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Highlights

• The Neutrosophic based Nak-
agami based Total Variation 
(NTV) method has been pro-
posed.

• It can make balance between 
speckle reduction and edge 
preservation.

• It is able to handle the inde-
terminate pixels and preserve 
the valuable information such as 
texture and edges.

• It can assist endocrinologists in 
improving the quality of ultra-
sound images for accurate seg-
mentation of thyroid nodules.

Graphical abstract

Abstract

Background: Neutrosophic based methods are becoming very popular in denoising of images due to the capability of handling indeterminacy. 
The main goal of denoising is to maintain balance between edge preservation and speckle reduction.
Methods: To achieve this, neutrosophic based total variation method using Nakagami statistics have been explored to develop an efficient speckle 
reduction method. The proposed Neutrosophic based Nakagami Total Variation (NNTV) method initially transforms the image into the neutro-
sophic domain and then employs the neutrosophic filtering process for speckle reduction. The NNTV quantifies the indeterminacy of image by 
determining the entropy of indeterminate set.
Results: The performance of the proposed method has been evaluated quantitatively by quality metrics on synthetic images, qualitatively using 
real thyroid ultrasound images through visual examination by medical experts and by Mean Opinion Score.
Conclusion: From results, it has been observed that NNTV method performed better than other speckle reduction methods in terms of both 
speckle suppression and edge preservation.
© 2017 AGBM. Published by Elsevier Masson SAS. All rights reserved.
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1. Introduction

Ultrasound image is commonly used for earlier detection of 
thyroid nodules. It is generally preferred due to its non-ionising 
radiation effects, inexpensive and painless scanning operations 
which provide diagnostically important information needed for 
medical diagnosis [1]. However, the key challenge in automated 
analysis using ultrasound images is to delineate accurate nod-
ules within the thyroid gland due to the existence of speckle 
noise and intensity in-homogeneity. Speckle noise considerably 
reduces the image quality and thus makes the differentiation 
of fine details difficult. The aim of speckle removal method is 
to enhance the quality of ultrasound images for the accurate 
segmentation of thyroid nodules [2,31]. However, the speckle 
removal is always a trade-off between noise suppression and 
edge preservation.

Number of efforts have been attempted for the removal of 
speckle noise using variational methods [3–7]. Total variation 
based methods consist of data term that is estimated from noise 
distribution and regularization term that is utilized for edge 
preservation. Rudin et al. introduced a first variational based 
speckle reduction method which consisted of non-convex fi-
delity term with Gaussian noise distribution [3]. Another non-
convex model known as Aubert–Aujol (AA) model which is 
used for speckle reduction is introduced by Aubert et al. fol-
lowed the gamma statistics in Maximum a Posteriori (MAP) 
probability framework [4]. Further, Shi et al. used the fidelity 
term of AA model that is transformed from multiplicative prob-
lem into the additive one [5]. This model is known as Shi–Osher 
(SO) model that is strictly convex. In [6], another non-convex 
model is introduced for speckle reduction using gamma statis-
tics by the MAP estimation in log domain. One of the varia-
tional methods based on Nakagami distribution has been pre-
sented by Koundal et al. for the reduction of speckle noise 
in ultrasound images [7]. From preliminary results of [7], it 
has been observed that the Nakagami Total Variation (NTV) 
method is able to preserve edges well but not the texture infor-
mation.

Moreover, variational methods often suffer from staircase 
effects due to the loss of local features like texture and small 
details in form of residue. Total variation (TV) is an effec-
tive method but often fails to preserve very fine texture details, 
which may resemble the granular pattern of speckle due to the 
presence of fuzziness caused by texture patterns in ultrasound 
images. Therefore, texture information is often misinterpreted 
as speckle and suppressed along with speckle noise. The TV 
methods often suppress indeterminate pixels mistakenly along 
with other significant diagnostic information instead of their 
preservation. Moreover, indeterminacy of image has been ig-
nored in most of the traditional speckle reduction methods.

