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Abstract: In inconsistent and indeterminate settings, as a usual tool, the neutrosophic cubic set
(NCS) containing single-valued neutrosophic numbers and interval neutrosophic numbers can be
applied in decision-making to present its partial indeterminate and partial determinate information.
However, a few researchers have studied neutrosophic cubic decision-making problems, where the
similarity measure of NCSs is one of the useful measure methods. For this work, we propose the
Dice, cotangent, and Jaccard measures between NCSs, and indicate their properties. Then, under an
NCS environment, the similarity measures-based decision-making method of multiple attributes is
developed. In the decision-making process, all the alternatives are ranked by the similarity measure
of each alternative and the ideal solution to obtain the best one. Finally, two practical examples are
applied to indicate the feasibility and effectiveness of the developed method.

Keywords: similarity measures; neutrosophic cubic set; decision-making

1. Introduction

The classic fuzzy set [1] is expressed by its membership degree in the unit interval [0,1].
But in many complicated cases of the real world, the data often are vague and uncertain, and are
difficult to express as classic fuzzy sets. Thus, the neutrosophic set (NS) concept was presented by
Smarandache [2], which is an extension of the fuzzy set and (interval-valued) intuitionistic fuzzy
sets. He defined the indeterminacy, falsity, and truth degrees of NS in the nonstandard interval
]−0,1+ [and standard interval [0,1]. However, the nonstandard interval is difficult to apply in real
situations, so a simplified neutrosophic set (SNS), including single-valued and interval neutrosophic
sets, was presented by Ye [3], which is depicted by the truth, indeterminacy, and falsity degrees in the
interval [0,1], to conveniently apply it in science and engineering fields, such as decision-making [4–8],
medical diagnoses [9,10], image processing [11,12], and clustering analyses [13]. Meanwhile, different
measures were constantly proposed, such as similarity measures, cross entropy measures, correlation
coefficients, and various aggregation operators for multiple attribute decision-making (MADM)
problems [14–21]. Then, various simplified neutrosophic decision-making methods were presented,
such as the technique for order preference by similarity to an ideal solution (TOPSIS) method [22],
the projection and bidirectional projection measures [23], and the VIKOR method [24].

In recent years, (fuzzy) cubic sets (CSs) presented by Jun et al. [25] have received much attention
due to the vague properties of human hesitant judgments. Since CS implies its partial certain and
partial uncertain information, it is depicted by the hybrid form composed of an exact value and an
interval value. Hence, CSs are very well suited for the representation of its partial indeterminate
and partial determinate information in fuzzy environments. But many scientific problems in the
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real world are very complex. To handle more complicated problems with incomplete, inconsistent,
and indeterminate information, Jun et al. [26] and Ali et al. [27] have introduced neutrosophic cubic
sets (NCSs) which contain both single-valued neutrosophic information and interval neutrosophic
information, as introduced in References [2,28,29]. Lu and Ye [30] used cosine measures for NCSs for
the first time to handle decision-making problems in an NCS setting. Banerjee et al. [31] presented
MADM problems regarding grey relational analysis in an NCS setting. Pramanik et al. [32] introduced
a multiple attribute group decision-making method regarding the distance-based similarity measure of
NCSs. Ye [33] put forward the operational laws and weighted aggregation operators of NCSs and their
MADM method in an NCS setting. Then, Shi and Ye [34] further proposed the Dombi aggregation
operators of NCSs and their MADM method. However, few researchers have studied neutrosophic
cubic MADM problems, where the similarity measure of NCSs is one of the useful measure methods.
On the other hand, Ye proposed the cosine, Dice, and Jaccard measures of single-valued and interval
neutrosophic sets [35], the generalized Dice measure of SNSs [36], and the single-valued neutrosophic
cotangent measures [37]. Since NCS is combined with an interval neutrosophic set (INS) and
a single-valued neutrosophic set (SVNS), we can extend them to NCSs. Motivated by the similarity
measures of INSs and SVNSs in the literature [35,37], we propose the Dice, cotangent, and Jaccard
measures between NCSs to enrich the existing similarity measures of NCSs. Then, a MADM method
is developed based on the proposed similarity measures in an NCS setting. Their difference is that
the similarity measures in the literature [30] only use three cosine measures for MADM problems,
but this work proposes the Dice, cotangent, and Jaccard measures for MADM problems in an NCS
setting. By comparison with existing decision-making methods [30], the decision results show that our
similarity measures have better decision-making robustness and discrimination than existing cosine
measures [30].

