fi4(x:) = fig(xi) for every x; € X
and i € Ip.

Proof. (1) For p =1 Eq. 3I), B2) and @3) are reduce to Eq. 1), (Z2) and (23), respectively. For all

i € Iy(p > 1) according to inequality 2 + y* > 2zy, for any x; € X we know that

> ([t (@)l + [tp(2))]?) 2 22([# ()] [t (25)])
> (@) + L (25)%]) 2 22([2A(wg)] [i(x5)])
D (Al + F5()]?) =2 2 ([fale))[fh@))),

and

> 1([tA(xj)]2+[tB(fvj)]2+[if4(xj)]2+[iis(xj)]2+[fix(xj)]2+[fé(fvj)]2) > 2300 ([t ()] [t ()] [0 (25))- [ ()] +
[fa(;)]Lf5(2;)]). Thus,

v (8 ()t () + i ()i ) + Fi(a)) £ ()
3.7 ;;<Wﬂwﬂ i @) + @) + (B @)l + (@) + [&@M%)SL
[ J)t (;Cj)+if4(x])z (x )+fA(xJ)fB(‘TJ)]

and for all z; € X

oS (% ()t () + %y ()i (25) + fa(z)) fp(25))
39 ;;(MmWWMM[mmmwaﬂ e P ST |
[t (25t (x5) +i% ()i () + fa(z;) fi(a)]
Similarly, Eq.(32) and Eq. (B3] are true.
(2) The proof is clear.

<n.
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(3) Let A = B. Then, t's(z;) = t'g(z;), i'alz;) = i's(z;), and fi,(z;) = fig(z;) for all z; € X and

i€ I, and
a1 o + [ @) + [ )
B = ZZ P+ 200 @) + 205 @) — (@) + s @)P + [Fa(@)P)

For Dice and Cosine similarity measures, the proofs of can be made with similar way. .
Each similarity measure between two SVNR-sets A = {<x,tf4(3:),if4(3:),f2(x)> cx e Xi€ Ip} and B =

{<x,t%(x),ifg(a:),fg(x)> cx € X,i € Ip} are undefined when t'4(z) = i'4(z) = fi4(z) = 0 and t'g(z) =
i'g(x) = fig(x) =0 for all z € X and i € I,,.

Proposition 2. Let A, B € SVNRyx. Then, each weighted similarity measure W(/i, B)A(A = J,D,C) satisfies
the following properties:
(1) 0 < W(A B)x <1,
(2) W(A,B)x =W (B, A)a, _ _ _ _ _ _
(3) WA, B)A =1 if B= A ice. t'a(xj) = t'g(x;), italz;) = i's(x;), and fi,(x;) = figlz;) for every
z; € X andi € Ip.

Proof. The proofs can be made similar way to proof of Proposition[Il .

Note that, if w;(j = 1,2, ...,n) values take as L, Eqs. (84), B.5) and (B.6) are reduced Eqs. (Z4), [Z3) and
24), respectively.

Now similarity measures between two INR-sets will be defined as a extension of similarity measures between
two IN-sets given in [28].

For convenience, A = {<x,([tii(x),tig(x)]), ([zlﬁ(x),zlg(x)]), ([fﬂ(z),fﬁ(z)]» cx € Xandi € Ip} will
be meant by AeINRx

Definition 15. Let A, B € INRx. Then, the Jaccard stmalarity measure between INR-sets A and B is defined
as follows:

005 )i ) + 84 (051" ()
RS (A @) F B () + P4 () F 5 ()
(3.9) (A, By, =~ _ : : .
";; (AP + F4@E + A + (aE)l + B @) + [ @)P)
+H([E B ()] + [i B(xg)iLi-[f’B(%)]z) L([“B(xg)i?;- [iZB(QLCj)Pi-[fZB(Ij)iQ)
~[t' ﬁ(%) 5(%) +' A(%) 5(%) +ffg($j)ff5(wj)]
— [ R @) B (5) + i (2)i B () + 4 () f 5 ()]
Definition 16. Let A, B € INRx. Then, the Dice stmilarity measure between INR-sets A and B is defined as
follows:

( (5 (@)t G () + 05 (@)t G (25)) )

