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Abstract The neutrosophic set and linguistic term set are widely applied in recently years. Motivated
by the advantages of them, we combine the multi-valued neutrosophic set and linguistic set and define
the concept of the multi-valued neutrosophic linguistic set (MVNLS). Furthermore, Hamacher
operation is an extension of the Algebraic and Einstein operation. Additionally, the normalized
weighted Bonferroni mean (NW BM) operator can consider the weight of each argument as well as
capture the interrelationship of different arguments. Therefore, the combination of NWBM operator
and Hamacher operation is more valuable and agile. Firstly, MVNLS and multi-valued neutrosophic
linguistic number (MVNLN) are defined, then some new operational rules of MVNLNs on account of
Hamacher operations are developed, and the comparison functions for MVNLNSs are given. Secondly,
multi-valued neutrosophic linguistic normalized weighted Bonferroni mean Hamacher operator
(MVNLNWBMH) is proposed, and a number of expected characteristics of new operator are
investigated. Meanwhile, some special cases of different parameters 7> 4 and € are analyzed. Thirdly,
the approach utilizing the MVNLNW BMH operator is introduced to manage multiple criteria decision
making issue (MCDM) in multi-valued neutrosophic linguistic environment. Ultimately, a practical
example is presented and a comparative analysis is carried out, which validate the effectiveness and
generalization of the novel approach.
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1 Introduction

In real world, due to the complexity of decision information, the fuzzy theory has attracted
widespread attentions and has been developed in various fields. Zaheh [1] firstly proposed the notion of
fuzzy sets (FSs). Then, Atanassov [2] introduced the intuitionistic fuzzy sets (IFSs), which overcome
the weakness of non-membership degrees. Subsequently, in order to address the
hesitation degree of decision-makers, Torra [3] defined hesitant fuzzy sets (HFSs). Fuzzy set theory has
gained well promoted, but it still cannot manage the inconsistent and indeterminate information. Under
this circumstance, Smarandache [4] proposed Neutrosophic Sets (NSs), whose indeterminacy degree is
independent on both true and false membership. NS is an extension of IFS, and makes decision-makers
express their preference more accurately, so some achievements on NSs and its extensions have been
undertaken. Some various concepts of different NSs are defined. For example, Smarandache [54] and
Wang et al. [5] introduced single-valued neutrosophic sets (SVNs) to facilitate its application. Ye [6]
pointed out the concept of simplified neutrosopic sets (SNSs).Wang [7] developed the concept of
interval neutrosopic sets (INSs). However, under certain conditions, the decision makers likely give
different evaluation numbers for expressing their hesitant. Subsequently, the definition of single-valued
neutrosophic hesitant fuzzy sets (SVNHFSs) was firstly proposed by Ye [8] in 2014, then Wang [9]
also proposed multi-valued neutrosophic sets (MVNSs) in 2015. Actually, the notions of SVNHFSs
and MVNSs are equal. For simplicity, we adaptthe term of MVNSs in this paper.
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On the other hand, the aggregation operators, comparison method for Neutrosophic numbers are also
been studied. For SVNSs, Liu [10] employed NWBM operator to solve multiple criteria problem in
single-valued neutrosophic environment. Ye [11] gave the definitions of cross-entropy and correlation
coefficient. For INSs, Zhang [12] developed some aggregation operators. Liu [13] not only provided
the definition of interval neutrosophic hesitant fuzzy sets (INHFSs), but also discussed the generalized
hybrid weighted average operator. Broumi and Smarandache [14-16] studied the correlation
coefficients, cosine similarity measure and some new operations. Ye [17] proposed similarity measures
between interval neutrosophic sets. For MVNSs, Ye [8] developed SVNHFWA and SVNHFWG
operators for MCDM problem. Peng [18, 19] extended power aggregation operators and defined some
outranking relations under MVNS environment. Ji et al. [20] analyzed a novel TODIM method for
MWNSs.

In real life, owing to the ambiguity of decision makers’ thinking, people prefer to utilize linguistic
variables for describing their assessment value rather than the quantization value. Therefore, linguistic
variable has attracted widespread attention in the field of MCDM. The linguistic variable was firstly
proposed by Zadeh [21] and applied for the fuzzy reasoning. After that, a series of works on it have
been made, Wang [22-24] presented a new approach in view of hesitant fuzzy linguistic information.
Meng [25] developed linguistic hesitant fuzzy sets and studied hybrid weighted operator. Tian [26]
defined gray linguistic weighted Bonferroni mean operator for MCDM.

In order to indicate the true, indeterminate and false extents concerning a linguistic term, the NSs
and linguistic set (LS) are combined. Several neutrosophic linguistic sets and its corresponding
operator are defined, for example single valued or simplified neutrosophic linguistic sets and trapezoid
linguistic sets [27-30], interval neutrosophic certain or uncertain linguistic sets [31-33].However, due
to the hesitancy of people’s thinking, the true of a linguistic term may be given several values, and the
case is similar to the false and indeterminate extents. The existing literatures don’t consider this
perspective. Therefore, the multi-valued neutrosophic linguistic set (MVNLS) and multi-valued
neutrosophic linguistic number (MVNLN) in this article are proposed in order to better express the
information.

Aggregation operator which can fuse multiple arguments into a single comprehensive value is an
important tool for MCDM problem. Many researchers have developed some efficient operators [34-41],
for instance, the weighted geometric average (WGA) or averaging (WA) operator, prioritized
aggregation (PA) operator, Maclaurin symmetric mean and Bonferroni mean (BM) operator. BM
operator was originally defined by Bonferroni [42], which has attracted widespread attentions because
of its characteristics of capture interrelationship among arguments. Some achievements have been
made on it [43-49].In order to aggregate neutrosophic linguistic information, some researches on
aggregation operators under neutrosophic linguistic and neutrosophic uncertain linguistic environ ments
are also been applied [27-33,50].Until to now, BM and NWBM fail to accommodate aggregation
information for multi-valued neutrosophic linguistic environ ment. Motivated by this limitation, we will
extend the NWBM operator to MVNLS in this article.

T-norms and t-conorms are two functions that satisfy certain conditions respectively. The
Archimedean t-conorms and t-norms are well-known, which include algebraic, Einstein and Hamacher,
Hamacher operation is an extension of algebraic and Einstein. Generally, the algebraic operators are
commonly, there are also a few aggregation operations based on Einstein operations. Due to Hamacher
operator is more general, Liu [51, 52] discussed the Hamacher operational rules. So far, there is no
research for MVNLS based on Hamacher operations. Since it is better for MVNLS to depict the actual
situation, NWBM operator can capture the interrelationship among arguments, and Hamacher
operations are more general, it is of great meaning to study the NWBM Hamacher operators under
multi-valued neutrosophic linguistic environment for MCDM problems.

The main purposes ofthe paper are presented in the following:

1. To be better express people’s hesitant, combining the MVNS and LS, we give the notions of
MVNLS and MVNLN, besides, the score, accuracy and certainty functions are also investigated to
compare MVNLNSs.
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2. Due to the generalization of Hamacher operational rules, we define new operations of MVNLNs
based on Hamacher operational rules, and discuss their operational relations.

3. The NWBM considering the interrelationship of different arguments has gained widespread
concerns, we extend NWBM operator to MVNLN environment, the MVNLNW BMH operator is
defined, moreover, some desirable characteristics are also studied.

4. In order to verify the effectiveness, an example for MCDM problem utilizing MVNLNWBMH
operator is illustrated and conduct a comparative analysis. We also analyze the influences of
different parameter values for the final outcomes, the results demonstrate the operator proposed is
more general and flexible.

The article is arranged in this way. In Section 2, we review a number of notions and operations for
MVNS, LS, NWBM operator and Hamacher. In Section 3, we propose the definitions of MVNLS and
MVNLN, and develop the operations of MVVNLNSs on the basis of Hamacher t-conorms and t-norms.
Meanwhile, the Algebraic as well as Einstein for MVVNLNs are also presented, which are special cases
of Hamacher operation. Moreover, the comparison method of MVVNLNSs is also defined. In Section 4,
we propose the MVNLNWBMH operator and investigate its properties. Furthermore, when
corresponding parameters are assigned different values, the special examples are also discussed. In
Section 5, we establish the MCDM procedure on account of the proposed aggregation operators with
MVNLS information. Section 6 presents a concrete example, as well as a comparison analysis &
provided to show the practicability utilizing our method. Finally, in Section 7, some results are
presented.