The contents of this paper are organized as follows: Section 2 introduces basic definitions of CSs
and NCSs. The similarity measures of NCSs and their properties are presented in Section 3. A MADM
method is developed by using the three measures of the Dice, cotangent, and Jaccard measures in
Section 4. In Section 5, a practical example is given in an NCS setting to present the applications and
the effectiveness of the developed method. Finally, Section 6 indicates conclusions and future work.

2. Basic Definitions of CSs and NCSs

Based on the combination of both a fuzzy value and an interval-valued fuzzy number (IVFN),
a CS was defined by Jun et al. [25].

The CS Z in a universe of discourse Y is defined by the following form [25]:

Z = {y, T(y), µ(y)|y ∈ Y},

where µ(y) is a fuzzy value and T(y) = [T−(y), T+(y)] is an IVFN for y ∈ Y. Then, we define

(i) Z = {y, T(y), µ(y)|y ∈ Y} as an internal CS if T−(y) ≤ µ(y) ≤ T+(y) for y ∈ Y;
(ii) Z = {y, T(y), µ(y)|y ∈ Y} as an external CS if µ(y) /∈ [T−(y), T+(y)] for y ∈ Y.

When combining a single-valued neutrosophic number (SVNN) with an interval neutrosophic
number (INN), CS was extended to NCS by Jun et al. [26] and Ali et al. [27], which is constructed as an
NCS Z in Y by the following form [26,27]:

R = {y,< T(y), U(y), F(y) > t(y), u(y), f (y) > y ∈ Y},

where < T(y), U(y), F(y) > is an INN for the truth-interval T(y) = [T−(y), T+(y)] ⊆[0,1], the falsity-
interval F(y) = [F−(y), F+(y)] ⊆[0,1], the indeterminacy-interval U(y) = [U−(y), U+(y)] ⊆[0,1],
y ∈ Y and < t(y), u(y), f(y) > is an SVNN for the truth, falsity, and indeterminacy degrees
t(y), f (y), u(y) ∈ [0, 1] and y ∈ Y.

An NCS R = {y,< T(y), U(y), F(y) > t(y), u(y), f (y) > y ∈ Y} is called [26,27]:
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(i) An internal NCS R = {y,< T(y), U(y), F(y) > t(y), u(y), f (y) > y ∈ Y} if T−(y) ≤ t(y) ≤
T+(y), U−(y) ≤ u(y) ≤ U+(y), and F−(y) ≤ f (y) ≤ F+(y) for y ∈ Y;

(ii) An external NCS R = {y,< T(y), U(y), F(y) > t(y), u(y), f (y) > y ∈ Y} if t(y) /∈
[T−(y), T+(y)], u(y) /∈ [U−(y), U+(y)], and f (y) /∈ [F−(y), F+(y)] for y ∈ Y.

For the simplified expression, a basic element (y,< T(y), U(y), F(y) > t(y), u(y), f (y) > in
an NCS R is denoted as r = (< T, U, F > t, u, f >, which is called a neutrosophic cubic number
(NCN), where T, U, F ⊆[0,1] and t, u, f ∈[0,1], satisfying 0 ≤ T+(y) + U+(y) + F+(y) ≤ 3 and
0 ≤ t + u + f ≤ 3.

Let r1 = (< T1, U1, F1 > t1, u1, f1 > and r2 = (< T2, U2, F2 > t2, u2, f2 > be two NCNs. We can
indicate the following relations [26,27]:

(1) rc
1 = (< F−1 , F+

1
]
,
[
1−U+

1 , 1−U−1
]
,
[
T−1 , T+

1
]
> f1, 1− u1, t1) (the complement of r1);

(2) r1 ⊆ r2 if and only if T1 ⊆ T2, U1 ⊇ U2, F1 ⊇ F2, t1 ≤ t2, u1 ≥ u2, and f1 ≥ f2 (P-order);
(3) r1 = r2 if and only if r1 ⊆ r2 and r2 ⊆ r1, i.e., < T1, U1, F1 > T2, U2, F2 > and< t1, u1, f1 > t2, u2, f2 >.

3. Similarity Measures of NCSs

Based on the Dice and Jaccard measures of SVNSs and INSs (SNSs) [35], and the single-valued
neutrosophic cotangent measures [37] proposed by Ye, we can extend them to NCSs to present the
Dice, Jaccard, and cotangent measures between NCSs in this section.