To address this issue, fuzzy domain is most widely used by 
the researchers to handle the fuzziness of images [8]. However, 
fuzzy set can handle only the membership degree but fails to 
deal with non-membership and indeterminacy degree of pix-
els. Recently, the Neutrosophic Set (NS), which is the general-
ization of fuzzy set is becoming popular in image processing 
applications [9]. Many researchers have used NS in image de-
noising applications which have shown that neutrosophic based 
methods yield good performance due to their indeterminacy 
handling capability [10–21].

The goal is to preserve texture details which have high in-
determinacy degree due to resemblance to the speckle noise. 
To achieve balance between speckle suppression and tex-
ture preservation, the Nakagami based Total Variation (NTV) 
method presented in [7] has been further explored in Neu-
trosophic domain. No work has been published on speckle 
removal of ultrasound images using Nakagami statistics in neu-
trosophic domain. Thus, an effort has been made to develop a 
Neutrosophic based Nakagami Total Variation (NNTV) method 
using Nakagami statistics in neutrosophic domain for removing 
speckle noise in thyroid ultrasound images. It initially trans-
forms the image into the neutrosophic domain and then em-
ploys the Nakagami based neutrosophic filtering process for 
speckle removal and edge preservation. The NNTV quantifies 
the indeterminacy of image by determining the entropy of in-
determinate set.

2. Related work on neutrosophic domain speckle reduction 
methods

Several denoising methods based on neutrosophic set have 
been presented in the literature to remove Salt & Pepper, Gaus-
sian, speckle and Rician noise [10,12,20]. Various notions and 
theories based on NS filter are defined and applied for image 
denoising.

Guo et al. introduced the neutrosophic based method to re-
move Salt & Pepper noise and Gaussian noise with different 
variances [10,11]. Mohan et al. has presented various meth-
ods for the removal of Rician noise using Magnetic Resonance 
(MR) image in literature [12,13]. One of the methods is based 
on Neutrosophic set (NS) using median filtering [12]. The 
γ -median filtering operation is employed on True subset and 
False subset for the reduction of indeterminacy for the removal 
of noise [13]. The filter outperformed the median and the classi-
cal Non Local Mean method for different noise levels. Further, 
Mohan et al. introduced a wiener filter in neutrosophic domain 
for the removal of Rician noise [14,15]. The wiener filtering op-
eration is employed on true and false subsets for the reduction 
of noise and indeterminacy. The experiments have been per-
formed on simulated MRI from Brainweb database and clinical 
MR images [16]. In [17], the Wiener method based on Non Lo-
cal Neutrosophic Set (NLNS) is introduced for the removal of 
Rician noise from MRI. First, the nonlocal mean is applied to 
the noisy MRI. Then, the resultant image is transformed into NS 
domain and entropy of the neutrosophic set is quantified to es-
timate the indeterminacy. The experimental results have shown 
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that the NLNS wiener filter in neutrosophic domain produced 
better denoising results in terms of both quantitative and quali-
tative measures in comparison to the anisotropic diffusion filter, 
Wiener filter, the nonlocal means filter and the total variation 
minimization.

In [18], an approach is introduced on the basis of neutro-
sophic filtering with the integration of level set. The image is 
mapped into NS domain and described using three membership 
sets. The Directional Alpha-Mean Filter (DAMF) is employed 
for the reduction of image indeterminacy which is then seg-
mented by level set algorithm. The experimental results had 
revealed that the method performed better due to indetermi-
nacy handling capability. Xianying et al. introduced a pixel-
wise adaptive neutrosophic filter for the reduction of high-level 
Salt-and-Pepper noise. The method is based on neutrosophic 
indeterminacy feature. In this, the pixel indeterminacy is mea-
sured by a Neutrosophic Set and exploited to determine the sim-
ilarity of pixels. The extensive experiments on several images 
demonstrated that with a 3 × 3 window, the method outper-
formed many other denoising methods in terms of preserving 
details and suppressing noise [18].