(0T ()it ) + 840 ()
+(f Al frB () + fralz) fip(z;)) '
(5,12 + 14012 + [F74@)I) + (4] + [ )] + [ 4 @)]?) >
HE B @) + 175 @) + [FB@)]?) + (5 @)] + [P 5 ()] + [ 5(;)]?)
Definition 17. Let A, B € INRx. Then the cosine simalarity measure between A and B is defined as follows:
( (5 (985 25) + £ ()0 () )
i)

( (5 (@)t B (x;) + 15 (2) 5 (7)) )
2

n P
(3.10) (ABp=-33 <

+(i Am)z é(mn + il Aw U(zm
F(Fh @) Fig () + 1Y @) fiG (@

VEE @) +
V(5 ()2 + [ (a;

12+ [FA (@)12) + (85 @)1 + (11 ()12 + (£ (2)]2) >

)
N2+ [f75 @))?) + (£ 5 (@) + [5 (2)]2 + [ 5(2;)]?)
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If w; € [0,1] be the weight of each element x; for j = 1,2,...,n such that 377, w; = 1, then the weighted
Jaccard, Dice and Cosine similarity measures between INR-sets A and B is defined as follows:
(#4215 () + 174 ()17 5 (7))
) ( A y)it () + ' 0)i' 5 (i) )
(3.12) WA B, =33 w . (T a@)f Bs) + 1 alz)f (x;))

== (5 )] + [ 42012 + [ Al Al it
+G“B@ﬁﬂ2+Hkﬂ%ﬂi+Lﬂs@)?)fﬁ“s@ﬂfﬂ%fsgﬂF+ﬂﬂs@ﬂ?)
— 1 @)t () + i ()i B ag) + F 4 () p ()]
)t

[t S @)t G () + 5 ()i B (@5) + FPA (@) Fi ()]

( (5 (@)t B () + 65 ()t 5 (7)) )
2
1))

24 [F 5 @)]2) + (85 )] + [15 (2)]% + [F1 5 (2)]2)
J

+@A%ﬁé@ﬂ+1AwﬁUmD

O R @) P B ) + 1 @) B
(313) WAL B)p =33 w— . _ _ . . .
o> J( (15 e)J2 + 4 )2 + (P75 )12) + (15 )12 + 7 )] + [ () )
(B @2 + 5@ + [ 5 @) + (F 5P + 15 @) + 1 5 @))?)

and
aﬂ£>ﬂﬂawuﬂynﬂgg»
+(3 A( ) B(%)‘H A(Z])Z B(Z]))
+( ik alzi)ft B(Z‘J)'i_fl () B(xg))
12+ [fif(2;)
12+ [fi ()

V)R + i
V5 @) + itk (@

n P
(3.14) =)D w,
=t (

)+ ([E 2 (@)]? + [ 4 @) + [ (5))%) > ’
U
B

) 12
5) 12) + ([t 5 (25)]2 + [ 5 ()] + [fi5(25)]2)
respectively.
Proposition 3. A, B € INRx. Then, each similarity measure (A, B)A(A = J,D,C) satisfies the following
properties:

(1) 0< (A,B)y <1

(2) (A, B)x = (B, A)s;

(9) A By = 1if B = Aie. [t74(e;), ")) = (5w, 'p (2], 174y, i @))] = [ (). i ),

and [f75(2;). fa (@) = (5 (@)), f1p(x))] for all 2; € X and i € I,

Proof. The proofs can be made similar way to proof of Proposition[Il

Proposition 4. A,B € INRx. Then, each weighted similarity measure W(A,B)A(A = J,D,C) satisfies the
following properties:
(2) W(A,B)y =W (B, A)a;
T T 1 - iL iU iL iU 'iL 'iU 'iL 'iU
(3) W(A’BL)A =1 ?J;B =A Z'e',L[t A(fvj);Uf A@y)] = [t"5(x;), 1 g(x;)], [i* alws), i a(w;)] = [i* B (x;), 7 p(2)],
and [f*a(z;), [ a(z)] = [f'B(2;), f'B(z))] for every x; € X and i € .

Proof. The proofs can be made similar way to proof of Proposition[Il

Note that if [t (x), "4 (2)] = [0,01[i"4(2), i3 (2)] = [0,0], [f74 (), F4(2)] = [0,0] and [t5(), 5 (2)] =
[0, 0], [zzé(x),zlg(x)] = [0,0], [f* i (2), fzg(:v)] = [0, 0], each similarity measure between two INR-sets A and B
are undefined.

