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Abstract: The aim of this paper is to introduce some new operators for aggregating single-valued
neutrosophic (SVN) information and to apply them to solve the multi-criteria decision-making
(MCDM) problems. Single-valued neutrosophic set, as an extension and generalization of an
intuitionistic fuzzy set, is a powerful tool to describe the fuzziness and uncertainty, and Muirhead
mean (MM) is a well-known aggregation operator which can consider interrelationships among any
number of arguments assigned by a variable vector. In order to make full use of the advantages of
both, we introduce two new prioritized MM aggregation operators, such as the SVN prioritized MM
(SVNPMM) and SVN prioritized dual MM (SVNPDMM) under SVN set environment. In addition,
some properties of these new aggregation operators are investigated and some special cases are
discussed. Furthermore, we propose a new method based on these operators for solving the MCDM
problems. Finally, an illustrative example is presented to testify the efficiency and superiority of the
proposed method by comparing it with the existing method.

Keywords: neutrosophic set; prioritized operator; Muirhead mean; multicriteria decision-making;
aggregation operators; dual aggregation operators

1. Introduction

Multicriteria decision-making (MCDM) is one of the hot topics in the decision-making field to
choose the best alternative to the set of the feasible one. In this process, the rating values of each
alternative include both precise data and experts’ subjective information [1,2]. However, traditionally,
it is assumed that the information provided by them are crisp in nature. However, due to the complexity
of the system day-by-day, the real-life contains many MCDM problems where the information is either
vague, imprecise or uncertain in nature [3]. To deal with it, the theory of fuzzy set (FS) [4] or extended
fuzzy sets such as intuitionistic fuzzy set (IFS) [5], interval-valued IFS (IVIFS) [6] are the most successful
ones, which characterize the criterion values in terms of membership degrees. Since their existence,
numerous researchers were paying more attention to these theories and developed several approaches
using different aggregation operators [7–10] and ranking methods [11–13] in the processing of the
information values.

It is remarked that neither the FS nor the IFS theory are able to deal with indeterminate and
inconsistent data. For instance, consider an expert which gives their opinion about a certain object
in such a way that 0.5 being the possibility that the statement is true, 0.7 being the possibility that
the statement is false and 0.2 being the possibility that he or she is not sure. Such type of data is not
handled with FS, IFS or IVIFS. To resolve this, Smarandache [14] introduced the concept neutrosophic
sets (NSs). In NS, each element in the universe of discourse set has degrees of truth membership,
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indeterminacy-membership and falsity membership, which takes values in the non-standard unit
interval (0−, 1+). Due to this non-standard unit interval, NS theory is hard to implement on the
practical problems. So in order to use NSs in engineering problems more easily, some classes of NSs
and their theories were proposed [15,16]. Wang et al. [16] presented the class of NS named as interval
NS while in Wang et al. [15], a class of single-valued NS (SVNS) is presented. Due to its importance,
several researchers have made their efforts to enrich the concept of NSs in the decision-making process
and some theories such as distance measures [17], score functions [18], aggregation operators [19–23]
and so on.

Generally, aggregation operators (AOs) play an important role in the process of MCDM problems
whose main target is to aggregate a collection of the input to a single number. In that direction,
Ye [21] presented the operational laws of SVNSs and proposed the single-valued neutrosophic
(SVN) weighted averaging (SVNWA) and SVN weighted geometric average (SVNWGA) operators.
Peng et al. [22] defined the improved operations of SVN numbers (SVNNs) and developed their
corresponding ordered weighted average/geometric aggregation operator. Nancy and Garg [24]
developed the weighted average and geometric average operators by using the Frank norm operations.
Liu et al. [25] developed some generalized neutrosophic aggregation operators based on Hamacher
operations. Zhang et al. [26] presented the aggregation operators under interval neutrosophic set (INS)
environment and Aiwu et al. [27] proposed some of its generalized operators. Garg and Nancy [19]
developed a nonlinear optimization model to solve the MCDM problem under the INS environment.

From the above mentioned AOs, it is analyzed that all these studies assume that all the
input arguments used during aggregation are independent of each other and hence there is no
interrelationship between the argument values. However, in real-world problems, there always occurs
a proper relationship between them. For instance, if a person wants to purchase a house then there is a
certain relationship between its cost and the locality. Clearly, both the factors are mutually dependent
and interacting. In order to consider the interrelationship of the input arguments, Bonferroni mean (BM)
[28], Maclaurin symmetric mean (MSM) [29], Heronian mean (HM) [30] etc., are the useful aggregation
functions. Yager [31] proposed the concept of BM whose main characteristic is its capability to capture
the interrelationship between the input arguments. Garg and Arora [32] presented BM aggregation
operators under the intuitionistic fuzzy soft set environment. In these functions, BM can capture
the interrelationship between two arguments while others can capture more than two relationships.
Taking the advantages of these functions in a neutrosophic domain, Liu and Wang [33] applied the
BM to a neutrosophic environment and introduce the SVN normalized weighted Bonferroni mean
(SVNNWBM) operator. Wang et al. [34] proposed the MSM aggregation operators to capture the
correlation between the aggregated arguments. Li et al. [20] presented HM operators to solve the
MCDM problems under SVNS environment. Garg and Nancy [35] presented prioritized AOs under
the linguistic SVNS environment to solve the decision-making problems. Wu et al. [36] developed
some prioritized weighted averaging and geometric aggregation operators for SVNNs. Ji et al. [37]
established the single-valued prioritized BM operator by using the Frank operations. An alternative to
these aggregations, the Muirhead mean (MM) [38] is a powerful and useful aggregation technique.
The prominent advantage of the MM is that it can consider the interrelationships among all arguments,
which makes it more powerful and comprehensive than BM, MSM and HM. In addition, MM has a
parameter vector which can make the aggregation process more flexible.

Based on the above analysis, we know the decision-making problems are becoming more and
more complex in the real world. In order to select the best alternative(s) for the MCDM problems, it is
necessary to express the uncertain information in a more profitable way. In addition, it is important to
deal with how to consider the relationship between input arguments. Keeping all these features in
mind, and by taking the advantages of the SVNS, we combine the prioritized aggregation and MM and
propose prioritized MM (PMM) operator by considering the advantages of both. These considerations
have led us to consider the following main objectives for this paper:
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1. to handle the impact of the some unduly high or unduly low values provided by the decision
makers on to the final ranking;

2. to present some new aggregation operators to aggregate the preferences of experts element;
3. to develop an algorithm to solve the decision-making problems based on proposed operators;
4. to present some example in which relevance of the preferences in SVN decision problems is

made explicit.

Since in our real decision-making problems, we always encounter a problem of some attributes’
values, provided by the decision makers, whose impact on the decision-making process are unduly
high or unduly low; this consequently results in a bad impression on the final results. To handle it,
in the first objective we utilize prioritized averaging (PA) as an aggregation function which can
handle such a problem very well. To achieve the second objective, we develop two new AOs,
named as SVN prioritized MM (SVNPMM) and SVN prioritized dual MM (SVNPDMM) operators,
by extending the operations of SVNNs by using MM and PA operators. MM operator is a powerful
and useful aggregation technique with the feature that it considers the interrelationships among all
arguments which makes it more powerful and comprehensive than BM [28], MSM [29] and HM [30].
Moreover, the MM has a parameter vector which can make the aggregation process more flexible.
Several properties and some special cases from the proposed operators are investigated. To achieve
the third objective, we establish an MCDM method based on these proposed operators under the
SVNS environment where preferences related to each alternative is expressed in terms of SVNNs.
An illustrative example is presented to testify the efficiency and superiority of the proposed method
by comparative analysis with the other existing methods for fulfilling the fourth objective. Further,
apart from these, we verify that the methods proposed in this paper have advantages with respect to
existing operators as follows: (1) some of the existing AOs can be taken as a special case of the proposed
operators under NSs environment, (2) they consider the interrelationship among all arguments, (3) they
are more adaptable and feasible than the existing AOs based on the parameter vector, (4) the presented
approach considers the preferences of the decision maker in terms of risk preference as well as
risk aversion.