Very few neutrosophic domain denoising methods are re-
ported for the removal of Salt & pepper noise, Gamma noise, 
Gaussian noise and Rician noise in the literature so far. How-
ever, a very little work has been published for the speckle 
removal based on noise statistics in ultrasound images using 
neutrosophic domain. In [20], another neutrosophic domain 
based speckle noise reduction method is presented which is 
based on Gamma noise distribution. In [21], LEE filter [22] and 
KUAN filter [23] were implemented in neutrosophic domain 
for the reduction of speckle noise. The experiments have shown 
that NLEE filter and NKUAN filter outperformed the LEE and 
KUAN filter on artificial image simulated by speckle noise with 
different levels of noise. The visual comparison of images indi-
cated that the NLEE and NKUAN suppressed the speckle noise 
well while preserving the edges. The results using the speckle 
reduction filters in neutrosophic domain are found better with 
respect to the previous approaches in the literature.

Therefore, a new Neutrosophic domain Nakagami Total 
Variation (NNTV) has been proposed for speckle reduction in 
thyroid ultrasound images by getting motivated from the pre-
liminary results of NTV method so that a good balance can be 
made between speckle suppression and texture preservation [7].

3. Material and methods

3.1. Material

3.1.1. Dataset
In this research work, synthetic and real ultrasound images 

have been used for the validation of NNTV method. For the 
analysis of speckle suppression method, three “noise free” test 
images are obtained from the home page of Aleksandra Pizurica 
[24]. These test images include synthetic image, phantom im-
age and realistic ultrasound image (in which speckle was sup-
pressed). More test images are generated by simulating the test 
images with speckle noise using speckle simulation procedure 
[20]. In this process, 21 images are generated by adding speckle 
noise with different values of standard deviation (σ = 0.3, 0.4, 
0.5, 0.6, 0.7, 0.8 and 0.9). These images have been used only 
for evaluating the speckle suppression methods. The real thy-
roid ultrasound images are acquired from the Department of 
Radiology, Post Graduate Institute of Medical Education & Re-
search (PGIMER), Chandigarh, India, for retrospective study. 
It consists of 50 subjects, out of which, 20 were males and 30 
were females, age ranging from 15–70 years. The images are of 
size 628 × 656 pixels, which were acquired with a 256 grey-
level depth using IU22 Philips X Matrix with linear probe at a 
frequency of 17.5 MHz.

3.1.2. Performance measures
For the performance evaluation of speckle reduction meth-

ods, some aspects such as edge preservation and speckle sup-
pression are taken into account. The calculation of image qual-
ity measures requires ground truth image, noisy image and a 
despeckled image. The evaluation metrics for the evaluation 
purpose are described as follows:

i. Signal-to-noise ratio (SNR)

The signal-to-noise ratio is the ratio of noise free image 
variance to the error variance between noise free image and pro-
cessed image. It is computed as

SNR = 10 log10

(
σ 2

z

σ 2
e

)
(1)

where σ 2
z is the noise-free reference image variance and σ 2

e

is the error variance (between the original and denoised im-
age) [24].

ii. Visual information fidelity (VIF)

Visual information fidelity correlates fidelity of image to the 
amount of information that is mutual between two images. VIF 
partitioned the image into several blocks at every sub-band. VIF 
is represented as

VIF =
∑

j ∈ subbands I (CN,J ;FN,J SN,J )∑
j ∈ subbands I (CN,J ;EN,J SN,J )

(2)

where, numerator signifies the information presented in all sub 
bands of the estimated image and denominator term denotes the 
information in the reference image [25].

iii. Universal quality index (UQI)

UQI is used to measure the image distortion as a combi-
nation of correlation loss, luminance distortion and contrast 
distortion instead of traditional error summation methods.

UQI = σzf

σzσf

2zf

(z) + (f )

2σzσf

σ 2
z + σ 2

f

, −1 < UQI < 1 (3)

The first part of equation is correlation loss which represents 
the correlation coefficient to determine the relationship between 
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original and filtered image. The second part is luminance dis-
tortion which measures the similarity in the luminance between 
two images [26]. The last part is contrast distortion which com-
putes the similarity in the contrasts of original and denoised 
images, respectively.

iv. Edge preservation index (EPI)

The EPI can be represented as

EPI =
∑

(�z − �z)(�f − �f )∑
(�z − �z)2(�f − �f )2

(4)

where �z and �f are the filtered versions of z and f achieved 
with a 3 × 3 pixel standard approximation of the Laplacian 
operator [27]. The �z and �f are the mean values of the high 
pass filtered versions of �z and �f respectively.