2 Preliminaries

Some notions and operation are introduced in this section, which will be useful in the latter
analysis.
2.1 Linguistic term sets

Suppose that S = {sl, S, ---,s,}is an ordered and finite linguistic set, in which s denotes a
linguistic variable value and ¢ is an odd value. When ¢ is equal to seven, the corresponding linguistic
setare provided in the following:

S ={s,, 5, 5,5, 55 S, 5,} = {extremely poor,very poor,poor,medium,good,very good,extremely good} .
In order to avoid the linguistic information loss, the set above is expanded, that is a contiguous set,

S = {sa |a € R}.
Definition 1 [53] Let s, and s;be any two linguistic variables, the corresponding operations are
presented:

DAs, =5, , 4 20

X1

(2)s, ® S, =8,
(s, ® s, =5,
4) (s/. )i =5,

2.2 Multi-valued neutrosophic sets

Definition 2 [8,9] Supposethat 4 is a collection of objects, MVNSs 4on X is defined by
4= {<X,T:,(X),I~A(X),€(X)> |x e X},
Where 7,(x) = {y|y 5 fA(X)}, I,(x) = {5|5 e fA(X)}, F(x) = {77|77 € !:"A(X)},

7.(x), I,(x),and 7,(x) are three collections of crisp numbers belonging to [0, 1], representing the
probable true-membership degree, indeterminacy-membership degree and falsity- membership degree,
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where x in A belonging to 4, respectively, satisfying these conditions 0 < »,5,7 <1, and
0 < sup 7,(x) + sup 7,(x) + sup 7,(x) < 3. If there is only one element in y, 4is indicated by the

three tuple 4 = @(X),INA(X),FNA(X)>, that is known as a multi-valued neutrosophic number

(MVNN).Generally, MVNSs is considered as the generalizations of the other sets, such as FSs, IFSs,
HFSs, DHFs, and SUNSs.

2.3 Normalized weighted Bonferroni mean

Definition 3 [42] Let p,¢ > 0,as well as a,(7 = 1,2,--- 1) be a set of nonnegative
values, then the BM is defined as

1
P+q

1 n
B a,a,,a)=|—— a’a’
1 2 n n(n _ 1) 1',/2:1, ( 1 J)
1'#;j
Definition 4 [45]Let p, ¢ > 0,and a,(7 = 1,2,--- 1) be a set of nonnegative values, and
the corresponding NWBM can be expressed as below:

1
p+a

n

NIBU" (&, a,,-+,a) =| & £L(a’ ® a’)
1,7=1, i -
i#j

Where W= (W,,W,,---,W,) represents the corresponding weighted vector

of a, (1' =12 H) , satisfying w, > Oand > w, = 1. The weight vector can be
i=1

given by decision-makers in real problem.

Obviously, the NWBM operator possesses a few characteristics such as
commutativity, reducibility, monotonicity, boundedness, and idempotency.

2.4 Hamacher operations

We know aggregation operator is given in accordance with different t-norms and t-
conorms, there are some exceptional circumstances listed in the following:

(1) Algebraic t-norm and t-conorm
a®b=aba®b =a+ b — ab;

(2) Einstein t-norm and t-conorm

3®b: 3b , a :a—+b’
L+ (1-a)x(1-b) 1+ ab
(3) Hamacher t-norm and t-conorm
2 ® b = ab ’a®b:a+b—ab—(l—8)ab’g>0
5+(1—5)(a+b—ab) 1-0 - gab
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In special, when & =1¢ =2, the Algebraic and Einstein operations are the
simplifications of Hamacher t-norm and t-conorm.

3 Multi-valued neutrosophic linguistic set
3.1 MVNLS and its Hamacher operations

Definition 5 Let X be asetof points,an MVNLS 4in X is defined as follows:

4= {5 [ (1,00, 1,0, EGOY ) < ),
Where Sy, € S 7,(x) = {7 |}/ € @(X)}, 7,(x) = {5|5 € fA(X)}, Fx) = {77 |77 € F](x)},

7.(x),I,(x), and F,(x) are three sets of crisp values in [0, 1] denoting three degrees of
xin X belonging to sy, , that are true, indeterminacy and falsity, satisfying these conditions

0<y%6n<1land0 < sup ]Z(X) + sup f4(X) + sup ﬁA(X) < 1.

Definition 6 Let4 = {<X [Ssm’ (@(X)’iA(X)’[Z(X)):D |X € X} be an MVNLS, supposing there is

only one element in X, then tuple <59(X),(f/,(X),fA(X),fZ(X)» is depicted as a multi-valued
neutrosophic linguistic number (MVNLN).For simplicity, the MVNLN can also be represented as

A = (s (1,0, 1,000, B0 | e &

Definition 7 Leta = <Sg(%>,(f(al),f(al),ﬁ(al)» and a, = <Sg<az),(f(az),f(@),ﬁ(az)» be two

MVNLNs, and 4 > 0, then the operations of MVNLNs can be defined on the basis of Hamacher
operations.

(1) al C_B aZ

= <59(51)+9(52)’

y . Intn-rn-a-emy,
nella),y,el(a,) 1 - (1 - ‘9)717/2 ’

U ) 5152 s
gella).gellm) | oy (1 = g) (51 +0, - 5152)

O . { nm, } .
n el (a),n, el (a,) & + (1 _ 8) (771 + 772 _ 771772)

(2) a ® a,

= <59(a1)><9(f72)’

[U _ _ { }/17/2 }
nel(a),y,el(a,) ’
nella).r el e+0-8) G, +7, -1y

U {5] +6,-606, - (- 5)5152}
S el(a),s,el(a,) 1 - (1 _ 5)5152

U . ) nmo+n, —mn, - a- 8)771772 .
n el (a),n,el(a,) 1 _ (1 _ 8)771772 ’
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(3) ﬂval = <S/w(a, )’
™ 1+ (e - 1);/1)}" -1 - 7/1)/1
yel(a) (1_,_((.;_1)7/1)}L +(£—1) (1_7/1)}L ’

0 &s
8 ela) I+E-1D0- 51));' + (¢ - 1)51/7L ’

U & |
mefa) V(14 (6 -1 (A = )+ (e - Dn/ ’

A
<4) &1 - <S€A(al)’

U =
AT U e - DA - ) + - Dy

1+ (e -D8) -1 -8)
8 el(a) (1+(€ _1)51)1 J,-(g—l) (1 —61)2 ’

U 1+ @ =Dp) =0 -n)
n ef(a) (1 + (g _ 1)771)/1 + (6‘ — 1) (1 - 771>/1 '

If & = 1,then the operations based on Hamacher operational rules in Definition 7 will simplified to

the Algebraic operational rules in the following:
(5) a @ a,

= <S‘9(51>+9<52)’

—

U;/ls]-'(a'l),;/zsf(a'z) {;/1 + ;/2 - 7/17/2} ’
sel(a),s,el(ay) {5152} ’

Ul]lei(al),l]zeﬁ(az) {771772})> ;
6) a ® a,

(-

<Se<al>xg<az),
(UVIEf(fil),yQGf(;zz) {7172} )

5 efseita) (O T 0, = 85,},
U ety neria) {m +n, - 771772})>;
(1) Aa, = <SW),

(Uylef(a]) {1 - (1 - 71)4}’
Uj et {511},

U, cre {’711})> ;
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® a’ = (s

o* (a;) ’

(Unemn {711}’

Ub‘lel_(al) {1 - (- 51)1}’
Umeﬁw {1 - - 771)1})>'

Supposing 7(a,), 7(a,), (a), 7(a,), I(a,), and F(a,) contain only one value, then the operations

defined above can be reduced to the operations of SVNLNs based on Algebraic operations proposed by
Ye [27].
If ¢ = 2, then the operations based on Hamacher operational rules in Definition 7 will simplified to

the Einstein operations of MVNLNs presented below:
9) a @ a,

<59(51)+6’(az)’

ntr
Uyeronmeron 11752
( nella),y,el(a) 1+ e
U

0,0,
sela)gela) | g 5 -6, + 606, ’

