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1. Introduction

A.A. Salama [21] introduced Neutrosophic topological
spaces by using Smarandache’s Neutrosophic sets [9]. V.
Banu Priya et al., [5, 6] introduced Neutrosophic a.gs closed
sets and its continuity. Md. Hanif Page et al., [10] introduced
Neutrosophic Generalized Homeomorphism, M. Parimala et
al., [13] introduced Neutrosophic oty Homeomorphism in
Neutrosophic Topological Spaces. In this paper, we introduce
the concepts of Neutrosophic & homeomorphism, Neutro-
sophic & generalized homeomorphism and followed by Neu-
trosophic ¢-generalized semi homeomorphism and Neutro-
sophic i¢-generalized semi homeomorphism. We discussed
their properties and relationships.

2. Preliminaries

In this section, we recall some definitions and operations
of Neutrosophic sets and its fundamental results.

Definition 2.1 ([9]). Let NX be a non empty fixed set. A

Neutrosophic set Var in NX is an object having the form

Vi = { (v, (900, (), v, () [ x € NV

where MVAT (x) represents the degree of membership func-
tion, Oy, (x) represents the degree of indeterminacy and
W, (x)represents the degree of non-membership function.
NS(NX) denote the set of all Neutrosophic sets NX.

Definition 2.2 ([9]). If the Neutrosophic set
Vi = { (b (), 0, (). () [ N
on NX then its compliment is
Vi ={(, Vi (6), 1= O, (), v (x)) lxe N Y.

Definition 2.3 ([9]). Let VAT and VBT be two Neutrosophic
sets, Vx € NX,

Vi = { (b, (), 0, (0. v, () [ x € N}
and
Vi = { (.t (6), 0, (9, v (9)) [ x € N}

then Vy: C Vp: if and only if ly,. (x) < fy,. (x),0v,, (x) <
1 1 1
OV, (x) and Wy (x) > W (x).
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Definition 2.4. Let VAT and VBT be two Neutrosophic sets,
Ve NX, Ve = {<x,[.£v*(x),GV*(x),VV*(x)> | x eNX} and
1 A1 Al Al
Vi; = { (.1, (), 0, (x), vy () ) | ¥ € NX } then
1 Bl B1 B1

L Vg NV = {<x7 1y (x) A My (x), OV (x) A OV (x),
Vi () V v (x)> | x € NX }

2. VAT UVBT = { X ‘LLVA* \/MVB* (x), GVAT (x)Vv (FVBT (x),
Vi, () A vy (x)> I x eNX}
Definition 2.5 ([20, 21]). Let NX be a non-empty set and N*

be the collection of Neutrosophic subsets of NX satisfying the
following properties:

1. Oy, 1y €N
2. MiNAy € N for any A1, A, € N
3. UA; € N7 for every {A; | i€ I} CN™.

The space (NX,N%) is called a Neutrosophic topological
space (NTS). The elements of N* are called Neutrosophic
open set (NOS) and its complement is called Neutrosophic
closed set (NCS).

Definition 2.6 ([2, 5, 7, 11, 12, 22]). Let (NX,N¥) be a Neu-
trosophic topological space. Neutrosophic set Vs is said to
be

1. Neutrosophic a-closed set (N.oCS) if
N.cl(N.int(N.cl(Var))) C Va:

2. Neutrosophic semi closed set (N.SCS) if
N.int(N.cl(Vp:)) C Var

3. Neutrosophic generalized closed set (N.GCS) if
N.cl(VAT) C H whenever Va: CH and H is a N.OS

4. Neutrosophic o generalized closed set (N.ooGCS) if
N.Otcl(VAT) C H whenever VAT CHandHisaN.OS

5. Neutrosophic generalized semi closed set (N.GSCS) if
N.Scl(Va:) € H whenever Vy: € H and H is a N.OS

6. Neutrosophic o generalized semi closed set
(N.aGSCS) ifN.Otcl(VA»f) C H whenever Vy: C H and
HisaN.SOS.

3. Main Results

Definition 3.1. Let N/* be a bijection from a NTS (NX,N¥)
intoa NTS (NY,N°). Then N'* is said to be

1. Neutrosophic homeomorphism if N and N/ " are Neu-
trosophic continuous (N-CTS) maps

2. Neutrosophic o. homeomorphism if N and N are
Neutrosophic o CTS maps
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3. Neutrosophic o generalized homeomorphism (briefly
NaG homeomorphism) if N and N are NG CTS
maps.