The rest of the manuscript is organized as follows. In Section 2, we briefly review the concepts of
SVNS and the aggregation operators. In Section 3, two new AOs based on PA and MM operations
are developed under SVNS environment and their desirable properties are investigated. In addition,
some special cases of the operators by varying the parametric value are discussed. In Section 4,
we explore the applications of SVNN to MCDM problems with the aid of the proposed decision-making
method and demonstrate with a numerical example. Finally, Section 5 gives the concluding remarks.

2. Preliminaries

In this section, some basic concepts related to SVNSs have been defined over the universal set X
with a generic element x ∈ X.

Definition 1 ([14]). A neutrosophic set (NS) α comprises of three independent degrees in particular truth (µα),
indeterminacy (ρα), and falsity (να) which are characterized as

α =
{
〈x, µα(x), ρα(x), να(x) | x ∈ X〉

}
, (1)

where µα(x), ρα(x), να(x) is the subset of the non-standard unit interval (0−, 1+) such that 0− ≤ µα(x) +
ρα(x) + να(x) ≤ 3+.

Definition 2 ([16]). A single-valued neutrosophic set (SVNS) α in X is defined as

α =
{
〈x, µα(x), ρα(x), να(x) | x ∈ X〉

}
, (2)
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where µα(x), ρα(x), να(x) ∈ [0, 1] such that 0 ≤ µα(x) + ρα(x) + να(x) ≤ 3 for all x ∈ X. A SVNS is an
instance of an NS.

For convenience, we denote this pair as α = (µα, ρα, να), throughout this article, and called as
SVNN with the conditions µα, ρα, να ∈ [0, 1] and µα + ρα + να ≤ 3.

Definition 3 ([18]). Let α = (µα, ρα, να) be a SVNN. A score function s of α is defined as

s(α) =
1 + (µα − 2ρα − να)(2− µα − να)

2
. (3)

Based on this function, an ordered relation between two SVNNs α and β is stated as, if s(α) > s(β) then α > β.

Definition 4 ([16,22]). Let α = (µ, ρ, ν), α1 = (µ1, ρ1, ν1) and α2 = (µ2, ρ2, ν2) be three SVNNs and λ > 0
be real number. Then, we have

1. αc = (ν, ρ, µ);
2. α1 ≤ α2 if µ1 ≤ µ2, ρ1 ≥ ρ2 and ν1 ≥ ν2;
3. α1 = α2 if and only if α1 ≤ α2 and α2 ≤ α1;
4. α1 ∩ α2 = (min(µ1, µ2), max(ρ1, ρ2), max(ν1, ν2));
5. α1 ∪ α2 = (max(µ1, µ2), min(ρ1, ρ2), min(ν1, ν2));
6. α1 ⊕ α2 = (µ1 + µ2 − µ1µ2, ρ1ρ2, ν1ν2);
7. α1 ⊗ α2 = (µ1µ2, ρ1 + ρ2 − ρ1ρ2, ν1 + ν2 − ν1ν2);
8. λα1 = (1− (1− µ1)

λ, ρλ
1 , νλ

1 );
9. αλ

1 = (µλ
1 , 1− (1− ρ1)

λ, 1− (1− ν1)
λ).

Definition 5 ([36]). For a collection of SVNNs αj = (µj, ρj, νj)(j = 1, 2, . . . , n), the prioritized weighted
aggregation operators are defined as

1. SVN prioritized weighted average (SVNPWA) operator

SVNPWA(α1, α2, . . . , αn) =

1−
n

∏
j=1

(1− µj)

Hj
n
∑

j=1
Hj

,
n

∏
j=1

(ρj)

Hj
n
∑

j=1
Hj

,
n

∏
j=1

(νj)

Hj
n
∑

j=1
Hj

 , (4)

2. SVN prioritized geometric average (SVNPGA) operator

SVNPGA(α1, α2, . . . , αn) =

 n

∏
j=1

(µj)

Hj
n
∑

j=1
Hj

, 1−
n

∏
j=1

(1− ρj)

Hj
n
∑

j=1
Hj

, 1−
n

∏
j=1

(1− νj)

Hj
n
∑

j=1
Hj

 , (5)

where H1 = 1 and Hj =
j−1
∏

k=1
s(αk); (j = 2, . . . , n).

Definition 6 ([38]). For a non-negative real numbers hj(j = 1, 2, . . . , n), (MM) operator over the parameter
P = (p1, p2, . . . , pn) ∈ Rn is defined as

MMP(h1, h2, . . . , hn) =

(
1
n! ∑

σ∈Sn

n

∏
j=1

h
pj
σ(j)

) 1
n
∑

j=1
pj

, (6)

where σ is the permutation of (1, 2, . . . , n) and Sn is set of all permutations of (1, 2, . . . , n).
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By assigning some special vectors to P, we can obtain some special cases of the MM:

1. If P = (1, 0, . . . , 0), the MM is reduced to

MM(1,0,...,0)(h1, h2, . . . , hn) =
1
n

n

∑
j=1

hj, (7)

which is the arithmetic averaging operator.
2. If P = (1/n, 1/n, . . . , 1/n), the MM is reduced to

MM(1/n,1/n,...,1/n)(h1, h2, . . . , hn) =
n

∏
j=1

h1/n
j , (8)

which is the geometric averaging operator.
3. If P = (1, 1, 0, 0, . . . , 0), then the MM is reduced to

MM(1,1,0,0,...,0)(h1, h2, . . . , hn) =

 1
n(n + 1)

n

∑
i,j=1
i 6=j

hihj


1/2

, (9)

which is the BM operator [28].

4. If P = (

k︷ ︸︸ ︷
1, 1, . . . , 1,

n−k︷ ︸︸ ︷
0, 0, . . . , 0), then the MM is reduced to

MM(

k︷ ︸︸ ︷
1, 1, . . . , 1,

n−k︷ ︸︸ ︷
0, 0, . . . , 0)(h1, h2, . . . , hn) =

 1
Cn

k
∑

1≤i1<
...<ik≤n

k

∏
j=1

hij


1/k

, (10)

which is the MSM operator [29].

3. Neutrosophic Prioritized Muirhead Mean Operators

In this section, by considering the overall interrelationships among the multiple input arguments,
we develop some new prioritized based MM aggregation operators for a collection of SVNNs
αj; (j = 1, 2, . . . , n), denoted by Ω. Assume that σ is the permutation of (1, 2, . . . , n) such that
ασ(j−1) ≤ ασ(j) for j = 2, 3, . . . , n.

3.1. Single-Valued Neutrosophic Prioritized Muirhead Mean (SVNPMM) Operator

Definition 7. For a collection of SVNNs αj(j = 1, 2, . . . , n), a SVNPMM operator is a mapping SVNPMM :
Ω→ Ω defined as

SVNPMM(α1, α2, . . . , αn) =

 1
n!

⊕
σ∈Sn

n

∏
j=1

n
Hσ(j)
n
∑

j=1
Hj

ασ(j)


pj


1
n
∑

j=1
pj

, (11)

where H1 = 1, Hj =
j−1
∏

k=1
s(αk); (j = 2, . . . , n), Sn is collection of all permutations of (1, 2, . . . , n) and

P = (p1, p1, . . . , pn) ∈ Rn be a vector of parameters.
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Theorem 1. For a collection of SVNNs αj = (µj, ρj, νj)(j = 1, 2, . . . , n), the aggregated value by Equation (11)
is again a SVNN and given by

SVNPMM(α1, α2, . . . , αn)

=



1−

 ∏
σ∈Sn

1−
n

∏
j=1

1− (1− µσ(j))

n
Hσ(j)
n
∑

j=1
Hj


pj


1
n!