U . ) mi, .
n el (a),n, el (a,) 2 _ 771 _ 772 + 771772 ’

(10) a, ® a,

= <59<31>X9<az>’

U . ) e
nel(a),y,el(a,) 2 — 7/1 — }/2 + }/172 ’

6, + 0,
Uslej(al),a‘zef(az) 1+808 ’
172

n, +n
U ) R
mel(a),n,er(a,) 1 + 771772

(1) 2a, = (

Slﬁ(zil )’

U A+p) -0Q=-p)
ynel(a) (1 + 71)1 + (1 B 7/1)4 ’
20,
Us cra {m},

u . 2/ .
n el (a) (2 _ ’71>l + 771/1 ’
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12) a*
yel(a)
s el(a)

m eﬁ(a1 )

Supposing 7(a,), 1(a,), F(a), T(a,), I(a,), and £(a,) contain only one value, then the operations

= <Sﬂl({'ll),
o
Q- +y
1+6) -0-6)
G+ +0-6)]
L+n) -0-n)
A+np) +0-n)

defined above can be reduced to the operations of SYNLNs based on Einstein operations.

Theorem 1 Let & :<sg(al),(f(a1),f(al),ﬁ(al))>,

a

below are correct:

(1) a @ a,
(2) a ® a,
3 /1(31 @

(4) Aa @ Aa
5) a’ ® a”
©) a* ® a,
D (4 ®a,)®a,
® (4 ®a)®a

=a, ®a;
=a, ®a;
32) = la, @ Aa,;
= + a;
= ahthy
= (al ® az)i;

a @ (32 @ ag);

a, ®(a'2 ®a3).

Then, equation (4) will be proved as follows:
Proof (4) Since 4,4, > 0,

058l

4a @ 4a = s,

, = <59(52),(T~(52),]~(a'2),ﬁ(az))>, and
a, = <59(a3),(f<a3),i(a3),ﬁ(a3))> be any three MVNLNSs, and 4. 4.4, > 0, then the properties

|

( (+-Dpl --pf | W=Dyl -0-p) Ue-Dpf -0-p  al-Dpf -(-p) (+le-Dp) -0 p) (L4 (e =) — (L= p)"
U U+=-Dp) +-DU-7)r U+-Dp) +-D0-p) Q+E-Dp)" +-D0-2)" 0Q+-Dp)+-D0-p)" (+(e=Dp)" +-DU-p) U+l-Dp)+E-D0-p)"
‘ o8 1+ (e -Dp)" - - p) (14 (=) -(-p)"
( U+le-Dy) +e-DU-p) U+-Dp) +E-D0-p)"
( &/ ) & \
u (U+E-D0-8)"+-D8" (+E-10-06))+(-D5"
" é‘+(]*€) LD‘ + Lﬁ‘ - LJ‘L
T+-D0-8) " +-D5" Q+E-D0-8)"+@E-D5* 1+-D01-8)) +(-Dg" W te- 1)1 S+ (e - 15
e . en”
U (L -D0-g)l +-Dg" U+E-Da-p) + -y
" e+ll-¢) il + a1 - o a1 ‘
| (rle-DU-g)l +-Dn" G+GE-D0-n)*+GE-Dn* A+GE-DU-n) +-pt (+(-D0-n)"+( -y
U (4 (e -Dp)* (=) )
L =0+ e =D (- )0
I I }
(Y +le-05"
en " )
A+ (e=DA=n))""* + (- Dy ] ]
L+ A)a,

Therefore, equation (4) 4a @ A4,a = (4 + 4,)a can be obtained.

l'
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Similarly, the other equations in Theorem1 are easily certified in the light of Definition
7.

3.2 Comparison method

The score, accuracy, and certainty functions are important inde xes to rank MVNLNs, and its
corresponding definition is given below:

Definition 8 Let a = <sg(a),(f(a),f(a),ﬁ(a)» be an MVNLN, and the score, accuracy, and
certainty functions are achieved as below.

0 Ea) = {;

Loyl i

y+1-0+1-7g
Zyef(a),ﬁej(a),néﬁ(a) 3 ) SU(&')

=5 1 1-6+1
y+1=-0+1-n
[ Zyd’(,z),Je/'(,n,q&/"(n)( 3 )]0(3)

T

1

Ll

(2) H<a) = { Zyef(a),ne/':(ﬂ) (7 - U)J S‘g("i)

[ Zysv’u).vsﬁ‘(u‘z<77’7)]9<"i)

Fa)a)

1

(3) Cla) = (— D 7} Sy

L

=S
Where %> I;,,» and Z,, are the numbers of the values in 7,(x), 7,(x), and 7,(x) respectively.

The linguistic variable S,., is important for an MVVNLN. Therefore, the comparison functions defined
above in Definition 8 are denoted as the linguistic variable. The bigger the truth degree 7(a)
concerning the variable S, is, meanwhile, the smaller the indeterminacy degree /(a) as well as the
false degree /(a) concerning the linguistic variable S, are, then the higher the MVNLN is. Relating
to the function of score, the greater » — 6 — 17 corresponding to Sy, is, the higher the affirmative

statement is. Relating to the function of accuracy, the greater 7 minus 77 is, the certain the statement is.
Regarding to the function of certainty, the bigger 7 is, the certain the statement is.

Based on Definition 8, the comparison method between MVVNLNSs are obtained.

Definition 9 Supposing & and a, are two MVNLNs, the compared approach is achieved in the

following:
(1) Supposing that Ea) > E(a,) then 4 is greater than &, , representedas & > &, ;

(2) Supposing that £(a) = £(a,) = and #(a) > #(a,) then 4 is greater than 4, , represented
as al - 32 ;

(3) Supposing that £(a) = E(a,) = H(a) = H(a,)  and C(a) > C(a,) then 4 is greater than &,
representedas & > & ;

(4) Supposing that £(a) = £(a,) | H(a) = H(a,)  and Cla) = C(a,) then & equals & ,

representedas & ~ &



Mathematical Problems in Engineering.

4 The multi-valued neutrosophic linguistic normalized weighted Bonferroni mean Hamacher
operator

The NWBM operator can not only take into account the advantages of BM and WBM, but also has
the property of reducibility and idempotency. However, the NW BM operator has not been applied to
the cases where the input arguments are MVNLNSs.

Definition 10 Let a(i=12--,n) be a space of MVNLNS,

a = <so<al),(f(al.),f(al.),ﬁ(aj)», p,g >0, and @ = (@, @, ,®,) be the weighted vector
fora,, o, € [0, 1] and Y. @, = 1.Then the operator of MVNLNWBMH is achieved as below, the
i=1

aggregation result is still an MVNLN.

p+q
n

g = P8 a
WVNLNWBMH (2, 2y, - a) = | @ (a” ®a)
ij=11 = @; ‘
i#J

According to the operational laws in Definition 7, the results are derived below:

10
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MYNLNWBIH (2, a,, - a)

3l

(.