Definition 3.2. A bijective map N+ : (NX,N¥) — (N¥ ,N°)
is called a Neutrosophic o generalized semi homeomorphism
(briefly NooGS homeomorphism) if N and N are NaGS
CTS maps.

Example 3.3. Let NX = {a,b}, N = {u,v},

o 1 5 2 2 5 3
1= \*\10°10°10 ) "\ 10" 10" 10
Gt 35 4\ (455
2= \"\10°10°10)°\10°10°10 ) /-

Then N* = {Oy,G},1n} and N° = {On,G5, 1y} are NTs
on NX and NY respectively. Define a bijective map N :
(NX,N%) — (NY,N°) by N*(a) = u and N**(b) = v. Then
N is a NaGS CTS and N+ is also a NaGS CTS map.
Therefore, the bijective map N** is a Na.GS homeomorphism.

Theorem 3.4. Let N : (NX,N¥) — (NY ,N°) be a bijective
map from a NTS NX into a NTS NY. Then the following
conditions are equivalent:

and

1. N’ is a Neutrosophic homeomorphism

2. N' is a N-CTS map and N** is a Neutrosophic open
map

3. N/ and NI+

Proof. (1) = (2): It is obviously true.

(2) = (3): Let N”* is a Neutrosophic open map. That is
N+ (Vas) is NOS in NY for each NOS Vi in NX. Now define
a map NS (NY,N°) — (NX,N7). By hypothesis, for every
NOS Vy: in NX, we have N/- ' (Vi) is a NOS in NY. Hence
N/"isaN-CTS map. That is N and N are N-CTS maps.
(3) = (1): Let N and N*' be N-CTS map. Since N/
(NY,N°) — (NX,N%) is a N-CTS map, N+ : (NX,N?) —
(NY,N°) is a Neutrosophic open map. Hence N/* is a Neutro-
sophic homeomorphism. O

are N-CTS maps.

Theorem 3.5. Every Neutrosophic homeomorphismis a NoGS
homeomorphism but not conversely.

Proof. Let N : (NX,N%) — (N¥,N°) be a Neutrosophic
homeomorphism. Then N/* and N/~ ' are N-CTS maps. Since

every N-CTS map is a NaGS CTS map, N* and N/ are
NaGS CTS maps. Therefore N is a NaGS homeomor-
phism. O

{a,b}, N = {u,v},

Gl (224 (L5 2
7\ \10°10°10/°\ 107 10" 10

Example 3.6. Let NX =
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and

G 1 5 2 2 5 4

2= <y’ <10’ 10’ 10) ’ (10’ 10° 10>>'

Then N* = {On,G7, 1y} and N° = {Oy,Gj, 1n} are NT's on
NX and N respectively. Define a bijective N™* : (NX N%) —
(NY,N°) by N**(a) = u and N'*(b) = v. Since the inverse
image of every NCS in (NY,N°) is a NaGSCS in (NX,N7),
N’ is a NaGS CTS map and the inverse image of every NCS
in (NX,N%) is a NaGSCS in (N ,N°®), N/ is a NaGS CTS
map. Hence N+ is a NoGS homeomorphism. But N** is not

a Neutrosophic homeomorphism since N and N/~ " are not
N-CTS maps.

Theorem 3.7. Every Neutrosophic &« homeomorphism is a
NoGS homeomorphism but not conversely.

Proof. Let N/ : (NX,N7) — (NY ,N°) be a Neutrosophic &
homeomorphism. Then N/* and N/ "are Neutrosophic o
CTS maps. Since every Neutrosophic & CTS is a NaGS CTS

map, N/* and N/~ are NaGS CTS maps. Therefore N/ is a
NoGS homeomorphism. O

Example 3.8. Let NX = {a,b}, N' = {u,v},

G — 35 4N (455

1= \*{10°10°10 )" \10° 10" 10
45 5 25 3

* - = -

G2<y’<10’1o’10)’(10’10’1o>>'

Then N* = {Oy, G}, 1n} and N° = {On,G3, 1y} are NTs on

NX and N respectively. Define a bijective N+ : (NX ,N%) —
(NY ,N°) by N'*(a) = u and N** (b) = v. Consider, NCS

G — S5 4N\ (352
2= \"\{10°10°10) "\ 10" 10" 10

in NY. Then

e (x5 4 (35 2
N (62) <x’<10’10’10 '\ 10°10° 10

is not a NaiCS in NX. This implies N' is not a Neutrosophic
o CTS map. Hence N'* is not a Neutrosophic o homeomor-
phism.

and

Theorem 3.9. Let N> : (NX,N%) — (NY,N°) be a NaGS
homeomorphism. Then N** is a Neutrosophic homeomor-
phism if NX and N¥ are N OtgaT% spaces.