v. Multiscale-structural similarity index metric (MSSIM)

The Structural Similarity Index metric (SSIM) is a percep-
tion-based model that takes into account the image degradation 
as a perceived variation in structural information with the in-
corporation of contrast masking and luminance masking terms. 
Contrast masking is a phenomenon where distortions become 
less noticeable in textured regions of image. Luminance mask-
ing is a phenomena where image degradations tends to less 
visible in bright regions. The SSIM between two images is rep-
resented as:

SSIM(z, f ) = (2μzμf + 2.55)(2σzf + 7.65)

(μ2
z + μ2

f + 2.55)(σ 2
z + σ 2

f + 7.65)
,

−1 < SSIM < 1 (5)

The MSSIM is used for the evaluation of the overall image qual-
ity.

MSSIM(z, f ) = 1

Mw

M∑
j=1

SSIM(zj , fj ) (6)

where z and f are the original and denoised images, respec-
tively. zj and fj are the image contents at the j th local window 
and Mw is the number of local windows of the image, μz is the 
average of z, μf is the average of f , σ 2

z is the variance of z, σ 2
f

is the variance of f and σzf is the covariance of z and f [28].

3.2. Methods

3.2.1. Neutrosophy
Smarandache introduced Neutrosophy as a new way to deal 

with the scope of neutralities and nature [29]. Neutrosophic the-
ory presents a general framework to deal with indeterminacy. 
It generalizes the fuzzy logic and handles the contradictions, 
antinomies, paradoxes and antitheses [29]. It takes into account 
every proposition, concept, theory, entity, or event 〈A〉 associate 
to its converse 〈Anti-A〉, the neutralities 〈Neut-A〉 and which is 
not A〈Non-A〉 is neither 〈A〉 nor 〈Anti-A〉. The 〈Neut-A〉 and 
〈Anti-A〉 are denoted as 〈Non-A〉 [11].
Fig. 1. Relationship among fuzzy set, intuitionistic fuzzy set and neutrosophic 
set [30].

Neutrosophic Set (NS) is a branch of Neutrosophy theory, 
which generalizes the concept of the classic set, fuzzy set, para-
doxist set, intuitionistic fuzzy set, interval valued fuzzy set 
and tautological set. Neutrosophic Set is represented as Truth 
Membership (TM), Indeterminacy Membership (IM) and Fal-
sity Membership (FM) independently. In neutrosophic logic, 
three neutrosophic components: TM, IM, FM are defined to 
estimate the degree of truth, the degree of indeterminacy (nei-
ther true nor false) and the degree of false [11]. Unlike fuzzy 
logic, neutrosophic logic introduces the extra domain IM that 
provides a more efficient way to handle higher degrees of inde-
terminacy that are very difficult to be handled by fuzzy logic. 
The relationship among fuzzy set, intuitionistic fuzzy set and 
neutrosophic set is shown in Fig. 1. In case of classical set, 
TM and FM have either 0 or 1 values and IM = ∅. While in 
fuzzy set, IM = ∅ but TM and FM are real numbers ∈ [0, 1]
and sum of TM and FM must be equal to 1. In neutrosophic set, 
there is no limit on the sum of TM, IM and FM that is TM, IM, 
FM ∈ ]−0, 1+[.
Neutrosophic image: A neutrosophic image PNI is composed 
of bright pixels and characterized by three subsets TM, IM and
FM [15]. Pixel in neutrosophic domain can be characterized as
PNI {tm, im, fm}, representing the pixel as tm% true (nodule), 
im% indeterminate (nodule boundaries) and fm% false (back-
ground), where tm ∈ TM, im ∈ IM, and fm ∈ FM [16].

3.2.2. Proposed speckle reduction method
Fig. 2 shows the block diagram of neutrosophic domain 

speckle reduction method. The proposed method first trans-
formed the image into the neutrosophic domain. Second, en-
tropy is determined to deal with the indeterminacy and then the 
proposed filtering operation is applied. Last, the image is trans-
formed back into spatial domain from neutrosophic domain.