\p+a
(ulm/A (). 09 (-
——-0"(a,)-6(a;)
1-w; ’

1
p+aq
)y]
1

X -y

+(g—1

;/I,ef-(a'}.),y/sf(a])

il

[1+(3—1)

X -y
(5—1

h

g+(€—1

)] el

h
c¢—1

X —-ry
(5—1

1

ol

1

zi

Ué‘, ell(a, )6, e/:(a/)

>f]p;[1g+(

1

n pra I p+a ’
1+(5_1)g+(g_1)/7 +(8_1)1_7g+(g_1)/7
; 1
u p+q u p+q
(1+(€_1)V+<8—1)UJ _[1_V+(5—1)u]
U;yl,e/':(a,),i]/e[:‘(aj) R R
u p+aq u p+q
[1+(g_1)v+(g—1)u] +€_1){1_V+(8—1)Uj
= S )
{ Z (%-6"(&‘ )67 (a, >)JM
1
£ (X - y)m

U

y,ef(a‘),yjef(aj) 1 1

(X+(82 —1)}1)E +(5—1)(X—y)m

(g + (52 - 1) /7)m - (g - h)ﬁ

Uﬁl Ei(a}),d‘»,ef(aj) 1 1

(g+(52 _1)/7)E +(5—1)(g—/7)m
(V + (52 —1)11)ﬁ —(V —u)ﬁ

(V—i—(&2 —l)u)m +(£—1)(V—U)m

U

n; e/:‘(al),q/ e[:‘(a:j>

@)

0,0,

((8 ~(e-1)7) (e~ (e -1)7,) + (& —1) yipyjq)l_m,’

n

Where ¥ = H
i,j=1
i#J

11
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= ng ((5 - (5 - 1) V. )p (8 - (g - 1) 7, )" — )lw’
e T )8) (s (e8] v i) (o))

1,j=1

0.0,

P T - a) (e e -s) ~(-a) (-0 ).

ij=1

u = 1;,ljl ((1 + (& - 1)771.)17 (1 + (& - 1),7./)‘7 —(-nY (1 ~ U_,-)g)lia;:,

Proof. According to the operational rules for MVNLNs, the results below can be gained

T = (s, 7 ef(a) 3'7@1 ’
: < LU, '{(H(Sm(ly,)) +(81)%"}

R |

Ub‘le“a){(l +(e-1)8) +(e-1)(1-5,)

U ~{ (r(e=Yn) -(t-n) }
n, e (a;) (

12
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a’®a’=\(s,6 . N ,
o < e [U [(g N R R w}

(1+(e-138) -(1+(e-1)8) -(1-6) (1-0)
)

Uaiei(a),b}eﬂ"./) {(1 + (g - 1) 51.)'" .

U |
nefa) i, efa) (1 +(e-1)n, )” : (1 +(e-1) U,f)q t(e-1)(-n) (1-n)

Firstly, we need to testify the mathematical formula below.

@ (o) © a,)
[ {fe=(e =0z o= (e -0z) + (e =) - ST
| <z e T (e (e =) (o le =) o (e - Jrrr o) TR
(o= (e a) -a-ay 0-a) |7

gf!‘ ((l + (s - 1) 77‘)/( (1 + (g - l),]/)Q - (1 - r]’)” (1 - r]/)q) o

o TH(0-na) (e -ne) +@ -00-a) (=a) "+l [T [0+ (- 0a) (e le-na) -0 -a)y (6]

The mathe matical induction on n is adopt to prove

(1) Supposing 7 = 2,theequation below is obtained.

oo, o, ,o,
—(a/®a’')=—"""(a" ®a’')® ——(a ®a’)

il — o, 7 l-w l-w

/5 J = i 1 2

i#J

=(s U X
DDy po(.Y.00(, DBy . y.g(, ’ yjef(;—if),y,ei(a ) ( _ ) ’
Lot (a) 9’(‘5”71_0)2 0" (a))-0° () e xx, + e - 1)y,
U &mm,
. 7 . 7. ’
0151(&1),0/61(&/) lez + (g _ 1) ”71”12

U ngV2
n;ela,),n; el (a;) Uluz + (8 _ 1) Vle
[

Where X, = [1 + (g B 1) . &7, ]
(6 -(e-1) yl)P : (g —(e-1) ;/2)q (e =1)n

ooy

o ,ﬂ‘((l+(£_l)”')" (1+(s—1)1],)” + (& —1)(1—7][)/‘ (1—7]})”)‘7m +(£_1),f!‘((l+(£_l)ﬂ')ﬂ (1+(s—1)7],)” —(1—77[)/‘ (1—7];)0)

@)
Eq.(2)

13
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1-ay

x, = [1+(e-1)- . e, r’ : ] |
(8—(8—1)72) .(g—(g—l);/l) +(g_1);/2.07/111

E.Uq
J’l:l— e J ’

(e=(e-1)n) (e (e =1)n) +(e-1)nn

L[l e=na) e n) 0 -a) (-n)
(=) (o) =) 0=n) (1=n)
T D R ) A )
(=) (=) === (=)
H(gl)[l (e =1n) (e )] (=) (1) H
(e =ta) (e =1)n) == =n) (=n)

14
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Then,
Hl((S*(s—l)}/) (s -(c-1)7,) *(5271)71’77‘;)1777 H]((gf(g,l)y) (e-(c-0)r) - rr )f
i (ewen) U, v er - .

gf[ ((1 +(e-1)5) (1+(e-1)8) -(1-6) (-5 )")"’”

ij=1

o ]j[‘ ((1 +(e-108) (1+(e-1)5) +E -D(1-5) (1-9, ))’ +(e-1) f[‘ ((1 +(e-1)8) (1+(z-1)5) -(1-6) (-3, ))‘

2 iy 240

sTT(0+ - 0n) (15 -1)n) - (-n) (=) )

r[ ((l + ({; - l)’71 ),, (1 + (5 - l) 7, )” +(& -1 (l - 17“)” (1 - 17])")‘7“ + (z: - l) r[ ((l + ((; - 1)171)/Y (1 + (5 - l) q/)” - (1 - 17“)” (1 - 17/)")‘7“

=1 =1
i

We can achieve Eq. (2) is right when n = £ .
(2) Supposing 7 = k, the equation below is right, then

ow

®

=\ & 00 'U a).7,e7a)
Y T o) ) isttay;elia, i

Ua ella,).5,el(a,)

- (a’ ®a)
@;

0,0,

T (=) o= 0] o (& =07 ™ = Tl = 07) o= ) =70

T (e (60 (o= e 0) (-2 s e T (6 o) (o) )

g/ljl ((1 +(e-0s) (1+(e-1)5) -(1-6) (-5, ))‘

1‘[‘ ((1 (e-0)s5) (1+(e-1)8) +E-D-5) (13, ))’ +(e-1) fI‘ ((1 +(e-0)5) (1+(e-1)8) -(1-06) (-9 ))‘

X 2%

e[] ((1 +(e-1)n) (14 (e-1)n) -(1-n) (- ,]/)4,),,,,

iJ=1

ﬂ ((1 +(e - l)nl)” (1 +(e - l)n,)” +@& =D (1-n) (1 - n")")”m +(e-1) fl‘ ((l + (e - 1)'7,)” (1 + (e - 1):7/)Q ~(-n) (- ,,v)"')"""

If n = &k + 1, we needto calculate the equation below.

k+1

k k k
z'wj (a,” @ a'q) — @ (U].COJ. (a_p @ ava) (‘B @ a)/a)k+1 (avp @ ak 10) @ @ wk+le (ak 1p ® avq)
o l— o ! 7 il — o ! 7 Tl-o N Sl-o,, " 7
The mathematical induction on 4 are used to testify the equations below.

@?)fu:)' (a" ®a,') = <52‘,wfh ) 0‘[“‘0’\"“]1,
U H((e ~(e- 1)7,)/’ (s -(e-1) VM)" + (g" - l) y“’yk,ﬁ’)% - lj((s ~(s-1)y, )/’ (x ~(e- I)V‘,l)q - 7,"%*\”)73’?‘

B (o I O P [ A o) LR P (3 O A O PO A I
y er[ ((+@-no) (+(e-1s.) ~(-a) (- a))i

B TT{(0 (=3 ) (o= 0) 2@ =006 (0] + 0TI 603 ) (0 =)o) -0-a) 1-0.))