Definition 1. Let two NCSs beR = {r1, r2, r3, · · · , rn} and H = {h1, h2, h3, · · · , hn} in the universe of
discourse Y = {y1, y2, y3, · · · , yn} , where ri = (< Tri, Uri, Fri > tri, uri, fri > and hi = (< Thi, Uhi, Fhi >

thi, uhi, fhi > are two NCNs for i = 1, 2, . . . , n. Thus, the similarity measures of the NCSs R and H are
presented as follows:

(1) Dice Measure between the NCSs R and H

(2) Cotangent Measure between the NCSs R and H
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(3) Jaccard Measure between the NCSs R and H

Theorem 1. The three measuresZm(R, H) (m = 1, 2, 3) satisfy the three properties (I)–(III):

(I) 0 ≤ Zm(R, H) ≤ 1;
(II) Zm(R, H) = Zm(H, R);
(III) Zm(R, H) = 1 if R = H, i.e., < Tri, Uri, Fri >=< Thi, Uhi, Fhi > and < tri, uri, fri >< thi, uhi, fhi >.

Proof.
Firstly, we prove the properties (I)–(III) of Z1(R, H)).

(I) The inequality Z1(R, H) ≥ 0 is obvious. Then, we only prove Z1(R, H) ≤ 1.

Based on the basic inequality 2xiyi ≤ x2
i + y2

i for i = 1, 2, . . . , n, where (x1, x2, x3, . . . , xn) ∈ Rn

and (y1, y2, y3, . . . , yn) ∈ Rn, it is extended to the NCNs, and then the following inequality is obtained:

2(T−ri T−hi ) ≤
(
T−ri
)2

+
(
T−hi
)2

When T−ri and T−hi are not equal to zero, we obtain the following inequality:

2(T−ri T−hi )(
T−ri
)2

+
(
T−hi
)2 ≤ 1

Similarly, we have these inequalities 2(T+
ri T+

hi ) ≤
(
T+

ri
)2

+
(
T+

hi
)2, 2(U−ri U−hi ) ≤

(
U−ri
)2

+
(
U−hi
)2,

2(U+
ri U+

hi ) ≤
(
U+

ri
)2

+
(
U+

hi
)2, 2(F−ri F−hi ) ≤

(
F−ri
)2

+
(

F−hi
)2, and 2(F+

ri F+
hi ) ≤

(
F+

ri
)2

+
(

F+
hi
)2.

Then, we get the following sum of the six inequalities with both sides.

2(T−ri T−hi ) + 2(T+
ri T+

hi ) + 2(U−ri U−hi ) + 2(U+
ri U+

hi ) + 2(F−ri F−hi ) + 2(F+
ri F+

hi ) ≤(
T−ri
)2

+
(
T−hi
)2

+
(
T+

ri
)2

+
(
T+

hi
)2

+
(
U−ri
)2

+
(
U−hi
)2

+
(
U+

ri
)2

+
(
U+

hi
)2

+
(

F−ri
)2

+
(

F−hi
)2

+
(

F+
ri
)2

+
(

F+
hi
)2 .

Thus, we have the following result:

2(T−ri T−hi ) + 2(T+
ri T+

hi ) + 2(U−ri U−hi ) + 2(U+
ri U+

hi ) + 2(F−ri F−hi ) + 2(F+
ri F+

hi ){ (
T−ri
)2

+
(
T−hi
)2

+
(
T+

ri
)2

+
(
T+

hi
)2

+
(
U−ri
)2

+
(
U−hi
)2

+
(
U+

ri
)2

+
(
U+

hi
)2

+
(

F−ri
)2

+
(

F−hi
)2

+
(

F+
ri
)2

+
(

F+
hi
)2

} ≤ 1.

So, we can further get the result:

1
n

n

∑
i=1

2(T−ri T−hi ) + 2(T+
ri T+

hi ) + 2(U−ri U−hi ) + 2(U+
ri U+

hi ) + 2(F−ri F−hi ) + 2(F+
ri F+

hi ){ (
T−ri
)2

+
(
T−hi
)2

+
(
T+

ri
)2

+
(
T+

hi
)2

+
(
U−ri
)2

+
(
U−hi
)2

+
(
U+

ri
)2

+
(
U+

hi
)2

+
(

F−ri
)2

+
(

F−hi
)2

+
(

F+
ri
)2

+
(

F+
hi
)2

} ≤ 1.
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Similarly, we have the following inequalities:

1
n

n

∑
i=1

2(trithi + uriuhi + fri fhi)

t2
ri + u2

ri + f 2
ri + t2

hi + u2
hi + f 2

hi
≤ 1.