A. Transformation of image in neutrosophic domain
In neutrosophic domain TM, IM and FM are the neu-

trosophic components used to represent 〈A〉, 〈Neut-A〉 and 
〈Anti-A〉 respectively. Every neutrosophic pixel can be repre-
sented as PNI = {TM, IM, FM}, where TM, IM and FM are the 
set of white pixels, indeterminate pixels and non-white pixels 
respectively [15]. The membership functions TM, IM and FM
are computed as given below:

TM = f̂ij − f̂min

ˆ (7)

fmax
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Fig. 2. Block diagram of neutrosophic domain speckle reduction method.
where i differs from 0 to n − 1, j differs from 0 to m − 1, f̂ij is 
local mean obtained using window, f̂min is minimum intensity 
value and f̂max is the maximum intensity value [10].

f̂ij = 1

w × w

i+ w
2∑

m=i− w
2

j+ w
2∑

n=j− w
2

fmn (8)

where fmn is the noisy image, f̂ij is pixel’s local mean on a 
window and w is size of window. In experiments, the window 
size w is selected to be 5 that are found optimum in terms of 
both feature preservation and speckle suppression through ex-
perimental investigations [11].

IM = δij − δmin

δmax
(9)

δij = abs(fij − f̂ij ) (10)

where δij is absolute difference value between local mean value 
f̂ij and intensity fij , δmax is the maximum absolute difference 
value and δmin is minimum absolute difference value [12]. The 
false membership is computed as

FM = 1 − TM (11)

The true subset, TM, is computed by normalizing the inten-
sity values in [0, 1] as given in Eq. (7). In ultrasound images, 
pixels belonging to speckle and texture are hard to differentiate, 
therefore, neighbourhood mean, f̂ij , is calculated to ascertain 
the local mean of pixels in a window [13–17]. The absolute 
difference is used to determine the indeterminate component. 
False subset, FM, is computed as the complement of TM [18].

B. Neutrosophic entropy
The neutrosophic entropy is used to quantify degree of in-

determinacy in images by considering the way in which uncer-
tainities are captured. The neutrosophic entropy of indetermi-
nate set, IM, is described as

EnIM(k) = −
max{IM}∑

k=min{IM}
pIM(k) lnpIM(k) (12)

where pIM is the probability of indeterminate membership 
function. The goal of entropy is to eliminate uncertainty and 
fuzziness from images. It is employed to assess the intensities 
distribution for an image. If entropy is high, the gray levels have 
equal probability otherwise the gray levels have unequal prob-
ability resulted in a non uniform image. The values of IM is 
used to determine the indeterminate degree of element PNI . The 
changes in TM in correlation with IM influence the distribution 
of element in IM and thus, vary the entropy of IM.

C. Proposed neutrosophic filtering operation
A filtering operation for pixel ̂P(NI) in neutrosophic domain 

is defined in Eq. (13).

̂P(NI) = P(TM, IM) (13)

where ̂P(NI) is the pixel value, TM is true membership com-
ponent in neutrosophic image and IM is the indeterminate 
membership subset in neutrosophic image. Further, pixels of ̂̂TM component are processed based on IM as represented in 
Eq. (14).

̂̂TM =
{

TM IM < χ

T̂M IM ≥ χ
(14)

where χ is the indeterminacy threshold which is used to con-
trol the indeterminacy of image. If IM value is below χ then 
no filtering operation will be carried out on TM, or else, vari-
ational filtering on T̂M given in Eq. (15) will be applied. The 
values of indeterminacy threshold parameter χ is determined 
by conducting various experiments on a set of images at differ-
ent noise levels in neutrosophic domain. From experiments, it is 
observed that the maximum SNR value is obtained at χ = 1.2
and it starts decreasing as values of χ goes beyond 1.2. There-
fore, the value of χ is set to 1.2 by checking the optimal value 
at step interval of 0.1 from 0 to 10.