1
n
∑

j=1
pj

,

1−

1−

 ∏
σ∈Sn

1−
n

∏
j=1

1− ρσ(j)

n
Hσ(j)
n
∑

j=1
Hj


pj


1
n!


1
n
∑

j=1
pj

,

1−

1−

 ∏
σ∈Sn

1−
n

∏
j=1

1− νσ(j)

n
Hσ(j)
n
∑

j=1
Hj


pj


1
n!


1
n
∑

j=1
pj



. (12)

Proof. For SVNN αj(j = 1, 2, . . . , n) and by Definition 4, we have

n
Hσ(j)
n
∑

j=1
Hj

ασ(j) =

1− (1− µσ(j))

n
Hσ(j)
n
∑

j=1
Hj

, ρσ(j)

n
Hσ(j)
n
∑

j=1
Hj

, νσ(j)

n
Hσ(j)
n
∑

j=1
Hj



and

n
Hσ(j)
n
∑

j=1
Hj

ασ(j)


pj

=



1− (1− µσ(j))

n
Hσ(j)
n
∑

j=1
Hj


pj

, 1−

1− ρσ(j)

n
Hσ(j)
n
∑

j=1
Hj


pj

,

1−

1− νσ(j)

n
Hσ(j)
n
∑

j=1
Hj


pj


.

Thus,

⊕
σ∈Sn

n

∏
j=1

n
Hσ(j)
n
∑

j=1
Hj

ασ(j)


pj

=



1− ∏
σ∈Sn

(
1−

n

∏
j=1

(
1− (1− µσ(j))

n
Hσ(j)
n
∑

j=1
Hj

)pj)
,

∏
σ∈Sn

(
1−

n

∏
j=1

(
1− ρσ(j)

n
Hσ(j)
n
∑

j=1
Hj
)pj
)

,

∏
σ∈Sn

(
1−

n

∏
j=1

(
1− νσ(j)

n
Hσ(j)
n
∑

j=1
Hj
)pj
)


.



Symmetry 2018, 10, 280 7 of 25

Now,

SVNPMM(α1, α2, . . . , αn) =

 1
n!

⊕
σ∈Sn

n

∏
j=1

n
Hσ(j)
n
∑

j=1
Hj

ασ(j)


pj


1
n
∑

j=1
pj

=



1−

 ∏
σ∈Sn

1−
n

∏
j=1

1− (1− µσ(j))

n
Hσ(j)
n
∑

j=1
Hj


pj


1
n!


1
n
∑

j=1
pj

,

1−

1−

 ∏
σ∈Sn

1−
n

∏
j=1

1− ρσ(j)

n
Hσ(j)
n
∑

j=1
Hj


pj


1
n!


1
n
∑

j=1
pj

,

1−

1−

 ∏
σ∈Sn

1−
n

∏
j=1

1− νσ(j)

n
Hσ(j)
n
∑

j=1
Hj


pj


1
n!


1
n
∑

j=1
pj



.

Thus Equation (12) holds. Furthermore, 0 ≤ µσ(j), ρσ(j), νσ(j) ≤ 1 so we have

1−
(

1− µσ(j)

)n
Hσ(j)
n
∑

j=1
Hj
∈ [0, 1]

and

n

∏
j=1

1− (1− µσ(j))

n
Hσ(j)
n
∑

j=1
Hj


pj

∈ [0, 1],

which implies that

1−

 ∏
σ∈Sn

1−
n

∏
j=1

1− (1− µσ(j))

n
Hσ(j)
n
∑

j=1
Hj


pj

 ∈ [0, 1].

Hence,

0 ≤

1−

 ∏
σ∈Sn

1−
n

∏
j=1

1− (1− µσ(j))

n
Hσ(j)
n
∑

j=1
Hj


pj


1
n!


1
n
∑

j=1
pj

≤ 1.
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Similarly, we have

0 ≤ 1−

1−

 ∏
σ∈Sn

1−
n

∏
j=1

1− ρσ(j)

n
Hσ(j)
n
∑

j=1
Hj


pj


1
n!


1
n
∑

j=1
pj

≤ 1

and

0 ≤ 1−

1−

 ∏
σ∈Sn

1−
n

∏
j=1

1− νσ(j)

n
Hσ(j)
n
∑

j=1
Hj


pj


1
n!


1
n
∑

j=1
pj

≤ 1.

which complete the proof.

The working of the proposed operator is demonstrated through a numerical example, which is
illustrated as follow.

Example 1. Let α1 = (0.5, 0.2, 0.3), α2 = (0.3, 0.5, 0.4) and α3 = (0.6, 0.5, 0.2) be three SVNNs and

P = (1, 0.5, 0.3) be the given parameter vector. By utilizing the given information and Hj =
j−1
∏

k=1
s(αk);

(j = 2, 3), we get H1 = 1, H2 = 0.74 and H3 = 0.2257. Therefore,

∏
σ∈S3

1−
3

∏
j=1

1− (1− µσ(j))

3
Hσ(j)
3
∑

j=1
Hj


pj


=

{
1−

(
1− (1− 0.5)3×0.5087

)1

×
(

1− (1− 0.3)3×0.3765
)0.5

×
(

1− (1− 0.6)3×0.1148
)0.3

}

×
{

1−
(

1− (1− 0.3)3×0.3765
)1

×
(

1− (1− 0.5)3×0.5087
)0.5

×
(

1− (1− 0.6)3×0.1148
)0.3

}

×
{

1−
(

1− (1− 0.6)3×0.1148
)1

×
(

1− (1− 0.3)3×0.3765
)0.5

×
(

1− (1− 0.5)3×0.5087
)0.3

}

×
{

1−
(

1− (1− 0.3)3×0.3765
)1

×
(

1− (1− 0.6)3×0.1148
)0.5

×
(

1− (1− 0.5)3×0.5087
)0.3

}

×
{

1−
(

1− (1− 0.5)3×0.5087
)1

×
(

1− (1− 0.6)3×0.1148
)0.5

×
(

1− (1− 0.3)3×0.3765
)0.3

}

×
{

1−
(

1− (1− 0.6)3×0.1148
)1

×
(

1− (1− 0.5)3×0.5087
)0.5

×
(

1− (1− 0.3)3×0.3765
)0.3

}
= 0.0052.
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Similarly, we have