Ury eFla)m,, eFlay,,)

AT(0 =) (o (o= ~(-n) 7'7))7
ﬂ(@ t(e=1)n) (1+(e-1)n.) + & -D(1-n) (1~ ”]))7 +(e 71)1%[‘((1 te-0n) (1 (e-Dn.) ~(-n) (- n,))'i

15
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b p q
———L(a, ®a’)=(s,,
IR < e

# a0t

T{(e e (o e 0)7) + (7 ),

L (I N1 e l

[T{(e = e =07) (e = e = 0) # e =) [ o (=TT ((e = e = ) (o= (e = ) ) =
U eliz[]((u(gfl)ﬁm)" (1+(e-18) -(1-5.) (175,)')ﬁ ]
- H((l +(e-15,) (1+(e-1)8) +E-D(1-5.) (1- 5))7 +(e - 1)H((1 +e-16.,) (1+(e-1)8) - (1-5.,) (1- {)))17[
U £]jl((l+(5—1)17‘4)” (1 +(£—1)1]/)/ —(1—77“”)/' (1—17,)“)% l
R H((1 +e=Nn,) (1 +(e-D)n) + @ =D(1-n.,) (1-n) )‘7 +(e - l)lj((l e-Dn,) (e -0)n) —(1-n.) (- ,]))‘7{
Therefore,
::1] lai'a;;l (a’®a’) = ’é‘ la);a;’ (a" ®a’) ® é%(al” ®a, )@ @ 1‘”:::,‘)‘" (a,,” ®a’)
< T ]l((sf(gfl)y) (57(571);/) +(52 71);/ 4 )‘7 - ﬁ‘((sf(sfl);/) (57(571)7 )U 7}/,”;/,"‘)W
=\ 9 iy U,aw,y eita ; w0, , @0,
el TT{(e=(=07) (o= (= 07) + (=) "+l =) TT (e~ e =) (= (= )7 ) - 277)
;i‘[]l ((1 +(e-1)5) (1+(e-1)8) -(1-5) (-9, ))‘7
Us et et

ﬁ ((1 (e-10)8) (1+(e-1)8) +E-n(1-5)(1- o‘,)")”“' +(e-1) ]‘t ((1 +(e-1)8) (1+(e-1)5) -(1-6) (- a‘,)”)"‘“

ij=1 ig=1
i

kel —

e (0 - 0m) (e -0 —(-n) (-n))

ij=1

U “
nefta)nyefta)) |

1 iy

11 ((1 + (e - 1)171)” (l + (e: - l) n, ) + (e - l)(l -7, )” (1 - n/)")lw + (g - l) ﬁ] ((1 + (e - 1)171)” (1 + (5 - 1) 7, ) - (l -7, )” (l - 17/)”)‘7“

iy=1

Thatis, If » = & + 1, Eq. (2) is right. Therefore, for all > Eq. (2) is right.
Then, Eq. (1) is right.

In the following, the properties of MVNLNWBMH operatorwill be proved.

- 11 1
(1) Reducibility. Let o = [—,—,---,—]. Then
n n n
MVNLNWBMH (&, a,, --- a ) = MVNLBUH (4, a,, -+ a ).
. 11 1 . L -
Proof. Since o = [— s —j, then according to the operations in Definition 10, the
n n n

result below can be obtained.

16
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p+q
a . .
MVNLNWBMH (a,, a,, -+ a,) = &) —(a” ®a)
il — o, ’
i#J
1
1 pta
n 2
=@t ®a”)
1,j=1 1 - l
1#]J
n
1
B 1 p+q
= e (a.p ® a '(1>
J-S—BZI n(n-1) " 7
FENA
1
1 n p+q
=l —— PpG”"®ar’)
17(17 _ 1) j€;21 1 J
i#J

MVNLBWH (a,, a,, - a, ).

(2) ldempotency. Let @, = a (7 =1,2,---, n). Then MVNLNVBIH a,, a,, -+ a,) = a.

Proof. For each 7, owing to &, = a, the formula below is obtained on the basis of Eq. (5) in

Theorem 1.
1
p+a
w0,
MVNLNWBIMH (a,, a,, - a,) = ® (2" ® af”)
i l— o ’
1#]J
1
p+q
- a)iwf p q
=@ ——@@ ®a")
IE
FEN
1
p+q
00, .
— - ap q
iyel l - o,
I1#]
1
n pra
o @
iel l - o,
i#J
= a.

(3) Commutativity. Let (%y%""%)be any permutation of(%’azf"an)-Then

MVNLNWBMH (&, &y, -+ &,) = MVNLNWBMH (a, a,, -+ a,).
Proof. Owing to (&, 4,) is permutation of (4,4, --@,)  then the equation below can be

obtained.

17
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" [ONOR a
MVNLNWBMH (&, a,, -+ a,) = P — (a/ ® a’)
el — o, ‘
i#J
1
ptq
n ..
= (a3 ®a")
il - o, 7
i#J
(4) Monotonicity. Suppose
a, = (s, (T@), I@), Fa))) (=12, and

b, =<S,,(,)i),(f(bl.),f(bl.),ﬁ(bj)» (i =12--,n are two sets of MVNLNS,
when Sow) = Sow,  1(a) = T(b), I(a,) < I(b,) and F(a,) < F(b,) for each i, then

MVNLNWBMH (&, a,, -+ a,) = MVNLNWBMH (b, by, - b, ) .

Proof. (I) Linguistic term part
Owing to p,¢ 2 0,and s, | > s,,, foreach 7, the result below is gained.

0"(a) > 0°(b) 4 0(a) = 6°(5)

= 0°(a)0(a,) > 6°(b)6" (b))

..
i

..
= —2L 0%(a)f(a) > ——L6°(b)0°(h,)
l - o, ! ! 1 - o, ! !
1 . . 1 .o .
= Y ——L0%a)e(a) = Y ——L0"b)o"(b,)
nj=1 1= @ nj=1 1= O
1#J 1#]J
" oo pta ' wo pta
= — L 97(a)6(a.) > ——_ 97 (b.)6° ()
,-;1 1 - @, ! ! /;1 1- @, ! !
i#j i#J

(1) True, indeterminacy and falsity membership parts
Owing to 7(a,) > 7(b,), I(a,) < (b)) and F(a,) < F(b,) for each i, p,q = 0, then the

following results can be proved easily.

1 1

£ (XH/ -7, )ﬁ . € (X/), 7, )E
1 1 - 1 1
(XH + (52 - 1) v, )‘”" +(e-1) (Xﬁ -7, )”*" (Xb + (52 - 1) v, )”“’ +(e-1) (Xb -7, )”*"
1 1

1 1

(g, + (&2 = 1) 8, ) = (s, -5, ) (g, + (= 1) 8, ) = (g, -5, )
1

)2, )
(ga/ + (52 — 1) /75/ )ﬁ + (5 — 1) (gal — ha, )ﬁ (gbl + (52 - 1) /7,%)
) )

IA

1 1
(Vﬂl + (.92 — 1) u, )E + (g — 1) (Vﬂl —u, )E (Vbl + (52 — 1) u, )E + (g — 1) (Vbl -u, )ﬁ
Where the corresponding x, v, &, 4, uand v are defined in Definition 10.
(1) Comparing MVNLNWBMH a,, a,, -+ a, ) with MVNLNWBHH (b, b,, -+ b )

Suppose a= <Sg<,,,),(T~(a),]~(a),ﬁ(a))> = MVNLNWBMH (a,, a,, -+~ a,) and

18
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b = (50 (T0), 1), FB))) = MNLNWBM (b, b, -+ b,

Because s,,, = S, /(a) =2 7(b), I(a) < I(b)and F(a) < F(b),thus a > b.
Then MVNLNWBMH (a,, a,, -+ a ) > MVNLNWBMH (B, by, -+ b, ).

In the following, a few special examples for MVNLNWBMH operator regarding
different values &, pand g will be explored.

(1) If ¢ = 0, thenthe MVNLNWBMH operator defined by equation (1) will be reduced

to the generalized multi-valued neutrosophic linguistic Hamacher weighted average
(GMVNLHWA) operator shown as below.