Proof. Let V: be a NCS in N*. By hypothesis, NS (Vi:) is
a NaGSCS in NX. Since NX is a NogaTy space, NF (Vi)
is a NCS in NX. Hence N/ is a N-CTS map. By hypothesis
N/ (NY,N®) — (N N is a No:GS CTS map. Let Vs be
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aNCS in NX. Then (N/+')~! (Var) = N/* (Vy:) is a NaGSCS
in NY. Since N¥ is aNogaT space, NP (Vp:)isa NCSin N

Hence N/ isa N-CTS map. Therefore N/* is a Neutrosophic
homeomorphism. O

Theorem 3.10. Let N/ : (NX,N*) — (NY ,N°) be a NaGS
homeomorphism. Then N** is a Neutrosophic Generalised
homeomorphism if NX and N¥ are N agaT% spaces.

Proof. Let V: be a NCS in N*. By hypothesis, NF (Vi;) is
a NaGSCS in NX. Since NX is a NagaT) space, NF (Vi)
is a NGCS in NX. Hence N/ is a Neutrosophic Gener-
alised CTS map. By hypothesis N+ : (NY ,N%) — (NX N7)
is a NaGS CTS map. Let Vj: be a NCS in NX. Then
(NF) (Vi) = N*(Vy:) is a NaGSCS in N”. Since N
isa N(xgaT% space, N/* (Var) isa NGCS in NX. Hence N/
is a Neutrosophic Generalised CTS map. Therefore N/ is a

Neutrosophic Generalised homeomorphism.
O

Theorem 3.11. Let N/* : (NX,N?) — (NY,N°) be a bijec-
tive map. Neutrosophic N+ is a NauGS CTS map, then the
following are equivalent:

1. N* is a NaGS closed map
2. N% is a NaGS open map
3. N* is a NaGS homeomorphism.

Proof. (1) = (2): Let N+ : (NX,N7) — (NY N°) be a bijec-
tive map and let N/* be a NaGS closed map. This implies
N (NY NO) — (NX,N7) is a NaGS CTS map. Assume
that V- is a NOS in N*. Then by hypothesis, (NF)~1 (Va)
is a NaGSOS in N*. Hence N/* is a Na:GS open map.

(2) = (3): Let N* : (NX,N%) — (NY,N°) be a bijective
map and let N/* is a NaGS open map. This implies NS
(NY,N°) — (NX,N%) is a NaGS CTS map. Hence N/* and
Nf;l are NoeGS CTS maps. Therefore, N+ is a NotGS home-
omorphism.

(3) = (1): Let N/* be a NaGS homeomorphism. That is N/*

and N are NaGS CTS maps. Assume that Vas isa NCS in

NX. Then by hypothesis, Va isa NaGSCS in N¥. Hence N/*
is a NaGS closed map.
O

Remark 3.12. The composition of two NaGS homeomor-
phisms need not be a No.GS homeomorphism in general.

Example 3.13. Let NX = {a,b}, N¥ = {c,d} and N* =
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Gl (L34 (25 4
37\*\10'10°10 /' \ 10’10’10 ) /-

Then N* = {ON,GT, 1N B ]\7(7 = {ON,GE, IN} and NV = {ON,
G5, 1n} are NTs on N NY and N? respectively. Define a
bijective map N'* : (NX ,N¥) — (NY N®) by N/*(a) = c and
N’<(b) = d and N%* : (N ,N°) — (N*,N") by N&(c) = u
and N8+ (d) = v. Then N'* and N’ are NaGS CTS maps.

Also N¢ and N8+ are NaGS CTS maps. Hence N'* and N8+
are NaGS homeomorphisms. But the composition N& o N+ :
NX — NZ is not a NaGS homeomorphism since N& o N+ is
not a NaGS CTS map.