∏
σ∈S3

1−
3

∏
j=1

1− ρ

3
Hσ(j)
3
∑

j=1
Hj

σ(j)


pj


=

{
1−

(
1− (0.2)3×0.5087

)1

×
(

1− (0.5)3×0.3765
)0.5

×
(

1− (0.5)3×0.1148
)0.3

}

×
{

1−
(

1− (0.5)3×0.3765
)1

×
(

1− (0.2)3×0.5087
)0.5

×
(

1− (0.5)3×0.1148
)0.3

}

×
{

1−
(

1− (0.5)3×0.1148
)1

×
(

1− (0.5)3×0.3765
)0.5

×
(

1− (0.2)3×0.5087
)0.3

}

×
{

1−
(

1− (0.5)3×0.3765
)1

×
(

1− (0.5)3×0.1148
)0.5

×
(

1− (0.2)3×0.5087
)0.3

}

×
{

1−
(

1− (0.2)3×0.5087
)1

×
(

1− (0.5)3×0.1148
)0.5

×
(

1− (0.5)3×0.3765
)0.3

}

×
{

1−
(

1− (0.5)3×0.1148
)1

×
(

1− (0.2)3×0.5087
)0.5

×
(

1− (0.5)3×0.3765
)0.3

}
= 0.000093196

and

∏
σ∈S3

1−
3

∏
j=1

1− ν

3
Hσ(j)
3
∑

j=1
Hj

σ(j)


pj


=

{
1−

(
1− (0.3)3×0.5087

)1

×
(

1− (0.4)3×0.3765
)0.5

×
(

1− (0.2)3×0.1148
)0.3

}

×
{

1−
(

1− (0.4)3×0.3765
)1

×
(

1− (0.3)3×0.5087
)0.5

×
(

1− (0.2)3×0.1148
)0.3

}

×
{

1−
(

1− (0.2)3×0.1148
)1

×
(

1− (0.4)3×0.3765
)0.5

×
(

1− (0.3)3×0.5087
)0.3

}

×
{

1−
(

1− (0.4)3×0.3765
)1

×
(

1− (0.2)3×0.1148
)0.5

×
(

1− (0.3)3×0.5087
)0.3

}

×
{

1−
(

1− (0.3)3×0.5087
)1

×
(

1− (0.2)3×0.1148
)0.5

×
(

1− (0.4)3×0.3765
)0.3

}

×
{

1−
(

1− (0.2)3×0.1148
)1

×
(

1− (0.3)3×0.5087
)0.5

×
(

1− (0.4)3×0.3765
)0.3

}
= 0.00000093195.
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Hence, by using Equation (12), we get the aggregated value by SVNPMM is

SVNPMM(α1, α2, α3)

=


(

1− (0.0052)1/6
)1/1.8

, 1−
(

1− (0.000093196)1/6
)1/1.8

,

1−
(

1− (0.00000093195)1/6
)1/1.8


= (0.7415, 0.1246, 0.0562).

It is observed from the proposed operator that it satisfies the certain properties which are stated
as follows.

Theorem 2. If αj = (µj, ρj, νj) and α′j = (µ′j, ρ′j, ν′j) are two SVNNs such that µj ≤ µ′j, ρj ≥ ρ′j and νj ≥ ν′j
for all j, then

SVNPMM(α1, α2, . . . , αn) ≤ SVNPMM(α′1, α′2, . . . , α′n).

This property is called monotonicity.

Proof. For two SVNNs αj and α′j, we have ασ(j) ≤ α′
σ(j), for all j which implies that µσ(j) ≤ µ′

σ(j) and

(1− µσ(j))

n
Hσ(j)
n
∑

j=1
Hj
≥ (1− µ′

σ(j))

n
H′

σ(j)
n
∑

j=1
H′j

, where H1 = 1, Hj =
j−1
∏

k=1
s(αk) and H′1 = 1, H′j =

j−1
∏

k=1
s(α′k) for

(j = 2, 3, . . . , n). Thus,

1−
(
1− µσ(j)

)n
Hσ(j)
n
∑

j=1
Hj


pj

≤

1−
(
1− µ′σ(j))

n
H′

σ(j)
n
∑

j=1
H′j


pj

and
n

∏
j=1

1−
(
1− µσ(j)

)n
Hσ(j)
n
∑

j=1
Hj


pj

≤
n

∏
j=1

1−
(
1− µ′σ(j))

n
H′

σ(j)
n
∑

j=1
H′j


pj

.

Further, we have

∏
σ∈Sn

1−
n

∏
j=1

1−
(
1− µσ(j)

)n
Hσ(j)
n
∑

j=1
Hj


pj

≥ ∏
σ∈Sn

1−
n

∏
j=1

1−
(
1− µ′σ(j))

n
H′

σ(j)
n
∑

j=1
H′j


pj
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and

 ∏
σ∈Sn

1−
n

∏
j=1

1−
(
1− µσ(j)

)n
Hσ(j)
n
∑

j=1
Hj


pj


1
n!

≥

 ∏
σ∈Sn

1−
n

∏
j=1

1−
(
1− µ′σ(j)

)n
H′

σ(j)
n
∑

j=1
H′j


pj


1
n!

.

Hence, we get

1−

 ∏
σ∈Sn

1−
n

∏
j=1

1−
(
1− µσ(j)

)n
Hσ(j)
n
∑

j=1
Hj


pj


1
n!


1
n
∑

j=1
pj

≤

1−

 ∏
σ∈Sn

1−
n

∏
j=1

1−
(
1− µ′σ(j)

)n
H′

σ(j)
n
∑

j=1
H′j


pj


1
n!



1
n
∑

j=1
pj

.

Similarly, we have

1−

1−

 ∏
σ∈Sn

1−
n

∏
j=1

1− ρσ(j)

n
Hσ(j)
n
∑

j=1
Hj


pj


1
n!


1
n
∑

j=1
pj

≥ 1−

1−

 ∏
σ∈Sn

1−
n

∏
j=1

1− ρ′σ(j)

n
Hσ(j)
n
∑

j=1
Hj


pj


1
n!


1
n
∑

j=1
pj

and

1−

1−

 ∏
σ∈Sn

1−
n

∏
j=1

1− νσ(j)

n
Hσ(j)
n
∑

j=1
Hj


pj


1
n!


1
n
∑

j=1
pj

≥ 1−

1−

 ∏
σ∈Sn

1−
n

∏
j=1

1− ν′σ(j)

n
Hσ(j)
n
∑

j=1
Hj


pj


1
n!


1
n
∑

j=1
pj

.
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Therefore, by Definition 4, we have

SVNPMM(α1, α2, . . . , αn) ≤ SVNPMM(α′1, α′2, . . . , α′n).

Theorem 3. For a collection of SVNNs αj = (µj, ρj, νj)(j = 1, 2, . . . , n). Let α− = (µ−, ρ−, ν−) and
α+ = (µ+, ρ+, ν+) be the lower and upper bound, respectively, of the SVNNs where µ− = min

j
{µj},

ρ− = max
j
{ρj}, ν− = max

j
{νj}, µ+ = max

j
{µj}, ρ+ = min

j
{ρj} and ν+ = min

j
{νj}, then

α− ≤ SVNPMM(α1, α2, . . . , αn) ≤ α+.

This property is called boundedness.

Proof. Since min
j
{µj} ≤ µj, therefore min

j
{µj} ≤ µσ(j), which implies

(
1−min

j
µj

)n
Hσ(j)
n
∑

j=1
Hj
≥
(

1− µσ(j)

)n
Hσ(j)
n
∑

j=1
Hj

and 1−
(

1−min
j

µj

)n
Hσ(j)
n
∑

j=1
Hj


pj

≤

1−
(

1− µσ(j)

)n
Hσ(j)
n
∑

j=1
Hj


pj

.

Then,

n

∏
j=1

1−
(

1−min
j

µj

)n
Hσ(j)
n
∑

j=1
Hj


pj

≤
n

∏
j=1

1−
(

1− µσ(j)

)n
Hσ(j)
n
∑

j=1
Hj


pj

.

Further,

∏
σ∈Sn

1−
n

∏
j=1

1−
(

1−min
j

µj

)n
Hσ(j)
n
∑

j=1
Hj


pj

≥ ∏
σ∈Sn

1−
n

∏
j=1

1−
(

1− µσ(j)

)n
Hσ(j)
n
∑

j=1
Hj


pj ,
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which implies that

1−

 ∏
σ∈Sn

1−
n

∏
j=1

1−
(

1−min
j

µj

)n
Hσ(j)
n
∑

j=1
Hj


pj


1
n!