4. SIMILARITY MEASURE BASED MULTICRITEIA DECISION MAKING UNDER SVINR-ENVIRONMENT AND
INR-ENVIRONMENT

In this section, applications of weighted similarity measures in multicriteia decision making problems under
SVNR-environment and INR-environment are given.

Let us consider a MCDM problem with k alternatives and r criteria. Let A = {A1, Aa, ..., Ax} be a set of
alternatives and C' = {C1,Cs, ...,C;.} be the set of criteria and w = {w1,ws,...w,} be weights of the criteria
Cj(j=1,2,..,7) such that w; > 0(j =1,2,...,r) and >|_w; = 1.
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4.1. Multi-criteria decision making under SVNR-environment. Let {47, Ao, ..., Ax} be a set of alterna-

tives and {C1,Cy, ..., C,.} be a set of criterion. Alternatives A;(i = 1,2,..., k) are characterized by SVNR-~values
for each C;(i = 1,2,...,r) as follows:

A = {(C5, (4, (G5, st (), (14, (G s, (C)), (T, (C), s S, (C1)) < G5 € O,

for the sake of shortness, (t} (C’ ) oo 9 (C5)), (i (Cf), voenyity (Cf)) and (f4,(Cy), ..., f4. (C;)) are denoted by

(tis D), (idjsosihy) and (f, ..., f5;), respectively. Thus, the evaluation of the alternative A; with respect
to the criteria C; made by expert or decision maker can be briefly written as v;; = <(tw’ . ,tfj) ('”, vy ifj),
(fls s I = 1,2, k55 = 1,2, ..., 7). Hence, SVNR-decision matrix D = [ij]xx- can be constructed.

In MCDM envuronment7 to characterize the best alternative properly in the decision set the notion of the
ideal point is used. To evaluate the criteria, two type modifiers called benefit criteria (BC) and cost criteria
(CC) are generally used.

In this study, for benefit criteria (BC) and cost criteria (CC) ideal SVNR-values denoted by A* are defined
as follows:

. . . . . « . (mawx;(t},), ....,maz; (1)), (min; (il,), ..., min; (i),
0 = O A g = (O )
. . ) . . i (L), ooy min; (£))), i(81)s s (5,
= O 60, 5 ) = D e e 6,

respectively. Here equations are called positive ideal solution and negative ideal solution, respectively.

ALGORITHM

e Step 1: Determination of BC and CC criteria.

e Step 2: Determination of ideal SVINR-values A*

e Step 3: Calculation of weighted similarity measures
In this step, using one of the Eq. (84), Eq. B3] or Eq.([3.6]) weighted similarity measures between the
ideal alternative A* and A;(i = 1,2, ..., k) are calculated.

e Step 4: Ranking of the alternative

Considering the values obtained using one of the Eq. (84), Eq. (31) or Eq.(3:6), the ranking order of
all the alternatives can be easily determined.

ILLUSTRATIVE EXAMPLE 1

Let us consider the decision making problem given in [30]. We adapt this decision making problem to SVNR-
set. There is an investment company, which wants to invest a sum money in the best option. There is a panel
with four possible alternatives to invest the money: (1) A4; is a car company; (2) Az is a food company; (3) As
is a computer company; (4) A4 is an arms company. The investment company must take a decision according
to the three criteria (1) Cy is the risk; (2) Cz is the growth; (3) C3 is an environmental impact, The weights
of criteria C7,Cs and C3 are given by w; = 0.35,ws = 0.25 and w3 = 0.40, respectively. The four alternatives

are to evaluated under the criteria by SVNR-values provided by decision maker. These values are shown in
SVNR-decision matrix as follows:

((.1,.2,.4),(.3,.3,.5), (.2, .4, 8)> (.1,.4,.6),(.2,.3,.7),(.1,.3,.3) (.0,.3,.3),(.1,.5,.6), (.5, .6, .9)
. _ (.5,.6,.7),(.2,.4,.4), (.1, .6, .6) (4,.6,.7),(.2,.5,.8),(.1,.5,.5) (:3,.3,.4),(.2,.6,.7), (.3, .4,.7)
Praslioce 2(3 3,.5),(.0,.1,.3), (.1, .4,.7) (4,.5,.6),(.2,.3,.6), (.1,.3,.4) (.1,.3,.4),(.1, 4,.6),(.3,.3,.5)
<(2 4,.9),(.1,.5,.6), (.3, .5, 1> <(0 2,.4),(1,.5,.7), (6,.7,.9)> (.8,.8,.9), (.3, .4,.4), (.6, .6, .8)
e Step 1: Let us consider C7 and C5 as benefit criteria and C3 as cost criterion.
e Step 2: From SVNR-decision matrix, ideal alternative A* can be obtained as follows:

= {((.5, 6,.9),(.0,.1,.3), (.1, .4,.6)),{(.4,.6,.7),(.1,.3,.6), (.1,.3,.3)),{(.0, .3,.3), (.3, .6,.7), (.6, .6, .9)>}.

Step 3: By using the Eqs. @I), B4), B2), B3), B3) and @B4), for A € {J,D,C}, similarity
measures and weighted similarity measures are obtained as in Table [3]
Step 4: Rankings of the alternatives are shown in last columnn of Table Bl
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TABLE 3. Similarity measure values under INR-environment

Similarity measure Values Ranking order
*, A1)y = 0.83489
*, Ag)y = 0.90254
*, As)s = 0.86578
* Ay)y = 0.65791
*, A1)p = 0.90283
*, As)p = 0.94872
*, Ag)
", Ag)
", A1)
", Ag)
", Asz)
", Ag)

(A*,Ai)J A2>-A3>-A1>-A4

(A*,Ai)D A2>A3>-A1>-A4

p = 0.92618
p = 0.78961
c = 0.90937
c = 0.95841
c = 0.96019
1)c = 0.80492

(A*,Ai)c A3 - A2 - A1 - A4

D>D>D>D>D>D>D>D>§:>h>h>h>

g = 0.83534

=0.75035
g = 0.85113
J = 0.66726
p = 0.90259

W(A*,Al)J A3 >—A1 >—A2 >—A4

D>D>D>D>

(A", A)
(A", Ag)y
(A*, Ag)
(A", Ay)
(A )

W(A*, A))p Eﬁ* AQ%? T oo Ay Ay A - A

( )

( )

( )

( )

( )

As
* Ag)p = 0.79671
A*, A1)e = 0.90911
A*, As)e = 0.95613
A*, Az)e = 0.95695
A" Ay)e = 0.81158

W(A*, AZ)C A3 b A2 - A1 - A4

D e b b b Tt e e PP

4.2. Multi-attribute decision making under INR-environment. Let alternatives A;(i = 1,2,...,k) are
characterized by INR-values for each criterion C;(i = 1,2, ...,r) as follows:

4 — { (Cy, ([ 5, (C L, (C)], oo [P (C), 25 (CHD, (15, (C), i 5, (C, o P (C), PG (C))D), }
(5, (), fl” C)); - [fp,%i(cn,ff’%i(c ) :CjeC
For convenience, ([tlL (C)s 4 (oo [175,(C), 75 (D), (44, (C), 85, (G, oo [, (C),
. U L
75 (C))) and (5 (C), F159,(C))]s e [FP5,(C1), 75, (C1)]) awe denoted by ([E15], .. [t7]),
([zlfj] ..., [iP5]) and ([flL] - [f?5]), respectively. So INR-value 6;; = (([tlfj,tlU] MR ZA))
([ it )y e iP5 PY)), ([flw,flz] SUPE UG = 1,2, k5 = 1,2,...,7) which is generally obtained
from the evaluatlon of the alternative A with related to the criteria C; by opinion of expert or decision maker.
Thus, INR-decision matrix D = [6;;]xx, can be constructed.
In this study, for benefit criteria (BC) and cost criteria (CC) ideal INR-values denoted by A* are defined as
follows:

([ma; (t1;), maz; (1)), ..., [maz; (t° ), maz; (P V))),
b 0; = <(t1;7""7tp;)7( 1;7"' Zp*) (flgvn 7fp;<)> :< ([m2”1(115)7m2n1(215)]77[m2n1(2p ) mlnz(ZpU)Dv >
([mina (F155), mins (F1 )], ..y [mini(f”fj) mzm(prm

([mazx; ) max; (i'; ), ,[maxi(ipL) mamz(ng ),

(i (). s (5 o (07 ) i ()
° 6; :((tl;fv““vtp;)v( 1;“7____72'1);)7( 1;77fp;<)>:< ( } ] >7
( £ mazi (F1 )] e [maxi(fpfj),maxl(fp 2)

[maz; (

respectively.