Definition 3.14. A bijective map N'* : (NX,N%) — (N¥ ,N°)
is called a Neutrosophic io -generalized semi homeomor-
phism (briefly NiaGS homeomorphism) if N and N5 are
NaGS irresolute maps.

Theorem 3.15. Every NiaGS homeomorphism is a NaGS
homeomorphism but not conversely.

Proof. Let N/* : (NX,N%) — (NY ,N°) be a NiaGS home-
omorphism. Let Vg: be NCS in NY. Since every NCS is a
NaGSCS, Vp: isa NaGSCS in NY. By hypothesis, NF (Va:)
is a NaGSCS in NX. Hence N/ is a NaGS CTS map. Sim-
ilarly we can prove N/ is a NaGS CTS map. Hence N/*

and N/~ are NaGS CTS maps. Therefore, the map N/* is a
NaGS homeomorphism.
O

Example 3.16. Let NX = {a,b}, N¥ = {u,v},
G — 35 4N(1L 5 2
1=\*\10°10°10 ) '\ 10" 10" 10
o 1 52 2 5 4
2=\"\10°1010)'\10°'10°10 ) /"

Then N* = {On,G},1n} and N° = {Oy,G3, 1y} are NTs
on NX and NY respectively. Define a bijective map N :
(NX,N%) — (NY,N°) by N/*(a) = u and N/*(b) = v. Then
N'* is NaGS homeomorphism. Let us consider a NS

Ve = 25 1\ (353
A= \"\10°10°10 /' \ 10" 10" 10

in NX. Clearly Vi is a NaGSCS in NX. But f(Vax) is not a
NaGSCS in NY. That is N~ is not a NaGS irresolute map.
Hence N’ is not a NiaGS homeomorphism.

Theorem 3.17. Let N* : (NX,N*) — (N¥ ,N°) be a NiaGS
homeomorphism. Then N** is a Neutrosophic homeomor-
phism if NX and N are N OtgaT% spaces.
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Proof. Let Vg bea NCSin NY. Since every NCS is a NaGSCS,
Vp: isa NaGSCS in N¥. Since N/* is a NaGS irresolute map,

NS (Vp:) isa NaGSCS in NX. Since N¥ is aNagaT% space,
NF! (Vp:) is a NCS in NX. Hence N/* is a N-CTS map. By

hypothesis, N+ ' : (NY,N°) — (NX,N7) is a NaGS irresolute
map. Let Va: be a NCS in NX. Since every NCS is a NaGSCS,

Va: is a NaGSCS in NX. Then (Nfgl)_l(VA»l«) =f(Va;)isa
NoaGSCS in NY. Since NY is a NagaT) space, NI+ (Vp:) is a
NCS in N¥. Hence N=' is a N-CTS map. Therefore N/* is a
Neutrosophic homeomorphism.

O
Theorem 3.18. If N : (NX ,N¥) — (NY,N°) is a NiaGS
homeomorphism, then Nocgscl(Nf;I (Ve:)) € NS (Nocl(Vg:))
for every NS Vi: in NY.
Proof. Let Vg: be a NS in NY. Then Nacl(Vg:) is a NoCS in
NY. This implies Nacl(Vg: ) is a NaGSCS in N*. Since N/*
is a NaGS irresolute map, NF (Nacl(Vp:)) isa NaGSCS in
NX. This implies Notgscl (N (Notel (Vi ))) = N+ (Natel(
Vp:)). ie. NOtgscl(Nf*j1 (Vi) © NOCgSCl(NOCgscl(Nf;1 (Na
cl(Vi:))) =N/ (Nael (Vs )). Hence, Nogscl (N (Vg:)) C
N’ (Nacl(Vg: ) for every NS Vg: in N”.

O
Theorem 3.19. If N/ : (NX ,N%) — (NY,N°) is a NiaGS
homeomorphism, then Nocgscl(Nf*_1 (Va:)) = N’ (Nagsel
(Vs:)) for every NS Vg in NY.
Proof. Since N/* is a NiatGS homeomorphism, N/* isa NaGS
irresolute map. Consider a NS Vp: in NY. Clearly N agscl(VBT)
isa NaGSCS in N'. By hypothesis, NF (Nagscl(Vp:)) isa
NoaGSCS in N*. Since

NP (V) ST (Nargsel (V).
—1 —1
Nagscl (N’ (Va:)) CNagscl (N’ (Nagscl(Vg:)))
NS .
=N"*"(Nogscl(Vp:)).