1
n
∑

j=1
pj

≤

1−

 ∏
σ∈Sn

1−
n

∏
j=1

1−
(

1− µσ(j)

)n
Hσ(j)
n
∑

j=1
Hj


pj


1
n!


1
n
∑

j=1
pj

,

i.e.,

µ− ≤

1−

 ∏
σ∈Sn

1−
n

∏
j=1

1−
(
1− µσ(j)

)n
Hσ(j)
n
∑

j=1
Hj


pj


1
n!


1
n
∑

j=1
pj

.

In the same manner, we get

ρ− ≥ 1−

1−

 ∏
σ∈Sn

1−
n

∏
j=1

1− ρσ(j)

n
Hσ(j)
n
∑

j=1
Hj


pj


1
n!


1
n
∑

j=1
pj

and

ν− ≥ 1−

1−

 ∏
σ∈Sn

1−
n

∏
j=1

1− νσ(j)

n
Hσ(j)
n
∑

j=1
Hj


pj


1
n!


1
n
∑

j=1
pj

.

Hence, (µ−, ρ−, ν−) ≤ SVNPMM(α1, α2, . . . , αn). Similarly, we have

SVNPMM(α1, α2, . . . , αn) ≤ (µ+, ρ+, ν+),

which completes the proof.

Theorem 4. Let α̃j be any permutation of αj then we have

SVNPMM(α1, α2, . . . , αn) = SVNPMM(α̃1, α̃2, . . . , α̃n).

This property is called commutativity.

Proof. The proof of this theorem can be easily followed from Equation (12), so we omit it here.

Theorem 5. If the priority level of all the SVNNs is taken to be the same then SVNPMM operator reduces to
single-valued neutrosophic Muirhead mean (SVNMM) operator. This property is called reducibility.
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Proof. Take ξ j =
Hj

n
∑

j=1
Hj

= 1
n for all j denotes the prioritized level. As ξ j is same for all j, so, we have

(nξ j)ασ(j) = ασ(j), which implies

SVNPMM(α1, α2, . . . , αn) =

(
1
n!

⊕
σ∈Sn

n

∏
j=1

α
pj
σ(j)

) 1
n
∑

j=1
pj

= SVNMM(α1, α2, . . . , αn).

However, apart from these, the following particular cases are observed from the proposed
SVNPMM operator by assigning different values to P = (p1, p2, . . . , pn).

1. If P = (1, 0, . . . , 0), then SVNPMM operator becomes the SVN prioritized weighted average
(SVNPWA) operator which is given as

SVNPMM(α1, α2, . . . , αn) =

 1
n!

⊕
σ∈Sn

n
Hσ(1)
n
∑

j=1
Hj

ασ(1)




1
n
∑

j=1
pj

=
n⊕

j=1

Hj
n
∑

j=1
Hj

αj

= SVNPWA(α1, α2, . . . , αn).

2. When P = (λ, 0, . . . , 0), then SVNPMM operator yields to SVN generalized hybrid prioritized
weighted average (SVNGHPWA) operator as shown below

SVNPMM(α1, α2, . . . , αn) =

 1
n!

⊕
σ∈Sn

n
Hσ(1)
n
∑

j=1
Hj

ασ(1)


λ

1
λ

=

 1
n

n⊕
j=1

n
Hj

n
∑

j=1
Hj

αj


λ

1
λ

= SVNGHPWA(α1, α2, . . . , αn).

3. If P = (1, 1, 0, . . . , 0), then Equation (11) reduces to SVN prioritized bonferroni mean (SVNPBM)
operator as below
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SVNPMM(α1, α2, . . . , αn) =

 1
n!

⊕
σ∈Sn

n
Hσ(1)
n
∑

j=1
Hj

ασ(1)


n

Hσ(2)
n
∑

j=1
Hj

ασ(2)




1
2

=

n2

n!

n⊕
r,s=1
r 6=s

 Hr
n
∑

r=1
Hr

αr


 Hs

n
∑

s=1
Hs

αs




1
2

= SVNPBM(α1, α2, . . . , αn).

4. If P = (

t terms︷ ︸︸ ︷
1, 1 . . . , 1,

n− t terms︷ ︸︸ ︷
0, 0 . . . , 0 ), then SVNPMM operator yields to SVN prioritized Maclaurin

symmetric mean (SVNPMSM) operator as follows

SVNPMM(α1, α2, . . . , αn) =

2ntt
n!

⊕
1<j1<···
<jt<n

t⊗
q=1

 Hjq
n
∑

r=1
Hr

αjq




1
t

.

3.2. Single-Valued Neutrosophic Prioritized Dual Muirhead Mean Operator

In this section, we propose prioritized dual aggregation operator based on the MM under the
SVNS environment.

Definition 8. A SVNPDMM operator is a mapping SVNPDMM : Ωn → Ω given by

SVNPDMM(α1, α2, . . . , αn) =
1

n
∑

j=1
pj

 ∏
σ∈Sn

n⊕
j=1

(
pjασ(j)

)n
Hσ(j)
n
∑

j=1
Hj


1
n!

. (13)

Theorem 6. The collective value by using Equation (13) is still a SVNN and is given as

SVNPDMM(α1, α2, . . . , αn)

=



1−

1−

 ∏
σ∈Sn

1−
n

∏
j=1

1− µσ(j)

n
Hσ(j)
n
∑

j=1
Hj


pj



1
n!


1
n
∑

j=1
pj

,

1−

 ∏
σ∈Sn

1−
n

∏
j=1

1− (1− ρσ(j))

n
Hσ(j)
n
∑

j=1
Hj


pj



1
n!


1
n
∑

j=1
pj

,

1−

 ∏
σ∈Sn

1−
n

∏
j=1

1− (1− νσ(j))

n
Hσ(j)
n
∑

j=1
Hj


pj



1
n!


1
n
∑

j=1
pj



. (14)

Proof. The proof follows from Theorem 1.

In order to illustrate the working of this operator, we demonstrate it through an illustrative
example as follows.
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Example 2. If we have taken the data as considered in Example 1 to illustrate the aggregation operator as
defined in Theorem 6 then, we have

∏
σ∈S3

1−
3

∏
j=1

1− µ

3
Hσ(j)
3
∑

j=1
Hj

σ(j)


pj


=

{
1−

(
1− (0.5)3×0.5087

)1

×
(

1− (0.3)3×0.3765
)0.5

×
(

1− (0.6)3×0.1148
)0.3

}

×
{

1−
(

1− (0.3)3×0.3765
)1

×
(

1− (0.5)3×0.5087
)0.5

×
(

1− (0.6)3×0.1148
)0.3

}

×
{

1−
(

1− (0.6)3×0.1148
)1

×
(

1− (0.3)3×0.3765
)0.5

×
(

1− (0.5)3×0.5087
)0.3

}

×
{

1−
(

1− (0.3)3×0.3765
)1

×
(

1− (0.6)3×0.1148
)0.5

×
(

1− (0.5)3×0.5087
)0.3

}

×
{

1−
(

1− (0.5)3×0.5087
)1

×
(

1− (0.6)3×0.1148
)0.5

×
(

1− (0.3)3×0.3765
)0.3

}

×
{

1−
(

1− (0.6)3×0.1148
)1

×
(

1− (0.5)3×0.5087
)0.5

×
(

1− (0.3)3×0.3765
)0.3

}
= 0.00042495.