Thus, we have Z1(R, H) ≤ 1, and then 0 ≤ Z1(R, H) ≤ 1 holds.

(II) The equality is obvious.
(III) When R = H, we have 〈Tri, Uri, Fri〉 = 〈Thi, Uhi, Fhi〉 and < tri, uri, fri >< thi, uhi, fhi >.

Thus Tri = Thi, Uri = Uhi, Fri = Fhi, tri = thi, uri = uhi, and fri = fhi for i = 1, 2, . . . , n.
Hence Z1(R, H) = 1 holds.

Secondly, the properties (I)–(III) of Z2(R, H) can be proved as follows:

(I) The inequality 0 ≤
∣∣T−ri − T−hi

∣∣≤ 1 is obvious. Similarly, we obtain other inequalities
0 ≤

∣∣T+
ri − T+

hi

∣∣≤ 1 , 0 ≤
∣∣U−ri −U−hi

∣∣≤ 1 , 0 ≤
∣∣U+

ri −U+
hi

∣∣≤ 1 , 0 ≤
∣∣F−ri − F−hi

∣∣≤ 1 ,
and 0 ≤

∣∣F+
ri − F+

hi

∣∣≤ 1 .

Based on these inequalities, we get the inequality:

0 ≤
∣∣T−ri − T−hi

∣∣+∣∣T+
ri − T+

hi

∣∣+∣∣U−ri −U−hi

∣∣+∣∣U+
ri −U+

hi

∣∣+∣∣F−ri − F−hi

∣∣+∣∣F+
ri − F+

hi

∣∣≤ 6 ,

and then obtain the inequality:

0 ≤ 1
24 (
∣∣∣T−ri − T−hi

∣∣∣+∣∣∣T+
ri − T+

hi

∣∣∣+∣∣∣U−ri −U−hi

∣∣∣+∣∣∣U+
ri −U+

hi

∣∣∣+∣∣∣F−ri − F−hi

∣∣∣+∣∣∣F+
ri − F+

hi

∣∣∣) ≤ 1
4

and the following inequality:

0 ≤ π
24 (
∣∣T−ri − T−hi

∣∣+∣∣T+
ri − T+

hi

∣∣+∣∣U−ri −U−hi

∣∣+∣∣U+
ri −U+

hi

∣∣+∣∣F−ri − F−hi

∣∣+∣∣F+
ri − F+

hi

∣∣) ≤ π
4 .

Hence, the result is obtained as follows:

cot(π
2 ) ≤ cot

[
π
4 + π

24(
∣∣T−ri −T−hi

∣∣+∣∣T+
ri −T+

hi

∣∣+∣∣U−ri −U−hi

∣∣+∣∣U+
ri −U+

hi

∣∣+∣∣F−ri − F−hi

∣∣+∣∣F+ri − F+hi

∣∣)] ≤ cot(π
4 ).

Simplifying the above inequality, we get the simplified inequality:

0 ≤ cot
[

π
4 + π

24(
∣∣T−ri − T−hi

∣∣+∣∣T+
ri − T+

hi

∣∣+∣∣U−ri −U−hi

∣∣+∣∣U+
ri −U+

hi

∣∣+∣∣F−ri − F−hi

∣∣+∣∣F+
ri − F+

hi

∣∣)] ≤ 1.

Let us prove the other inequality 0 ≤ cot
[

π
4 + π

12 (|tri − thi|+|uri − uhi|+| fri − fhi|)
]
≤ 1.

Because there are the inequalities 0 ≤|tri − thi|≤ 1 , 0 ≤|uri − uhi|≤ 1 , and 0 ≤| fri − fhi|≤ 1 , we get
the inequality 0 ≤|tri − thi|+|uri − uhi|+| fri − fhi|≤ 1 and 0 ≤ π

12 (|tri − thi|+|uri − uhi|+| fri − fhi|) ≤
3π
12 , and then cot(π

2 ) ≤ cot
[

π
4 + π

12 (|tri − thi|+|uri − uhi|+| fri − fhi|)
]
≤ cot(π

4 ). Thus, the other form
is 0 ≤ cot

[
π
4 + π

12 (|tri − thi|+|uri − uhi|+| fri − fhi|)
]
≤ 1. Hence 0 ≤ Z2(R, H) ≤ 1 holds.

Thirdly, the properties (I)–(III) of Z3(R, H) can be proved below.

Based on the inequality xy ≤ x2 +y2− xy, we get such an inequality T−ri T−hi ≤
(
T−ri
)2
+
(
T−hi
)2−T−ri T−hi .