ALGORITHM

e Step 1: Determination of BC and CC criteria.
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e Step 2: Determination of ideal INR-values A* solution

e Step 3: Calculation of weighted similarity measures
In this step, using one of the Eq. (312), Eq. BI3) or Eq.([8I4)) weighted similarity measures between
the ideal alternative A* and INR-sets A;(i = 1,2, ..., k) are calculated.

e Step 4: Ranking of the alternative According to the values obtained using one of the Eq. (312,
Eq. 313) or Eq.([3I4), the ranking order of all the alternatives can be easily determined.

ILLUSTRATIVE EXAMPLE 2

In this example, alternatives and criteria given in previous illustrative example will be considered under
INR-environment. The four alternatives are to evaluated under the criteria by INR-values provided by decision
maker. These values are shown in INR-decision matrix as follows:

6],[.5,.6], [.6,.7]),

< ([-2,3],[-2,.5], [-4,.7]), > < ([-1,.5],[-4,.5], [.6,1]),
{ |
([:5, 8], [-6,.8], [.9,1]
]

[
[.3,.4],[.3,.6],[.5,.9]), [2,.4],[.3,.7],[.7, .8]), [
)
)
([.0,.1),[:3,.3], .3, .4]),
< ([1,-2],[.5,.6], .6, 7}))7 >
)
)
)

([.0,-3],[-3,.5],[.3,9)),

([-1,-2],[-5,.6], .6, .6)), >
[1,.2],1.3,.8],[.3, .8] (15,.5], -6, .7],1.9,.9])
([.0,.3], )
(I,

[2,.5], [4,.7], [8,.8] At
[1,.4],[4,.5],[.6,.6]), 1,[-3,.4],[.3,5)]),

(
(
(1.1,.2],[.2,.8],[.4,.8]),
< ([4,.5],[.3,.6],[.5,.7)), > < [2,.3],[.3,.4],[.7,.8)),
(([.1, 3],14,.5],1.8, 8] [.1,.5],[.3,.6],[.3,.7]
(

) ( )
) ( )

) ( )

) ( )

D = sl = ) ( )
e [1,.41.[2.5],[4..6)) (12..3).[4..5.[6..7),

) > << )

) ( )

) ( )

) ( )

) )

< [.3,.4],[.3,.4],[.6,.7]), [.2,.5],[.3,.6], .7, .8]),
([-2,.3],[4,.5],[.8,1]

(1.1, 4], [.2, 4], 4, .4]),
< ([-3,.5],[.3,.6],[.5, .6]), > <
(1.2,.5], .4, .6], .8, .9]

[1,.2],1.3,.4],[4,.5] > (15, .6],1.6,.7],.9,.9]
[1,.5],[.4,.5], 4, .6]), > < ([0,.2],[.3, .4], .3, .5]),

[-2,.4],[.3,.5],[.7,.9]),
(12,2, [.3, 4], .3, 4]

([-1,4],[5,.6],[.6,.8]),
([.5,.6],[.6,.7],[.9,1]

Step 1: Let us consider Cy and C5 as benefit criteria and C5 as cost criterion.
Step 2: From INR-decision matrix, ideal alternative A* can be obtained as follows:

AT = {<([-2,-4]7[2 8], [4,.8]), ([:3, .41, [.3, 4], [.5,.6]), ([.1, 3], [4, 5], [-8, .8])),
(([2,.5],[4,.5], [.6,1]), ([-2,.3], [.3, 4], [7, 8]), ([.1, 2], [:3, 4], [.3, .4]))
3,.