This implies Nagsel (N~ (Va:)) C NS (Nagscl(Vp;)). Since
N’ isaNiaGS homeomorphism, Nf;1 ‘NY 5 NXisaNaGSs
irresolute map. Consider a NS N/« : (Vp:) in NX. Clearly
Nagscl(N-" (V1)) is a NaGSCS in NX.

This implies (Nf*_] ) ! (Nocgscl(Nf*_1 (Ve:))) = N’*(Nagscl
(N (Vg:))) is a NaGSCS in N Hence

Vi =(V )T (v
(Vi) SOV ) (Norgsel (N (V)

=N/ (Nocgscl(Nf’:l
(Va;)))-
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Therefore,
Nogscl(Vg:) CNagscl(N' (Nocgscl(Nf’:1 (Ve:))))
NS J(NS!
=N/*(Nagscl(N (VBT)))'
Since Nf+ : is a NaGS irresolute map. Hence,
—1 —1 —1
N+ (Nagscl(Vg:)) TN (N (Nogsel (N (V1))
:Notgscl(Nf’:l (Va:))-

That is N/~ (Nagscl (Vi) C Nogsel (N (Vg:)). Hence,

Nagscl (N (Vi) = N/ (Natgsel (Vg ).
O

Theorem 3.20. If N/ : (NX N%) — (NY,N°) is a NiaGS
homeomorphism, then Nagscl(N/* (Ver)) = N/ (Nagscl(Vp:))
for every NS VBT in NX.

Proof. Since N'* is a NiotGS homeomorphism, N s a
NiaGS homeomorphism. Let us consider a NS Vpr in NX. By
the Theorem (3.18), Nagscl((N-ffl)’l(VBT)) = (NN
gscl(Vp:)). Hence Nocgscl(Nf*(VBT)) = NH (Nagscl(Vp:))
for every NS Vs in NX. O

Proposition 3.21. The composition of two NioGS homeo-
morphisms is a NioGS homeomorphism in general.
Proof. Let N+ : (NX,N%) — (N¥,N®) and N& : (N¥ ,N°) —
(N%,N™) be two NiaeGS homeomorphisms. Let Vy: be a
NaGSCS in N?. Then by hypothesis, Ng=' (Vas) isaNaGSCS
in NY. Hence, N/~ (N&+' (Var)) is a NaGSCS in NX. Hence
(N#oN/+)~"is a NaGS irresolute map. Let Vg: be a N GSCS
in N¥. Then by hypothesis, N/*(Vz:) is a NaGSCS in N".
Then by hypothesis N8+ (N/* (Vp:)) isa NaGSCS in NZ. This
implies N+ o N/* is a NaGS irresolute map. Hence Né+ o N/*
is a NiaGS homeomorphism. Therefore the composition of
two NioeGS homeomorphisms is a NiotGS homeomorphism
in general. We denote the family of all NiaaGS homeomor-
phisms of a NT'S (NX,N7) onto itself by NiaGS-h(NX N°).
O

Theorem 3.22. The set NiaGS-h(NX ,N¥) is a group under
the composition of maps.

Proof. Define a binary operation * : NiatGS-h(N*,N®) x Nia
GS-h(NX,N%) = NiaGS-h(NX |N%) by N/« x N& = N8 o N/*
for all N+, N8+ € NiaGS-h(NX ,N¥) and o is the usual op-
eration of composition of maps. Then by Theorem (3.20),
N& o N/ € NiaGS-h(NX ,N¥). We know that, the composi-
tion of maps is associative and the identity map 7 : (NX,N%) —
(NX N7) belonging to NiatGS-h(NX N7) serves as the iden-
tity element. If N* € NioGS-h(N*X ,N%), then N~ ' € NiatGS-
h(NX ,N7) such that N/* oN~" = N/<' o Nfs = I and so in-
verse exists for each element of NiaGS-h(NX ,N7). Therefore,
(NioGS-h(NX |N¥),0) is a group under the operation of com-
position of maps. O

1828

4. Conclusion

In this paper, we discussed Neutrosophic a-generalized
semi homeomorphism and Neutrosophic i @-generalized semi
homeomorphism. Also we have studied some of its basic
properties.The results are illustrated with well-analyzed ex-
amples.
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