When T−ri and T−hi are not equal to zero, we obtain the inequality:

T−ri T−hi(
T−ri
)2

+
(
T−hi
)2 − T−ri T−hi

≤ 1.

Thus, we can get the following inequality:

T−ri T−hi + T+
ri T+

hi + U−ri U−hi + U+
ri U+

hi + F−ri F−hi + F+
ri F+

hi
(
T−ri
)2

+
(
T+

ri
)2

+
(
U−ri
)2

+
(
U+

ri
)2

+
(

F−ri
)2

+
(

F+
ri
)2

+
(
T−hi
)2

+
(
T+

hi
)2

+
(
U−hi
)2

+
(
U+

hi
)2

+
(

F−hi
)2

+
(

F+
hi
)2

−T−ri T−hi − T+
ri T+

hi −U−ri U−hi −U+
ri U+

hi − F−ri F−hi − F+
ri F+

hi


≤ 1.
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Similarly, because the inequality trithi
t2
ri+t2

hi−trithi
≤ 1 holds, the inequality

trithi+uriuhi+ fri fhi
t2
ri+u2

ri+ f 2
ri+t2

hi+u2
hi+ f 2

hi−trithi−uriuhi− fri fhi
≤ 1 also holds. Hence, there is the following inequality:

Thus, we have Z3(R, H) ≤ 1. Then, 0 ≤ Z3(R, H) ≤ 1 holds.

If we consider θ = {θ1, θ2, · · · , θn} as the weights of the elements ri and hi with θi ∈ [0, 1] and
∑n

i=1 θi = 1, the corresponding three measures Zθm(R, H) (m = 1, 2, 3) are given as follows:

Obviously, the three measures Zθm(R, H) (m = 1, 2, 3) also conform to the following properties (I)–(III):

(I) 0 ≤ Zθm(R, H) ≤ 1;
(II) Zθm(R, H) = Zθm(H, R);
(III) Zθm(R, H) = 1 if R = H, i.e., 〈tri, uri, fri〉 = 〈thi, uhi, fhi〉 and 〈Tri, Uri, Fri〉 = 〈Thi, Uhi, Fhi〉. �

The proofs of the three properties are similar, so we omitted them here.
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4. MADM Method Using the Proposed Measures of NCSs

The proposed weighted measures of NCSs are applied in MADM problems with NCSs in
this section.

In a MADM problem, there are the set of m alternatives R = {R1, R2, . . . , Rm} and the set of n
attributes B = {B1, B2, . . . , Bn}. Then, the weight of the attributes θt with θt ∈ [0,1] and ∑n

t=1 θt = 1 is
considered. The evaluation information of each alternative on each attribute in the MADM problem
can be represented by a NCN rst = (< Tst, Ust, Fst >,< tst, ust, fst >) (t = 1, 2, . . . , n; s = 1, 2, . . . ,
m) with Tst, Ust, Fst ⊆ [0, 1] and tst, ust, fst ⊆ [0, 1]. So, the decision matrix with neutrosophic cubic
information can be expressed as R = (rst)m×n. Thus the decision procedures are listed in the following:

Step 1: By considering the benefit and cost types of attributes, setup an ideal solution (ideal alternative)
r∗ =

{
r∗1 , r∗2 , · · · , r∗n

}
, where the desired NCNs r∗t (t = 1, 2, . . . , n) are expressed by

r∗t =

(
< [max

s
(T−st ), max

s
(T+

st )], [min
s
(U−st ), min

s
(U+

st )],

[min
s
(F−st ), min

s
(F+

st )] >,< max
s

(tst), min
s
(ust), min

s
( fst) >

)
for the benefit attributes

or

r∗t =

(
< [min

s
(T−st ), min

s
(T+

st )], [max
s

(U−st ), max
s

(U+
st )], [max

s
(F−st ), max

s
(F+

st )] >,

< min
s
(tst), max

s
(ust), max

s
( fst) >

)
for the cost attributes.

Step 2: Compute the measure value between an alternative Rs (s = 1, 2, . . . , m) and the ideal solution
R* by using Equation (4) or Equation (5) or Equation (6), and then obtain the values of Zθ1(Rs, R∗) or
Zθ2(Rs, R∗) or Zθ3(Rs, R∗) (s = 1, 2, . . . , m).
Step 3: Corresponding to the measure values of Zθ1(Rs, R∗) or Zθ2(Rs, R∗) or Zθ3(Rs, R∗), rank the
alternatives in descending order and choose the best one regarding the bigger measure value.
Step 4: End.