1

il — o,
1#J

ptq
V] - . ﬂ » q
GM) /VLHWA(al, a,, an) = (_B (a}. ® a, )

1,7=1
i#j

1
p
T w.o.
-l @ 2ar
l-o '

|
51
)
—~
—
|
2
S—
A
s |

< (X’ _ yr);
U;/‘e]_'(a,),y/sf(a,) 1 1
(X’ + (52 - 1) y’)" + (g - 1) (X' - y');
J (g' + (52 - 1) h’)% - (& - /z')i

S, e[(ai),b‘jej(a/)

19
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n

¢TI0+ -na) (@ -)a-a)),

i=1

n

u' = H((1 + (& - 1)77,)# -(1- 77,')[7)(”]’

i=1

v’ = H((l + (5 - 1) 777.)p + (52 - 1)(1 - 77,.)[))”]/

(2) When p = 1,¢ = 0, then the operator of MVNLNWBMH defined by equation (1)
will be reduced to the multi-valued neutrosophic linguistic Hamacher weighted
arithmetic average (MVNLHWAA) operator shown as below.

n

MVNLHWAA 8, a,, -+ a ) = Pw,a,

i=1
=\5, )
Z ,0(a;)
i=1

n

H(l +(e-1) yl.)“" -T1(-7)

Uf/,ei(aj) n - " i=1 . -
(1+ (¢ —1)71.)' +(e-D]1(-7)
i=1 L
6"
Uﬁjei(aj) P /.:l” -
(e-1)]]s" + H(s - (e - 1)5}_)1
i=1 =1
gﬁ 77]‘(1)]‘
Uqlelj(al) " J:ln -
(=TT« T (e = (e =)
i=1 =1

If & =1, the MVNLHWAA operator will be reduced to MVNLWAA operator shown
as below.

MVNLIAAGa,, a,, - a ) = (s, ,
Z(ol(i(a,)

i=1

(Uylef(al) {1 - H(l - }/Iv)w/}’

i=1

n
w/
Ub‘]ei(fg) {H 51' } ’
=1

U, ) {H " }J>

If & =2, the MVNLHWAA operator will be reduced to the multi-valued neutrosophic

linguistic Einstein weighted arithmetic average (MVNLEWAA) operator shown in the
following.

20
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n

MVNLWAA a,, a,, -+~ a,) = (s, ,
> w,0(a;)

n; el':(a,. ) n

() If » > 0, = 0, then the MVNLNWBMH operator defined by equation (1) will be
reduced to the multi-valued neutrosophic linguistic Hamacher weighted geometric
average (MVNLHWGA) operator shown as below.

n

MVNLHWGAa,, a,, -+ a ) = ®ez.“’"

1
= S n )
T16% @
i=1

i=1

gf[ 7,
U;/‘ el(a,) n l:]n ©
(e-D)]r" + H(s - (¢ - 1);/,.) ’
i=1 i=1
H(l +(se-1) 51.)’”" - H(l -s)"
Ué'}.ef(ai) n = = n

H(l + (8 - 1) 57.)0’ + (8 _ 1)1—[(1 3 5{)@.

i=1 i=1

[T+ (e=1)n) -TI(t-n)"

U i=1 i=1
n;el(a;)

n n

[0+ (0] +te DIT0-n)

i=1 i=

If & =1, the MVNLHWGA operator will be reduced to MVNLWGA operator shown
as below.

21
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MVNLHWGA a, a,, -+ a ) = ( s, ,
HH“)’ (a;)

(UV, e7(a;) {H 7/1’“":‘ } ’

Ué‘/gf(ﬂ/) {l - H(l - 51’)0)/}’

i=1

U, ) {1 - H (t=m) }]>

If & = 2, the MVNLHWGA operator will be reduced to the multi-valued neutrosophic

linguistic Einstein weighted geometric average (MVNLEWGA) operator shown as
below.

MVNLHWGAa,, a,, -+ a ) = <s

U;/, ef(;z/ )

n n ’

i=1 i=1

U(Y}.ef(al) n

[T+ )w’ +11

i=1 i=1

[T+s) -TI0-96)"
(

n n

[T0+n)" -TT0-n)"

=1 i=1

Ur;,.eﬁ:(a,)

n n

[T(t+n) +TTC-n)

i=1 i=1

@) If & =1, then the MVNLNWBMH operator defined by equation (1) will be reduced
to the MVNLNWBM operator shown as below.

22



Mathematical Problems in Engineering.

MVNLNIBM (a,, a,,--a ) = (s

n

1 )
p+aq
L (w0
Z { A -9”(5/)-9[’(5/)}
“ | l-@
/v"/Tl 1
i

1

n (UIwJ pra
_ P 0\,
Uyl ef(a,),yjef(aj) 1 H (1 i 7/.]' ) ’

i,7=1
i#j

n

i,7=1
i#Jj

Ué‘[ef(a‘),&/e/:(aj) 1 - [1 -

Un,eﬂa,),n,,efw 1- {1 - H (1 - (1 -7, )P (1 - 77‘]-)4)1_@,

i,7=1
i#j

I1 (1 -(1-0) (-0 )4)1-(0,

(5) If & = 2, thenthe MVNLNWBMH operator defined by equation (1) will be reduced to the
MVNLNWBME, that is the simplification of multi-valued neutrosophic linguistic NWBM

Einstein.

MYNLNWBMH (&, a,,-+-a ) = { s L

p+q
L (w0
Z —~L.0"(a,)-0(a;)
“\1—w0 i J
ij=1 i
i%j

1
2(x — y)pra
U;/‘ef(a,),y/e]_'(aj) { (l )
(
(
(
(

Uz?‘ Ei((’l, ),5»/ ef(aj)

U

n; el':(a/%ﬂj eﬁ(a/)

@0,

Where % = ﬁ ((2 ~ 7 )p (2 N }/j)q + 37].;;7]_‘1 )H’

i,j=1
i#J

0,0;

y = ﬁ ((2 _ 71')12 (2 _ 71.)0 _ 7jp}/jq)lfwl i

1:,J_:l

n

h = H ((1 +3, )ﬂ (1 +6, )l' _ (1 _ 5{)/’ (1 -5, )q)ll'm’:’

i,j=1

23



Mathematical Problems in Engineering.

(U/ 0{/

g=1] ((1 +8) (1+8) +3(1-6) (1- 5_/.)“)"”’/,

©,0;
1 =

o= T n) (en) (=) (=n) )"

i,j=1
i#j

0,0,
11

v =11 ((1 +n,) (1+n) +3(1-2)(1- nj)”)“‘”f :

i,j=1
i#J

From the above analysis, we can obtain the MVNLNWBMH operator is more generalized.

5 The multiple criteria decision making approach based on the MVNLNWBMH operator

The proposed MVNLNW BMH operator is presented to cope with MCDM problem under multi-
valued neutrosophic linguistic environment in this subsection.

Suppose that 4 = {4, 4+, 4,} represent 5 altematives, and € = {C,, C,, -+, C,} represent 1,

criteria. Let o = {a)l @,, -+, a)n} be the corresponding  weights of criteria,
where @, 200/ =12--,n, and > @, =1 The evaluation value of the criteria
J=1

C,(j =12+, n) regarding the alternative 4, ( = 1,2, ---, m) is provided by experts. Each value
is represented by MVNLNNSs. Suppose that £ = [%]W is the multi-valued neutrosophic linguistic
decision matrix, &;; = <59<«w>’ (ﬂ%)» j(%) > ﬁ(%))> is the evaluation information which
represents the assessment value of alternative 4,(7 = 1,2,---, m) on criteria C,(J = 1,2, -+, n) with
respect to the linguistic value So., > where 7(a,,) indicates the satisfaction degree, 7(a,,) indicates
the indeterminacy degree and ﬁ(au) indicates the dissatisfaction degree.

Then, the main method for ranking and selecting the best alternative is presented in the following.

Stepl. The decision matrix is normalized.

Generally, criteria in MCDM problems consist of two types: maximum type and minimum type,

the minimum type should be transformed into the maximum type for eliminating the influence of
distinguished types. Suppose that k= [%]mxn is the original decision matrix, which can be

normalized as follows:
a.., for maximizing criteria

1J

b.. =

1]

<5lfe<a (7@, I(a,)), ﬁ(a}.j))> , for maximizing criteria

Thus, the normalized matrix Z = ':bfjl,,xn is gained.

Step2. The comprehensive value of each alternative is calculated.

The comprehensive value represented by a (i =1,2,---,m)can be obtained by utilizing the

MVNLNWBMH operator in Definition 10, which can aggregate the overall value for each alternative
with respectto all criteria.

Step3. The compared values of three functions are calculated.
According to the equations given in Definition 8, the score value denoted byE (a,), the accuracy

value denoted by H(a,) and the certainty value denoted by C(a,) can be obtained.
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Step4. The alternatives are selected.
Based on Definition 9, all alternatives 4,( = 1,2,---, m) can be ranked on the basis of

E(a,), H(a,) and C(a,), and the best alternative(s) can be selected.