Then Neutrosophic domain Nakagami Total Variation filter-
ing operation (NNTV) can be represented as

T̂M = argmin
TM

{ ∑
1≤i≤m,
1≤j≤n

(
2TM + 1

2σ 2 e2(f −TM)

)
︸ ︷︷ ︸

fidelity term

+ λ‖∇TM‖2︸ ︷︷ ︸
regularizer term

}

(15)

where f is the noisy image, ‖∇TM‖2 denotes an isotropic 
discrete total variation regularizer for the image and λ is the 
regularizer parameter used to balance the fidelity term and the 
regularization term. The fidelity term is derived from the as-
sumption of Nakagami noise distribution. A regularizer term is 
used to smooth and preserve the edges efficiently in the homo-
geneous regions of an image. The above minimization problem 
(15) is solved by Chambolle’s projection method and Aug-
mented Lagrange method [7]. The value of λ is required to 
be experimentally set to an optimum value for different types 
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of applications. From experiments, it is observed that a higher 
value of λ yields a blurry, over-smoothed denoised image while 
suppressing speckle noise. Conversely, a smaller value of λ re-
moves very modest amount of noise but enhances and preserves 
the details of small tissues. Therefore, value of λ is set to 0.83 
for speckle reduction and edge preservation.

ÎM = δT̂M − δT̂Mmin

δT̂Mmax

(16)

δT̂M = abs(T̂M − ̂̂TM) (17)

where δT̂M is the absolute difference between T̂M and ̂̂TM after 
χ operation. The details of solving Eq. (15) are given in [8].

D. Transformation of neutrosophic domain to gray level do-
main

After speckle reduction, finally neutrosophic image is trans-
formed from neutrosophic domain to gray level domain by 
Eq. (18).

ˆ̂
f = f̂min + (f̂max + f̂min) · ̂̂TM (18)

where f̂min is the minimum intensity value, f̂max is the max-
imum intensity value and ̂̂TM component is processed based 
on IM after applying neutrosophic variational filtering oper-
ation. The proposed Neutrosophic Nakagami Total Variation 
(NNTV) speckle reduction method can be implemented using 
Algorithm 1.

Algorithm 1 Proposed Neutrosophic domain speckle reduction 
method.
INPUT: Noisy image, f .

OUTPUT: Speckle suppressed image, ˆ̂
f .

Set epsilon (ε) = 1e−4, iteration index (k) = 0.

Step 1: Transform image into neutrosophic domain using Eq. (7)
to Eq. (11).

Step 2: Perform filtering operation given in Eq. (13) to Eq. (17) to obtain
T̂M and ÎM.

Step 3: Compute the entropy of the indeterminate subset ÎM to obtain
entropy EnIM(k) by Eq. (12).

Step 4: If

EnIM(k + 1) − EnIM(k)

EnIM(k)
< ε,

Goto Step 5;
else

TM = T̂M & IM = ÎM
Goto Step 2.

Step 5: Transform ̂̂TM of the neutrosophic domain into the gray level domain 
using Eq. (18).

4. Experimental results and discussion

This section demonstrates the results of experiments to eval-
uate effectiveness of proposed method in comparison to other 
speckle reduction methods. The methods are assessed on both 
synthetic and real ultrasound images. In experiments, perfor-
mance of proposed neutrosophic domain speckle reduction 
Table 1
Comparison of different methods on img1 at different noise levels (σ = 0.3 to 
0.9) in terms of SNR in dB.

Variance
Methods

Noisy NRSNR [7] NNRSNR [23] NTV [8] NNTV

0.3 21.11 22.73 24.22 25.35 26.89
0.4 19.04 22.12 23.03 23.73 24.32
0.5 17.9 22.46 23.73 24.26 25.86
0.6 16.38 21.64 21.98 22.75 23.07
0.7 15.21 18.71 19.66 20.99 21.75
0.8 13.99 17.20 18.37 20.15 20.89
0.9 3.63 6.85 8.75 9.66 10.33
Average 15.32 18.81 19.96 20.98 21.87

(NNTV) method is compared with Nonconvex Sparse Regular-
izer Speckle Noise removal (NRSNR) [7], NTV [8] and Neutro-
sophic Nonconvex Sparse Regularizer Speckle Noise Removal 
(NNRSNR) [20] method.

4.1. Results and analysis on synthetic images

The quantitative evaluation of despeckling methods are con-
ducted on synthetic images in which speckle noise is created 
using speckle simulation procedure. The effectiveness of the 
proposed NNTV method is assessed by carrying out various 
experiments on the speckled images at different noise variances 
from σ = 0.3 to 0.9. Table 1 represents the SNR values of noisy 
image, NTV, NRSNR, NNRSNR and NNTV for the phantom 
image (img1). From quantitative results, it is observed that the 
NNTV method outperformed the NRSNR, NNRSNR and NTV 
by gaining higher SNR value.