Similarly, we have

∏
σ∈S3

1−
3

∏
j=1

1− (1− ρσ(j))

3
Hσ(j)
3
∑

j=1
Hj


pj

=

{
1−

(
1− (1− 0.2)3×0.5087

)1

×
(

1− (1− 0.5)3×0.3765
)0.5

×
(

1− (1− 0.5)3×0.1148
)0.3

}

×
{

1−
(

1− (1− 0.5)3×0.3765
)1

×
(

1− (1− 0.2)3×0.5087
)0.5

×
(

1− (1− 0.5)3×0.1148
)0.3

}

×
{

1−
(

1− (1− 0.5)3×0.1148
)1

×
(

1− (1− 0.5)3×0.3765
)0.5

×
(

1− (1− 0.2)3×0.5087
)0.3

}

×
{

1−
(

1− (1− 0.5)3×0.3765
)1

×
(

1− (1− 0.5)3×0.1148
)0.5

×
(

1− (1− 0.2)3×0.5087
)0.3

}

×
{

1−
(

1− (1− 0.2)3×0.5087
)1

×
(

1− (1− 0.5)3×0.1148
)0.5

×
(

1− (1− 0.5)3×0.3765
)0.3

}

×
{

1−
(

1− (1− 0.5)3×0.1148
)1

×
(

1− (1− 0.2)3×0.5087
)0.5

×
(

1− (1− 0.5)3×0.3765
)0.3

}
= 0.0268
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and

∏
σ∈S3

1−
3

∏
j=1

1− (1− νσ(j))

3
Hσ(j)
3
∑

j=1
Hj


pj


=

{
1−

(
1− (1− 0.3)3×0.5087

)1

×
(

1− (1− 0.4)3×0.3765
)0.5

×
(

1− (1− 0.2)3×0.1148
)0.3

}

×
{

1−
(

1− (1− 0.4)3×0.3765
)1

×
(

1− (1− 0.3)3×0.5087
)0.5

×
(

1− (1− 0.2)3×0.1148
)0.3

}

×
{

1−
(

1− (1− 0.2)3×0.1148
)1

×
(

1− (1− 0.4)3×0.3765
)0.5

×
(

1− (1− 0.3)3×0.5087
)0.3

}

×
{

1−
(

1− (1− 0.4)3×0.3765
)1

×
(

1− (1− 0.2)3×0.1148
)0.5

×
(

1− (1− 0.3)3×0.5087
)0.3

}

×
{

1−
(

1− (1− 0.3)3×0.5087
)1

×
(

1− (1− 0.2)3×0.1148
)0.5

×
(

1− (1− 0.4)3×0.3765
)0.3

}

×
{

1−
(

1− (1− 0.2)3×0.1148
)1

×
(

1− (1− 0.3)3×0.5087
)0.5

×
(

1− (1− 0.4)3×0.3765
)0.3

}
= 0.0791.

Hence,

SVNPDMM(α1, α2, α3) =


1−

(
1− (0.00042495)

1
6

) 1
1.8

,
(

1− (0.0268)
1
6

) 1
1.8

,

(
1− (0.0791)

1
6

) 1
1.8


= (0.1631, 0.6441, 0.5535).

Similar to SVNPMM operator, it is observed that this SVNPDMM operator also satisfies same
properties for a collection of SVNNs αj(j = 1, 2, . . . , n) which are stated without proof as below.

(P1) Monotonicity: If αj ≤ α′j for all j, then

SVNPDMM(α1, α2, . . . , αn) ≤ SVNPDMM(α′1, α′2, . . . , α′n).

(P2) Boundedness: If α−, and α+ are lower and upper bound of SVNNs then

α− ≤ SVNPDMM(α1, α2, . . . , αn) ≤ α+.

(P3) Commutativity: For any permutation (α̃1, α̃2, . . . , α̃n) of the (α1, α2, . . . , αn), we have

SVNPDMM(α1, α2, . . . , αn) = SVNPDMM(α̃1, α̃2, . . . , α̃n).

4. Multi-Criteria Decision-Making Approach Based on Proposed Operators

In this section, we present an MCDM approach for solving the decision-making problem under
the SVNS environment by using the proposed operators. A practical example from a field of
decision-making has been taken to illustrate it.
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4.1. Proposed Decision-Making Approach

Consider an MCDM problem which consists of m alternatives A1, A2, . . . , Am which are evaluated
under the n criteria C1, C2, . . . , Cn. For this, an expert was invited to evaluate these alternatives under
the SVN environment such that their rating values were given in the form of SVNNs. For instance,
corresponding to alternative Ai under criterion Cj, when we ask the opinion of an expert about the
alternative Ai with respect to the criterion Cj, he or she may observe that the possibility degree in which
the statement is good is µij, the statement is false is νij and the degree in which he or she is unsure is
ρij. In this case, the evaluation of these alternatives are represented as SVNN αij = (µij, ρij, νij) such
that 0 ≤ µij, ρij, νij ≤ 1 and µij + ρij + νij ≤ 3. This collective information is represented in the form of
the neutrosophic decision-matrix D which is represented as

D =

C1 C2 . . . Cn


A1 α11 α12 . . . α1n
A2 α21 α22 . . . α2n
...

...
...

. . .
...

Am αm1 αm2 . . . αmn

.

Based on this information, the procedure to find the best alternative(s) is summarized as follows:

Step 1: If in the considered decision-making problem, there exist two kinds of criteria, namely the
benefit and the cost types, then all the cost type criteria should be normalized into the benefit
type by using the following equation

rij =

{
(νij, ρij, µij) ; for cost type criteria,
(µij, ρij, νij) ; for benefit type criteria.

(15)

Step 2: Compute Hij(i = 1, 2, . . . , m) as

Hij =


1 ; j = 1,
j−1
∏

k=1
s(rik) ; j = 2, . . . , n.

(16)

Step 3: For a given parameter P = (p1, p2, . . . , pn), utilize either SVNPMM or SVNPDMM operator
to get the collective values ri = (µi, ρi, νi)(i = 1, 2, . . . , m) for each alternative as

ri = SVNPMM(ri1, ri2, . . . , rin)

=



1−

 ∏
σ∈Sn

1−
n

∏
j=1

1− (1− µiσ(j))

n
Hiσ(j)
n
∑

j=1
Hij


pj



1
n!


1
n
∑

j=1
pj

,

1−

1−

 ∏
σ∈Sn

1−
n

∏
j=1

1− ρiσ(j)

n
Hiσ(j)
n
∑

j=1
Hij


pj



1
n!


1
n
∑

j=1
pj

,

1−

1−

 ∏
σ∈Sn

1−
n

∏
j=1

1− νiσ(j)

n
Hiσ(j)
n
∑

j=1
Hij


pj



1
n!


1
n
∑

j=1
pj



(17)
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or

ri = SVNPDMM(ri1, ri2, . . . , rin)

=



1−

1−

 ∏
σ∈Sn

1−
n

∏
j=1

1− µiσ(j)

n
Hiσ(j)
n
∑

j=1
Hij


pj


1
n!


1
n
∑

j=1
pj

,

1−

 ∏
σ∈Sn

1−
n

∏
j=1

1− (1− ρiσ(j))

n
Hiσ(j)
n
∑

j=1
Hij


pj


1
n!


1
n
∑

j=1
pj

,

1−

 ∏
σ∈Sn

1−
n

∏
j=1

1− (1− νiσ(j))

n
Hiσ(j)
n
∑

j=1
Hij


pj


1
n!


1
n
∑

j=1
pj



. (18)

Step 4: Calculate score values of the overall aggregated values ri = (µi, ρi, νi) (i = 1, 2, . . . , m) by
using equation

s(ri) =
1 + (µi − 2ρi − νi)(2− µi − νi)

2
. (19)

Step 5: Rank all the feasible alternatives Ai(i = 1, 2, . . . , m) according to Definition 3 and hence select
the most desirable alternative(s).

The above mentioned approach has been illustrated with a numerical example discussed in
Section 4.2.