5. Decision-Making Example

Two practical decision-making examples in real environments are given in this section to illustrate
the applications of the developed MADM method in an NCS setting.

5.1. Practical Example 1

We consider the practical decision-making example adapted from Reference [30] for convenient
comparison. Suppose that a sum of money is invested by an investment company for one of four potential
alternatives: R1 (a food company), R2 (a transportation company), R3 (a software company), and R4

(a manufacturing company). Then the four alternatives are evaluated over the set of the three attributes:
H1 (the potential risk as the benefit type), H2 (the growth as the benefit type), and H3 (the environmental
impact as the cost type). Then the importance of the three attributes is indicated by the weight vector
θ = (0.32, 0.38, 0.3). The evaluation values of the four alternatives over the three attributes are given by
NCSs rst = (< Tst, Ust, Fst >,< tst, ust, fst >) (t = 1, 2, 3; s = 1, 2, 3, 4). Thus, the neutrosophic cubic
decision matrix can be constructed as follows:

R = (rst)4×3

=


(< [0.5, 0.6], [0.1, 0.3], [0.2, 0.4] >,< 0.6, 0.2, 0.3 >) (< [0.5, 0.6], [0.1, 0.3], [0.2, 0.4] >,< 0.6, 0.2, 0.3 >) (< [0.6, 0.8], [0.2, 0.3], [0.1, 0.2] >,< 0.7, 0.2, 0.1 >)

(< [0.6, 0.8], [0.1, 0.2], [0.2, 0.3] >,< 0.7, 0.1, 0.2 >) (< [0.6, 0.7], [0.1, 0.2], [0.2, 0.3] >,< 0.6, 0.1, 0.2 >) (< [0.6, 0.7], [0.3, 0.4], [0.1, 0.2] >,< 0.7, 0.4, 0.1 >)

(< [0.4, 0.6], [0.2, 0.3], [0.1, 0.3] >,< 0.6, 0.2, 0.2 >) (< [0.5, 0.6], [0.2, 0.3], [0.3, 0.4] >,< 0.6, 0.3, 0.4 >) (< [0.5, 0.7], [0.2, 0.3], [0.3, 0.4] >,< 0.6, 0.2, 0.3 >)

(< [0.7, 0.8], [0.1, 0.2], [0.1, 0.2] >,< 0.8, 0.1, 0.2 >) (< [0.6, 0.7], [0.1, 0.2], [0.1, 0.3] >,< 0.7, 0.1, 0.2 >) (< [0.6, 0.7], [0.3, 0.4], [0.2, 0.3] >,< 0.7, 0.3, 0.2 >)

 .

By the following steps, we use the proposed MADM method to judge which one is the best
investment under an NCS environment.

First, when the ideal NCNs r∗t (t = 1, 2, 3) of three attributes H1, H2, H3 are obtained by
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r∗t =

(
< [max

s
(T−st ), max

s
(T+

st )], [min
s
(U−st ), min

s
(U+

st )], [min
s
(F−st ), min

s
(F+

st )] >,

< max
s

(tst), min
s
(ust), min

s
( fst) >

)
for the benefit

attributes H1, H2

or

r∗t =

(
< [min

s
(T−st ), min

s
(T+

st )], [max
s

(U−st ), max
s

(U+
st )], [max

s
(F−st ), max

s
(F+

st )] >,

< min
s
(tst), max

s
(ust), max

s
( fst) >

)
for the cost

attribute H3.
We can obtain an ideal solution (an ideal alternative) as follows:

R∗ = {r∗1 , r∗2 , r∗3} =


(< [0.7, 0.8], [0.1, 0.2], [0.1, 0.2] >,< 0.8, 0.1, 0.2 >),
(< [0.6, 0.7], [0.1, 0.2], [0.1, 0.3] >,< 0.7, 0.1, 0.2 >),
(< [0.5, 0.7], [0.3, 0.4], [0.3, 0.4] >,< 0.6, 0.4, 0.3 >)

.

Second, by Equation (4) or Equation (5) or Equation (6), we compute the measure value between
an alternative Rs (s = 1, 2, 3, 4) and the ideal solution R*. Then the measure values of Zθ1(Rs,R*) or
Zθ2(Rs,R*) or Zθ3(Rs,R*) (s = 1, 2, 3, 4) and the ranking of the alternatives are indicated in Table 1.

Table 1. Measure results between the two NCSs Rs and R* and ranking.