: t t
(([-0,.1],[:3,.3], 3, 4]), ([-1, 6], [5, 6], .6, .8]), ([-5, 8], [.6, 8][91])>}-

Step 3: By using the Eq. 312)), Eq. BI3) and Eq. (B14) similarity measures and weighted similarity
measures are obtained as shown in Table @l
Step 4: Rankings of the alternatives are shown in last column of Table @l

)
)

5. CONSISTENCY ANALYSIS OF SIMILARITY MEASURES BASED INR-SETS

In this section, to determine which similarity measure gives more consistent results, a method is given.

Let A = {A1, Ay, ..., A} be a set of alternatives, C = {C1,Cs,...,Ci} be a set of criteria and A* be set
of ideal alternative values obtained from decision matrix defined in illustrative example of similarity measures
based on INR-set. Then, consistency of the similarity measures based INR-values is define by as follows:

1 n
C( - Z A*L . _ (A*U,AiU)A|-

3

Here, A*Y and A*Y are determined with help of INR-decision matrix using formula of benefit criteria (BC) and
cost criteria (CC) given as follows: For A € {L = lower, U = upper}

y e maacl(tpA))7 >

(maz; (t'5))
e (Gl .,tp*f»(l*f,....,ip*fx(fl*f,....vfp*f»:< (ming(15), ..., ming (i75)),
(mini (f135) 1)
(min; (t1; ), mznz(t” ),
; )
D)

)
° 6*A <(t1*A "tp*jA)7( 1*1A7"' Zp*A) (fl* . 7fp*JA)> :< (maml(z yens maml(lp )
)

(ma‘ml(f 5/ - Max; (fp

DSDSDGD

Jeeee mml(fp

)
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TABLE 4. Similarity measure values and ranking of alternatives under INR-environment

Similarity measure Values Ranking order
7 = 0.83489
7 = 0.95699
7 = 0.95304

(A%, Ay

, Ax
", Az
A Ay = Az = Ay = A

bkkhﬁ

)

)

3)

* Ag)y = 0.94042
)b = 0.90283

2)p = 0.97768
3)
4)
1)
2)
3)
4)

(A*,Ai)D A2>A3>-A4>-A1

p = 0.97595
p = 0.96903
c = 0.90937
c =0.97790
c = 0.97758
4)c = 0.97007

(A*,Ai)c A2 - Ag - A4 - A1

~ o~ o~ S S S~~~ o~

D>D>D>D>D>D>D>D>

* A
*A
A
*A
* A
A
A
A

1) = 0.83534

2)s = 0.96355

3)s = 0.95420
4)

A

A

W(A* Ay A
* Ayg) g = 0.94270

* A

As = Az = Ay = Ay

TIIS
EEEE

NS N~~~

p = 0.90259
p = 0.98114
p = 0.97656
A*, Ay)p = 0,97021

)
W(A*, A g
)

T A1)e = 0.90011
)
)
)

A
A*Az Ay = As = Ay = Ay

—~

A*, As)e = 0.98138
A*, As)e = 0.97849
A*, Ay)e = 0.97112

W(A*,Al)c A2 - A3 - A4 - A1

I33zssss

respectively.

Also A" = {<<tlﬁi<0j>,...,tpﬁxcj»,<z’1ﬁi<0j>,. L(C) (F14,(Co)sens SPRCH))) €y € Candii € T |
and A4,V = {<(t1f§i(cj), Y (C))), (15,(C)),s s iP5 (CH)), (F1Y,(Cy), s 7Y (C -))> CjeCandie Jp}.

Example 3. Let us consider the Example[{.2 Then for all A € {J, D,C}, results and orderings are obtained
as in Table [,

Note that, C(A*, A;); > C(A*, A;)p > C(A*, A;)¢. Since consistency degree of Jaccard similarity measure
under INR environment is higher than consistency degrees of Dice and Cosine similarity measures, it is more
convenient using the Jaccard similarity measure for discussed problem.

6. CONCLUSION

In this paper, for SVNR-set and INR-sets three similarity measures method developed based on Jaccard, Dice
and Cosine similarity measures. Furthermore, applications of proposed similarity measure methods are given in
multi-criteria decision making and a method is developed to compare similarity measures of INR-sets, and an
application of this method is given. However, I hope that the main thrust of proposed formulas will be in the
field of equipment evaluation, data mining and investment decision making. Also in future, similarity measure
methods for INR-sets can be proposed based on the methods other than Jaccard, Dice and Cosine similarity
measures.
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