4.2. Illustrative Example

A travel agency named Marricot Tripmate has excelled in providing travel related services to
domestic and inbound tourists. The agency wants to provide more facilities like detailed information,
online booking capabilities, the ability to book and sell airline tickets, and other travel related services
to their customers. For this purpose, the agency intends to find an appropriate information technology
(IT) software company that delivers affordable solutions through software development. To complete
this motive, the agency forms a set of five companies (alternatives), namely, Zensar Tech (A1), NIIT
Tech (A2), HCL Tech (A3), Hexaware Tech (A4), and Tech Mahindra (A5) and the selection is held
on the basis of the different criteria, namely, technology expertise (C1), service quality (C2), project
management (C3) and industry experience (C4). The prioritization relationship for the criterion is
C1 � C2 � C3 � C4. In order to access these alternatives, an expert was invited and he gives their
preferences toward each alternative in the form of SVNN. Their complete preferences of the expert are
summarized in Table 1.

Table 1. Single-valued neutrosophic decision making matrix.

C1 C2 C3 C4

A1 (0.5, 0.3, 0.4) (0.5, 0.2, 0.3) (0.2, 0.2, 0.6) (0.3, 0.2, 0.4)
A2 (0.7, 0.1, 0.3) (0.7, 0.2, 0.3) (0.6, 0.3, 0.2) (0.6, 0.4, 0.2)
A3 (0.5, 0.3, 0.4) (0.6, 0.2, 0.4) (0.6, 0.1, 0.2) (0.5, 0.1, 0.3)
A4 (0.7, 0.3, 0.2) (0.7, 0.2, 0.2) (0.4, 0.5, 0.2) (0.5, 0.2, 0.2)
A5 (0.4, 0.1, 0.3) (0.5, 0.1, 0.2) (0.4, 0.1, 0.5) (0.4, 0.3, 0.6)
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Then, the following steps of the proposed approach have been executed as below

Step 1: As all the criteria values are of the same types, the original decision matrix need not be
normalized.

Step 2: Compute Hij(j = 1, 2, 3, 4) by using Equation (16), we get

H =




1 0.6650 0.4921 0.3642
1 0.9000 0.7200 0.4464
1 0.6650 0.5320 0.4575
1 0.6650 0.5154 0.1134
1 0.8250 0.6806 0.6024

.

Step 3: Without loss of generality, we take P = (0.25, 0.25, 0.25, 0.25) and use SVNPMM operator
given in Equation (17) to aggregate rij(j = 1, 2, 3, 4) and hence we get r1 = (0.9026, 0.0004,
0.0118); r2 = (0.9963, 0.0008, 0.0007); r3 = (0.9858, 0.0001, 0.0029); r4 = (0.9877, 0.0021,
0.0002) and r5 = (0.9474, 0.0000, 0.0093).

Step 4: By Equation (19), we get s(r1) = 0.9959, s(r2) = 0.9992, s(r3) = 0.9998, s(r4) = 0.9978 and
s(r5) = 0.9990.

Step 5: Since s(r3) > s(r2) > s(r5) > s(r4) > s(r1) and thus ranking order of their corresponding
alternatives is A3 � A2 � A5 � A4 � A1. Here � refers “preferred to”. Therefore, A3 is the
best one according to the requirement of the travel agency.

Contrary to this, if we utilize SVNPDMM operator then the following steps are executed as:

Step 1: Similar to above Step 1.
Step 2: Similar to above Step 2.
Step 3: For a parameter P = (0.25, 0.25, 0.25, 0.25), use SVNPDMM operator given in Equation (18)

we get r1 = (0.0069, 0.7379, 0.9413); r2 = (0.1034, 0.7423, 0.7782); r3 = (0.0428, 0.6021, 0.8672);
r4 = (0.0625, 0.8271, 0.6966) and r5 = (0.0109, 0.5340, 0.9125).

Step 4: The evaluated score values by using Equation (19) are s(r1) = 0.2226, s(r2) = 0.1628, s(r3) =

0.3396, s(r4) = −0.0554 and s(r5) = 0.4222.
Step 5: The ranking order of the alternatives, based on the score values, is A5 � A3 � A1 � A2 � A4

and hence A5 as the best alternative among the others.

4.3. Comparison Study

If we apply the existing prioritized aggregation operator named as SVN prioritized operator [36]
on the considered problem, then the following steps of the Wu et al. [36] approach have been executed
as follows:

Step 1: Use SVNPWA operator as given in Equation (4) to calculate the aggregated values
βi(i = 1, 2, 3, 4, 5) of each alternative Ai are β1 = (0.4392, 0.2407, 0.3981),
β2 = (0.6681, 0.1864, 0.2602), β3 = (0.5461, 0.1929, 0.3414), β4 = (0.6294, 0.2844, 0.2000)
and β5 = (0.4291, 0.1141, 0.3232).

Step 2: Compute the cross entropy E for each βi from A+ = (1, 0, 0) and A− = (0, 0, 1) based on
the equation E(α1, α2) = (sin µ1 − sin µ2) × (sin(µ1 − µ2)) + (sin ρ1 − sin ρ2) × (sin(ρ1 −
ρ2)) + (sin ν1 − sin ν2) × (sin(ν1 − ν2)) and then evaluate Sβi by using equation Sβi =

E(βi ,A+)
E(βi ,A+)+E(βi ,A−)

. The values corresponding to it are: Sβ1 = 0.4642, Sβ2 = 0.1755, Sβ3 = 0.3199,
Sβ4 = 0.1914 and Sβ5 = 0.4007.

Step 3: The final ranking of alternative, according to the values of Sβi , is A2 � A4 � A3 � A5 � A1.

From above, we have concluded that the A2 is the best alternative and A1 is the worst one.
However, from their approach [36], it has been concluded that they have completely ignored the



Symmetry 2018, 10, 280 21 of 25

interrelationships among the multi-input arguments and hence the ranking order are quite different.
Thus, from it, we can see the influence of the interrelationships among all the criteria on the
decision-making process.

4.4. Influence of Parameter P on the Decision-Making Process

The proposed aggregation operators have two prominent advantages. First, it can reduce the
bad effects of the unduly high and low assessments on the final results. Second, it can capture the
interrelationship between SVN attributes values. Moreover, both of the two aggregation operators
have a parameter vector P, which leads to a more flexibility during the aggregation process. Further,
the parameter vector P plays a significant role in the final ranking results. In order to illustrate the
influence of the parameter vector P = (p1, p2, . . . , pn) on the score functions and the ranking results,
we set different values to P in the SVNPMM and SVNPDMM operators and their corresponding results
are summarized in Table 2. From this table, it is concluded that the score value of each alternative
decreases by SVNPMM operator while it increases by SVNPDMM operator. Therefore, based on the
decision maker behavior, either A3 or A5 are the best alternatives to be chosen for their desired goals.
Thus, the parameter vector P can be viewed as decision makers’ risk preference.

4.5. Further Discussion

The prominent advantage of the proposed aggregation operators is that the interrelationship
among all SVNNs can be taken into consideration. Moreover, it has a parameter vector that leads
to flexible aggregation operators. To show the validity and superiorities of the proposed operators,
we conduct a comparative analysis whose characteristics are presented in Table 3.

Table 2. Ranking results of alternatives using proposed operators for different values of P.