Zθm(Rs,R*) Measure Result Ranking The Best One

Zθ1(Rs,R*) 0.9517,0.9822,0.9498,0.9945 Z4 > Z2 > Z1 > Z3 Z4
Zθ2(Rs,R*) 0.8246,0.9248,0.8474,0.9668 Z4 > Z2 > Z3 > Z1 Z4
Zθ3(Rs,R*) 0.9085,0.9654,0.9054,0.9893 Z4 > Z2 > Z1 > Z3 Z4

According to the results of Table 1, the two alternatives Z4 and Z2 have the same ranking orders
in all the measures, and Z4 is the best choice.

5.2. Related Comparison

For convenient comparison, we select the MADM method introduced in the literature [30] as the
related comparison. Then, we can get the measure values between Rs and R* by the cosine measure
Sws(Rs,R*) (s = 1, 2, 3, 4) in [30], the standard deviation (SD), and the best choice, which are given in
Table 2. Obviously, the SD values of our measures are bigger than the SD values of existing cosine
measures. Therefore, our measures not only have good discrimination, but also get the same as the
best choice (Z4), while existing cosine measures [30] indicate the different best choices (Z4 or Z2).
Thus, our measures have better decision-making robustness and discrimination than existing cosine
measures [30].

Table 2. Related comparison of our measure results with existing cosine measure results.

Measure Measure Value Ranking Order SD The Best One

Zθ1(Rs,R*) 0.9945,0.9822,0.9517,0.9498 Z4 > Z2 > Z1 > Z3 0.0193 Z4
Zθ2(Rs,R*) 0.9668,0.9248,0.8474,0.8246 Z4 > Z2 > Z3 > Z1 0.0574 Z4
Zθ3(Rs,R*) 0.9085,0.9654,0.9054,0.9893 Z4 > Z2 > Z1 > Z3 0.0362 Z4

Sw1(R1,R*) [30] 0.9451, 0.9794, 0.9524, 0.9846 Z4 > Z2 > Z3 > Z1 0.0169 Z4
Sw2(R2,R*) [30] 0.9700, 0.9906, 0.9732, 0.9877 Z2 > Z4 > Z3 > Z1 0.0089 Z2
Sw2(R2,R*) [30] 0.9867, 0.9942, 0.9877, 0.9968 Z4 > Z2 > Z3 > Z1 0.0043 Z4

5.3. Practical Example 2

Further, we give a real case about a punching machine to clearly demonstrate the usefulness of
the proposed measures. There are four alternatives (design schemes), R1, R2, R3, and R4 in Table 3.
Then the four alternatives are evaluated over the set of three attributes: H1 (manufacturing cost),
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H2 (structure complexity), and H3 (reliability). Then, the importance of the three attributes is indicated
by the weight vector θ = (0.36, 0.3, 0.34). By the suitable evaluation of the four alternatives over the
three attributes regarding NCNs rst = (< Tst, Ust, Fst >,< tst, ust, fst >) (t = 1, 2, 3; s = 1, 2, 3, 4),
the neutrosophic cubic decision matrix which is adapted from the literature [23] can be constructed
as follows:

R = (rst)4×3

=


(< [0.7, 0.8], [0.0, 0.2], [0.3, 0.5] >,< 0.75, 0.1, 0.4 >) (< [0.7, 0.9], [0.0, 0.3], [0.2, 0.4] >,< 0.80, 0.1, 0.3 >) (< [0.8, 0.9], [0.0, 0.2], [0.2, 0.4] >,< 0.85, 0.1, 0.3 >)

(< [0.6, 0.8], [0.0, 0.2], [0.4, 0.6] >,< 0.70, 0.1, 0.5 >) (< [0.7, 0.8], [0.0, 0.3], [0.0, 0.2] >,< 0.75, 0.1, 0.1 >) (< [0.7, 0.8], [0.0, 0.2], [0.0, 0.2] >,< 0.80, 0.1, 0.1 >)

(< [0.7, 0.9], [0.1, 0.3], [0.2, 0.4] >,< 0.80, 0.2, 0.3 >) (< [0.7, 0.8], [0.0, 0.2], [0.1, 0.3] >,< 0.78, 0.1, 0.2 >) (< [0.7, 0.9], [0.1, 0.3], [0.1, 0.3] >,< 0.80, 0.2, 0.2 >)

(< [0.8, 1.0], [0.0, 0.2], [0.1, 0.3] >,< 0.90, 0.1, 0.2 >) (< [0.8, 0.9], [0.0, 0.2], [0.0, 0.2] >,< 0.85, 0.1, 0.1 >) (< [0.8, 0.9], [0.0, 0.2], [0.2, 0.4] >,< 0.85, 0.1, 0.3 >)

 .