6 An numberical example

In order to validate the effectiveness and practical of the novel approach, an investment project is
adapted from Ye.

An investment company wants to expand its business. Four alternatives will be chosen,
4 represents auto corporation, 4 represents food corporation, 4 represents computer company

corporation), 4, represents weapon corporation. Each alternative is evaluated under three criteria,
C, denotes risk, C, denotes growth, C; denotes the impact of environment, where C; is the minimizing
criteria. The corresponding weighted vector is @ = {0. 35,0.25,0. 4} . |n real situation, the decision
maker may hesitant and give several possible value for the satisfaction, indeterminacy and
dissatisfaction regarding the alternative 4, corresponding to the criteria € under the linguistic term

set.S. Therefore, the assessment value is given in the form of MVVNLNSs, and the linguistic term set is
employed as
S ={s,,5,,5,, 5,55 5, 5, = {extremely poor,very poor,poor,medium,good,very good,extremely good} .

R = [allf ]4x3

The multi-valued neutrosophic linguistic decision matrix is shown as follows.

v=lo].

(s, ({0-3,0.4,0.5}, 0.1}, {0.3,0.4})) (s, ({0.5,0.6},{0.2,0.8},{0.3,0.4})) (s, ({0.2,0.3},{0.1,0.2},{0.5,0.6}))
(s ({0-6.0.7} {0 1,02}, {0.2,0.3))) (s (fo.6.0.7}, f0.1}, {0.3})) (s ({0.6.0.7),{0.1,0.2} 0. 1,0.2}))
foososp o o20s))  (si(fos]. f0). fo)) (50 (10:50.6) 0.1 f0.)

(s ({0 7.0.8} {01}, 0. 1.0.2})) (s, (f0-6,0.7) {01}, {o.2})) (s (fo.3.0.5),{0.2}, 0. 1.0.2,0.3}))

6.1 The procedure using the proposed aggregation operator
Stepl. The decision matrix is normalized.

O

[\3
=3
C»J

—

Because C; is the minimizing criteria, which should be converted to the maximizing criteria, then

the normalized decision matrix # = [bjjl - can be obtained as follows:

B=[b,].,
< ,({0.3,0.4,0.5), {01}, {0.3,0. 4})> < ({0.5,0.6},{0.2,0.3}, {0.3,0. 4})> <s‘, ({0.2,0.3},{0.1,0.2}, {o. 5,0.6})>
) (s, ({0-6.0.7},{0.1,0.2}, {0.2,0.3})) (s, ({0.6,0.7}, {01}, fo. 3})) (s, ({0-6,0.7},{0.1,0.2}, {o. 1,0.2}))
(olfo5.08) 0.0} o209)) (s (fo). f0.3). o)) (50 (10-5.0.6) {01 [0.5))
(s, ({o-7,0.8}, {0.1}, 0. 1.0.2})) (s, ({0-6,0.7), fo.1}, {0.2}) (s ({0.3,0.5}, 0.2}, {0.1,0.2,0.3}))

Step2. The comprehensive value of each alternative is calculated.
Derive the comprehensive value 2,(7 = 1,2,---, m) of each alternative 4,7 = 12,---, m)

mxn

by using the MVNLNWBMH operator presented in Definition 10. Here let p = ¢ = 1, & = 1. The
MVNLNWBMH operator is shown as below:
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MYNLNWBM (a,, a,, -+ a,) = { s ,

1

2
i -0(a, )-H(a)]
l-o;

0o | —

— — 1-
U;/‘ei(a,),}/jef(és) 1 H (1 }/1}/1) “ ’

0o | =

Ualef(ez,>,a/ef<aj> =11~ H (1 - (1 - 51’)(1 - 5]))17% >

0o | =

U, eFapay iy VLT 1T H (1 - (1 B '71') (1 - ’7,/))17&

And we have
= <53.9529 ’
0. 3088, 0. 3515, 0. 3309, 0. 3752, 0. 3429, 0. 3869, 0. 3671, 0. 4118, 0. 3746, 0. 4199, 0. 4009, 0. 4463}

a

{ 1255, 0. 1645, 0. 1482, 0. 19} ,

{ 3768, 0. 4171, 0. 4049, 0. 446, 0. 4109, 0. 4511, 0. 4382, 0. 4783})> :
a:

= <53, 9904

( o 6, 0. 6368, 0. 6275, 0. 6648, 0. 6345, 0. 6727, 0. 6622, 0. 7}
{ 1, 0. 1363, 0. 1335, 0. 1714} ,
{0. 1882, 0. 2268, 0. 2261, 0. 2629})>

a, = <S4 1850

({0. 5272, 0. 5644, 0. 5618, 0. 6} ,
{0. 263},
{0.2918, 0. 3273})>

Step3. The compared values of three functions are calculated.
By using equations in Definition 8, we can obtain E(a,), H(a,) and C(a,),(7 = 1,2,3,4) as

follows:
E(a) = 5, 405 H(@) = 5 300 C@) = S 00
E(a,) = 5, o> #(a,) = S, 10 C(a,) = S, 0
E(a,) = 5, g H(a) = S 14, C(a,) = 5, i
E(a,) = 5, o H(a,) = 5, po C(a,) = 5, oy

Step4. The alternatives are selected.
By using the compared approach in Definition 9, E(a,) = E(a) > E(a) = E(a,) can
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be obtained, so the final raking of alternatives is 4, > 4, > 4 > 4,. Apparently, 4, is the
best one, and 4, is the worst one. We don’t need to compare the other functions because the values of
score function differ.

6.2 Comparison analysis
We take different value into consideration in step 2 to select the alternative for discussing the
impact of different values 7> and ¢ . The comparisons are presented in Table 1 and Table 2.

Table 1 Ranking of alternatives utilizing different p,gand ¢ = 1

e=1Lpq Score functionE(a,), (7 = 1,2,3,4) Ranking

p—>0¢g=0 Ea) = 5, 0 E(a,) = 5, 4., Ea) = 5, ooy Ba) = 5,10, A = A4 =4 > 4,
p=00Lg=0 E@) =5, @) =5, 40 £@) =5, o @) =5 00 A =4 =4 =4
p=01g=0 Ea) = 5, 60 E(a,) = 5, go0r E(a) = 5, 00000 E(a) =5, g0s A > 4 =4 > 4
p=Lg=0 Ea) = 8, o E(a) = 5, 00 (@) = 5, oo B(a,) = 5, 0y 4 = A4 = A = 4
p=2qg=0 Ea) = 5, 5, Ba,) = 5, 0, Fa) = 5, 00, Ea) =5, 50 A4 = A4 = A4 =4
p=5qg=0 E(a) = 8, o £ @) = S, gr £(a) = 8, 000 £(a,) = 8, A = A = 4 > 4,
p=10,g =0 Ea) = 5, 00 E(a,) = 5, 5000 Ea) = 5, (o0, BQa,) = 5, 00 A = A4 >4 > 4,
p=0g=1 E(a) = 8, g £(a,) = 5, g E(a,) = 5, 00 BQa) = 5,00, A > A =4 > 4
p=00L,g=1 Ea) = 5,5, E(a,) = 5,y Ea) = 5, 00 Ba) = 5,0 A = A =4 > 4
p=01¢g=1 Ea) = S, ;0 £Qa,) = S, 10 B(a) = 5, pors E(a) = S, 10y A = A = A4 = 4
p=1Lg=1 E(a) = 8, s £(a) = S, g0 £(Q) = Sy g £(a,) = S, 000 A = A = 4 > 4
p=2qg=1 Ea) = 5, o E(a,) = 8, 100 E(@,) = 5, o E@) = 8, 10n A = A4 > 4 > 4,
p=5g=1 E(a) = 8, g E(a) = S, o £(a) = 5, 0 E(a) = 5, .00 A > A = 4 > 4
p=10,g=1 E(a) = S, 4 £(a,) = S, o E(a) = S, i £(2) = S, 0 A = A4 =4 = 4
p=0qg=2 Ea) = 5, g0 E(a,) = 5, ., Ea,) = 5, 0, Fa) =5, A >4 =4 >4
p=00Lg=2 EQa)=s,.,Ea) =5 .,Ea) =5, ,.,a) =5, 4 =4 =4 >4
p=01qg=2 E(a) = S, 10 () = S, 100 @) = 5, 00 Ela) =5, 00 A = A4 = A4 = 4
p=Lg=2 Ea) = 5, e E(a,) = 5,y EQa,) = 5, s B(a) = 5, 0o A = A4 >4 > 4,
p=2qg=2 Ea) = 8, o E(a,) = 5, s B(a)) = Sy oo B(a) = 5, 000 A = A > 4 > 4,
p=5qg=2 Ea) = S, g £(a,) = s, 00 Ea) = 5,00, Ea) = s, . A = A4 =4 = 4
p=10,g =2 E(a) = 8,y £(a,) = 8, ger E(a,) = 5, s EQa,) = 5,4, A > A4 = 4 > 4