Parameter Vector Operator Score Values of Alternatives Ranking

P A1 A2 A3 A4 A5 Results

(1, 0, 0, 0) SVNPMM 0.9975 0.9997 0.9999 0.9989 0.9990 A3 � A2 � A5 � A4 � A1
SVNPDMM 0.2184 0.0876 0.2942 -0.1233 0.3632 A5 � A3 � A1 � A2 � A4

(1, 1, 0, 0) SVNPMM 0.9844 0.9969 0.9988 0.9920 0.9940 A3 � A2 � A5 � A4 � A1
SVNPDMM 0.3638 0.2891 0.4851 0.0162 0.5597 A5 � A3 � A1 � A2 � A4

(1, 1, 1, 0) SVNPMM 0.9723 0.9926 0.9968 0.9809 0.9887 A3 � A2 � A5 � A4 � A1
SVNPDMM 0.4268 0.3846 0.5529 0.1219 0.6053 A5 � A3 � A1 � A2 � A4

(1, 1, 1, 1) SVNPMM 0.9624 0.9868 0.9942 0.9659 0.9851 A3 � A2 � A5 � A4 � A1
SVNPDMM 0.4617 0.4507 0.5955 0.2079 0.6341 A5 � A3 � A1 � A2 � A4

(2, 2, 2, 2) SVNPMM 0.9443 0.9633 0.9836 0.9189 0.9767 A3 � A5 � A2 � A1 � A4
SVNPDMM 0.5165 0.5024 0.640 0.3016 0.6698 A5 � A3 � A1 � A2 � A4

(3, 3, 3, 3) SVNPMM 0.9322 0.9440 0.9744 0.8896 0.9715 A3 � A5 � A2 � A1 � A4
SVNPDMM 0.5369 0.5018 0.6490 0.3142 0.6853 A5 � A3 � A1 � A2 � A4(

1
2 , 1

2 , 1
2 , 1

2

) SVNPMM 0.9824 0.9965 0.9987 0.9903 0.9943 A3 � A2 � A5 � A4 � A1
SVNPDMM 0.3652 0.3217 0.4982 0.0490 0.5661 A5 � A3 � A1 � A2 � A4(

1
4 , 1

4 , 1
4 , 1

4

) SVNPMM 0.9959 0.9992 0.9998 0.9978 0.9990 A3 � A2 � A5 � A4 � A1
SVNPDMM 0.2226 0.1628 0.3396 -0.0554 0.4222 A5 � A3 � A1 � A2 � A4

(2, 0, 0, 0) SVNPMM 0.9890 0.9984 0.9990 0.9953 0.9931 A3 � A2 � A4 � A5 � A1
SVNPDMM 0.3571 0.1886 0.4228 -0.1009 0.4781 A5 � A3 � A1 � A2 � A4

(3, 0, 0, 0) SVNPMM 0.9814 0.9964 0.9974 0.9898 0.9860 A3 � A2 � A4 � A5 � A1
SVNPDMM 0.4139 0.2426 0.4645 -0.0595 0.5008 A5 � A3 � A1 � A2 � A4

SVNPMM: single-valued neutrosophic prioritized Muirhead mean, SVNPDMM: single-valued neutrosophic
prioritized dual Muirhead mean.
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Table 3. Comparison of different approaches and aggregation operators.

Approaches

Whether the Whether the Whether the Whether the Bad Whether It Makes the
Interrelationship of Interrelationship of Relationship of Effects of the Unduly High Method Flexible by

Two Attributes Three Attributes Multiple Attributes Unduly Low Arguments the Parameter
Is Captured Is Captured Is Captured Can Be Reduced Vector

NWA [21] × × × × ×
SVNWA [22] × × × × ×
SVNOWA [22] × × × × ×
SVNWG [22] × × × × ×
SVNOWG [22] × × × × ×
SVNHWA [25] × × × × ×
SVNHWG [25] × × × × ×
NWG [21] × × × × ×
SVNFWG [24] × × × × X
SVNFWA [24] × × × × X
SVNFNPBM [37] X × × × X
WSVNLMSM [34] X X X × X
SVNNWBM [33] X × × × X
SVNIGWHM [20] X X X × X
GNNHWA [25] × × × × X
The proposed method X X X X X

NWA: neutrosophic weighted averaging, SVNWA: single-valued neutrosophic weighted averaging, SVNOWA:
single-valued neutrosophic ordered weighted averaging, SVNWG: single-valued neutrosophic weighted
geometric, SVNOWG: single-valued neutrosophic ordered weighted geometric, SVNHWA: single-valued
neutrosophic hybrid weighted averaging, SVNHWG: single-valued neutrosophic hybrid weighted geometric,
NWG: neutrosophic weighted geometric, SVNFWG: single-valued neutrosophic Frank weighted geometric,
SVNFWA: single-valued neutrosophic Frank weighted averaging, SVNFNPBM: single-valued neutrosophic
Frank normalized prioritized Bonferroni mean, WSVNLMSM: weighted single-valued neutrosophic linguistic
Maclaurin symmetric mean, SVNNWBM: single-valued neutrosophic normalized weighted Bonferroni
mean, IGWHM: single-valued neutrosophic improved generalized weighted Heronian mean, GNNHWA:
generalized neutrosophic number Hamacher weighted averaging.

The approaches in [21,22,25] are based on a simple weighted averaging operator. However,
in these approaches, some of the weakness are (1) they assume that all the input arguments are
independent, which is somewhat inconsistent with reality; (2) they cannot consider the interrelationship
among input arguments. However, on the contrary, the proposed method can capture the
interrelationship among input arguments. In addition to that, the proposed operator has an additional
parameter P which provide a feasible aggregation process. In addition, some of the existing operators
are deduced from the proposed operators. Thus, the proposed method is more powerful and flexible
than the methods in [21,22,25].

In [33,37], authors presented an approach based on the BM aggregation operator where they
considered the interrelationship between the arguments. However, the main flaws of these approaches
are that they consider only two arguments during the interrelationship. On the other hand, in [34]
authors have presented an aggregation operator based on MSM by considering two or more arguments
during the interrelationship; however, these methods [33,34,37] fail to reflect the interrelationship
among all input arguments. Finally, in [20] authors used the Heronian mean AOs without considering
any interrelationship between the arguments.

As compared with these existing approaches, the merits of the proposed approach are that it can
reflect the interrelationships among all the input arguments. In addition, the proposed operators have
an additional parameter P which makes the proposed approach more flexible and feasible.

5. Conclusions

Muirhead mean aggregation operator is more flexible by using a variable and considering the
multiple interrelationships between the pairs of the input arguments. On the other hand, SVNS is more
of a generalization of the fuzzy set, intuitionistic fuzzy set to describe the uncertainties in the data.
In order to combine their advantages, in the present paper, we develop some new MM aggregation
operators for the SVNSs including the SVNPMM and the SVNPDMM. The desirable properties of these
proposed operators and some special cases are discussed in detail. Moreover, we presented two new
methods to solve the MCDM problem based on the proposed operators. The proposed method is more
general and flexible, not only by considering the parametric vector P but also by taking into account the
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multiple interrelationships between the input argument. Apart from this, the remarkable characteristic
of the proposed operator is to reflect the correlations of the aggregated arguments by considering the
fact that those different criteria having different priority levels. The mentioned approach has been
demonstrated through a numerical example and compares their corresponding proposed results with
some of the results of existing approaches. From the computed results, it has been observed that the
proposed approach can be efficiently utilized to solve decision-making problems where uncertainties
and vagueness in the data occur concurrently. Moreover, by changing the values of the parameter P,
an analysis has been done which concludes that the proposed operators provide more choices to the
decision makers according to their preferences. In addition, it is also regarded as considering the risk
preference of decision makers by the parameter P. So, the proposed approach is more suitable and
flexible to solve the practical and complex MCDM problems.

In future works, we will apply our proposed method for more practical decision-making problems.
In addition, considering the superiority of MM operator, we can extend it to some new fuzzy sets, such as
Pythagorean fuzzy sets [39–41], applications to MCDM [42–44], multiplicative sets [45,46] and so on.
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