Table 3. Four alternatives (design schemes) of a punching machine [23].

Alternative R1 R2 R3 R4

Reducing mechanism Gear reducer Gear head motor Gear reducer Gear head motor

Punching mechanism Crank-slider mechanism Six bar
punching mechanism

Six bar
punching mechanism Crank-slider mechanism

Dial feed
intermittent mechanism Sheave mechanism Ratchet feed mechanism

By the following steps, we use the proposed MADM method to judge which one is the best design
scheme under an NCS environment.

First, because we use a suitable evaluation of the four alternatives over the three
attributes, all the benefit attributes are given in this decision problem. Thus, when the
ideal NCNs r∗t (t = 1, 2, 3) of the three attributes H1, H2, H3 are obtained by

r∗t =

(
< [max

s
(T−st ), max

s
(T+

st )], [min
s
(U−st ), min

s
(U+

st )], [min
s
(F−st ), min

s
(F+

st )] >,

< max
s

(tst), min
s
(ust), min

s
( fst) >

)
, we can obtain an

ideal solution (an ideal alternative) as follows:

R∗ = {r∗1 , r∗2 , r∗3} =


(< [0.8, 1.0], [0.0, 0.2], [0.1, 0.3] >,< 0.90, 0.1, 0.2 >),
(< [0.8, 0.9], [0.0, 0.2], [0.0, 0.2] >,< 0.85, 0.1, 0.1 >),
(< [0.8, 0.9], [0.0, 0.2], [0.0, 0.2] >,< 0.85, 0.1, 0.1 >)

.

According to Equation (4) or Equation (5) or Equation (6), we can obtain the measure values of
Zθ1(Rs,R*) or Zθ2(Rs,R*) or Zθ3(Rs,R*) (s = 1, 2, 3, 4) and the ranking of all the alternatives, which are
indicated in Table 4.

Table 4. Measure values between the two NCSs Rs and R* and ranking.

Zθm(Rs,R*) Measure Value Ranking The Best One

Zθ1(Rs,R*) 0.9683,0.9704,0.9847,0.9924 Z4 > Z3 > Z2 > Z1 Z4
Zθ2(Rs,R*) 0.8652,0.8937,0.8813,0.9701 Z4 > Z2 > Z3 > Z1 Z4
Zθ3(Rs,R*) 0.9386,0.9445,0.9699,0.9853 Z4 > Z3 > Z2 > Z1 Z4

According to the decision results in Table 4, they show that the two alternatives Z4 and Z1 have
the same ranking orders in all the measures, with the best choice Z4 and the worst choice Z1.

If we set the same importance (θt = 1/3 for t = 1, 2, 3) of three attributes without considering the
three attribute weights, we also obtained the same ranking with the attribute weights and without
considering the three attribute weights in Table 5. It is obvious that the decision results of the proposed
measures imply better robustness and lower sensitivity regarding attribute weights.
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Table 5. Measure values based on the different weights of the three attributes and ranking.

Zθm(Rs,R*) Measure Value
Based on θ = (0.36, 0.3, 0.34)

Measure Value
Based on θ = (1/3, 1/3, 1/3) Ranking The Best One

Zθ1(Rs,R*) 0.9683,0.9704,0.9847,0.9924 0.9684,0.9697,0.9845,0.991 Z4 > Z3 > Z2 > Z1 Z4
Zθ2(Rs,R*) 0.8652,0.8937,0.8813,0.9701 0.8659,0.8927,0.8795,0.966 Z4 > Z2 > Z3 > Z1 Z4
Zθ3(Rs,R*) 0.9386,0.9445,0.9699,0.9853 0.9387,0.9432,0.9695,0.983 Z4 > Z3 > Z2 > Z1 Z4

6. Conclusions

This work proposed the Dice measure, cotangent measure, and Jaccard measure between
two NCSs and discussed their properties. Then, we developed a MADM method based on one
of three measures and applied it in real cases with neutrosophic cubic information. By comparison
with an existing related MADM method, the proposed measures imply better robustness and lower
sensitivity regarding attribute weights.

In this work, our main contributions are to enrich the neutrosophic cubic similarity measures and
their decision-making method under NCS environments. In future work, the developed measures will
be extended to medical/fault diagnosis and image processing.
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research activity planning and execution; then we wrote this paper together.
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