Table 2 Ranking of alternatives utilizing different p,¢and & = 2

&E=2pq Score functionE(a,), (7 = 1,2,3,4) Ranking

p—>04g=0 Ea) = 8,y £a) = 5, 4., Ea) = s, g Ea) = 5, A =4 =4 = 4
p=00,g=0 E(a) = 5, g E(a) = 5, ger £(@) = 8, g £(@,) = 5,201 A = A =4 = 4
p=0.1g=0 Ea) = 5, ,.,Ea) =5, g Ba) = 5, oo, Ea) = s, 4, A =4, =4 > 4
p=Lg=0 Ea) = s, o £(a) = 5, 140 £(a) = 5, o £(@) = 5, s A = A = A4 = 4
p=2g=0 Ea) = 5, ., Ea,) = 5, 0, Ea) = 5, 0, E(a) = 5, 00 A = A4 >4 > 4,
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p=5¢g=0 Ea) = 5, 0,0 E(a,) = 5, g B(a) = S, 00 F @) = S, y0s A = 4 > 4
p=10,g=0 Ea) = 8, 00 Ea) = 5, 0,0, Ea) = s, 0,0, E(a) = s, 0 A =4 > 4
p=0¢g=1 Ea) = 5, 0 £(a) = 5, g0 £(a) = 5, o0 EQa) = 5,00 A = 4 > 4
p=00Lg=1 Ea) = s, 10 E(a,) = 5,y Ea) = 5, 00 EQa) = 5,0 A >4 > 4
p=01Lg=1 Ea) = 5, ., Ea,) = 5, ., Ea,) = 5, ., Fa) = 5, s A =4 >4
p=1Lg=1 Ea) = 8, 400 E(a,) = 5, yor E(a,) = 5, g0 E(a) = 8, s A = A > 4
p=2qg=1 E(a) = 5, g E(a) = 5, 1900 E(a) = S, o Ea,) = 5, .. A = A = 4
p=5g=1 Ea) = 8, g £(a,) = 5, o E(a) = 8, g E(a) = 5, 00 A > 4 > 4
p=10,g =1 Ea) = 5, e E(a,) = 5, 150 E(a) = 5,00 E(a) = 5,00 A >4 >4
p=0¢g=2 Ea) = s, g0 Ea) = 5, o0 E(a,) = 5, 00, EQa) =5, 0 A = 4 > 4
p=0.0Lg=2 Ea) =5, Ea) =5, ., Fa) =5, ,.,a) =s,,.. A4 =4 =4
p=0.1,qg=2 Ea) = 8, .44 E(a,) = 5, 10 E(a,) = 5, 0, Ea) = 5, 0 A = A > 4
p=1Lqg=2 Ea) = 8, e E(a,) = 5, 00 E(a) = 5,y E(a) = 8, \00s A = 4 > 4
p=2qg=2 Ea) = 5, .0 Ea) = 5, 00 E(a,) = 5, 00 Ba) = 5,0 A =4 >4
p=5qg=2 Ea) = 8, g Ea) = 5, o0, Ea,) = 5, 400, Ea) = 5,0, A >4 > 4
p=10,g =2 E(a) = S,y () = S, g () = S, gyonr B(a) = 5,00 A = 4 = 4

Y Yy Yy Yy Yy Yy Y Y Yy Y Yy Y Y Y Y Y

NN

NN

w

NSRS

w

In table 1, we take the parameter value & = 1, which is based on Algebraic operation, and the
MVNLNWBM operator is applied. Intable 2, we take the parameter value & = 2, which is
based on Einstein operation, and the MVNLNWBME operator is applied. As we can see from
table 1 and table 2, the ordering of alternatives taking different parameters 2> ¢ and € may
be different, because the different parameters will cause different score function value.
However, 4,0r 4 is always the best selection, and 4, is always the worst selection. Whether
& =1lor & =2, the same ranking results is obtained with regard to the same parameter
value # and the same parameter value ¢ except for one situation in
which » = 0,¢ = 1and ¢ =1 .Specially, if » - 0,¢g = 0, MVNLNWBMH will reduce to
MVNLHWGA operator. If » = 0,¢ = 0 andes = 1, MVNLHW GA will reduce to MVNLW GA
operator. When p =1,¢ =0, MVNLNWBMH will reduce to MVNLHWAA operator. If
p =19 =0ande =1, MVNLHWAA will reduce to MVNLWAA operator. If ¢ = lin Table 1,
the ranking results on the basis of the MVNLW GA and MVNLWAA operators differ, which due to the
two operators emphasis on different major points, and the same situation happens in Table 2.When the
parameters ¢ = 0 and » — 0, p = 0.01, p = 0. 1, respectively, the rankings are identical in two
Tables, the ranking order is always 4 > 4, > 4 > 4, When P and 7 are assign the other values in

two Tables, the ranking order is changed, and the result is 4 > 4, > 4 > 4, That is, the best
selection is from 4; to 4, except for one situationwhere p = 0,¢ = lin Table 1.

For illustrating the effective and flexible of the novel approach, the method in literature is adopted in
multi-valued neutrosophic linguistic environment in this paper, and the same ranking orders are

obtained in ref [8] where the SVNHFWA and SVNHFW G operators are adopted to fuse single-valued
neutrosophic hesitant fuzzy information. When ¢ = L p = 0,¢ = O0ande = 1, p = 0, = 0, the

two operators are special cases of MVNLNWBMH operator .Therefore, novel operator in this paper
has better flexibility and generalization. In actual cases, the decision makers can assign different
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parameter values g, p andq.. Generally, for convenience, we can set € = p = 1, which can not only

simplify the calculation, butalso considerthe interrelationship of multiple values.

7 Conclusions

In this paper, the MVVNLS are proposed by combining the MVNS and LS, which not only describe
linguistic terms, but also give the quantitative value of three membership degrees concerning the
linguistic variables, which has better flexibility to express the decision information. Moreover, NW BM
is a useful operator which has the trait of taking into account the interrelationship of different
arguments, and overcome drawbacks of non-reducibility and non-idempotency. Hamacher operations
are the extension of Algebraic and Einstein operations, which is more general. Considering these
advantages, we have developed Hamacher operational laws for MVVNLNs and extended the NWBM to
fuse MVVNL information. Thus, the MVNLNW BMH operator is proposed, which is appropriate to deal
with MVNL information. Some desirable properties of the novel operator are discussed in detail, and
some special cases are analyzed. Furthermore, the comparison method for MVNLNSs is also studied,
and the rankings of alternatives affecting by different parameters #> 4 and € are also compared. For
verifying the novel approach, we successfully applied the approach to an example. The results show
the novel approach has the following advantages. The MVNLNWBMH operator is more flexible and
more general, and which can capture the interrelationship among arguments and express decision
information more practical, the decision makers can assign appropriate values according to the real
situation. In future, we will explore to apply the operator to the different domains, for instance, fault
diagnosis, machine learning and medical diagnosis.

As a future possible research, we will extend our research by using the refined neutrosophic set [61],
ie. the truth value T is refined into types of sub-truths such as T1, T2, etc,
similarly indeterminacy | is refined into types of sub-indeterminacies 11, 12, etc., and the sub-falsehood
F is split into F1, F2, etc.
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