Similar type of observations has been made visually by the 
comparison of NRSNR, NTV, NNRSNR and proposed NNTV 
on speckle simulated phantom image (img1) as illustrated in 
Fig. 3. Fig. 3(a) illustrates a synthetic image and Fig. 3(b) dis-
plays the speckle simulated image. Whereas Fig. 3(c) illustrates 
that the NRSNR method blurred the necessary details such as 
edges of despeckled image. Fig. 3(d) reveals that the neutro-
sophic domain NNRSNR method carried out speckle suppres-
sion well. However, some of the pixels are advertently sup-
pressed and blurred near the boundaries. Similar type of obser-
vation could be made by Fig. 3(e) and Fig. 3(f) that the NNTV 
method has better visual result as compared to other methods in 
terms of speckle removal and edge preservation.

Further to show edge and corner preservation, line profile 
is illustrated in Fig. 4. Fig. 4(a) shows speckle simulated im-
age along with the highlighted line. Fig. 4(b) illustrates the 
line profile of original image in black colour in form of dot-
ted line whereas line profile of speckle simulated image in form 
of dashed line in green colour. The line profiles of all despeck-
led images are shown in red colour to differentiate them with 
line profiles of original and noisy image. Fig. 4(c) shows the 
despeckled image filtered by NRSNR which demonstrate that 
speckle is not suppressed effectively, moreover, boundaries are 
also not preserved. However, NNRSNR has tried to preserve 
the edges with better speckle suppression but not able to pre-
serve the textured area. It is also observed that NTV as shown in 
Fig. 4(e) has tried to preserve the edges with speckle reduction 
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Fig. 3. (a) Original phantom image (img1), (b) speckle simulated image (σ = 0.6). Denoised results on image processed by (c) NRSNR [7], (d) NNRSNR [23],
(e) NTV [8], (f) NNTV.
but not performed well in preserving the corners and texture 
due to noisy pixels. The indeterminate pixels cannot be handled 
by NTV and NRSNR effectively as noisy pixels and texture in-
formation are often intermixed due to indeterminacy. NNTV is 
able to handle the noisy pixels and texture information using 
true membership and indeterminate membership. The line pro-
file of NNTV method as given in Fig. 4(f) shows that it can 
remove the speckle noise effectively with preserved edges and 
corners. It outperformed all other methods due to the integra-
tion of Nakagami variational model in neutrosophic domain. 
Hence, speckle suppression and edge preservation can be better 
achieved in neutrosophic domain using Nakagami statistics.

To supplement these results, VIF and UQI values of all meth-
ods on img2 (at (σ = 0.6)) are also plotted in Fig. 5(a). The EPI 
and MSSIM values on img2 are plotted in Fig. 5(b). The plots 
clearly revealed that the neutrosophic domain methods outper-
formed their counterparts in terms of VIF and UQI.

Table 2 with execution time. From tabular data, it is noticed 
that the NNTV method has achieved higher values of UQI, EPI, 
MSSIM and VIF followed by NNRSNR, NTV and NRSNR. 
Moreover, the NNTV method has taken a comparative less time 
(2.37 s) as compared to other methods and the efficiency of the 
neutrosophic domain methods are better as compared to spatial 
domain methods.

All these visual results with SNR values validate that the 
neutrosophic domain methods outperformed their counterparts 
in terms of quantitative measures and time complexity. The neu-
trosophic domain methods are also found effective in preserva-
tion of subtle details such as edges and texture of despeckled 
image similar to the original image with improved contrast. 
From results, it is concluded that the performance of speckle 
reduction methods in neutrosophic domain are better than the 
speckle reduction methods in spatial domain.

4.2. Results and analysis on real ultrasound images

This section presents the experimental results on original 
ultrasound images to evaluate NRSNR, NNRSNR, NTV and 
NNTV methods. As quantitative results cannot be taken on 
these images due to the non availability of noise free images, 
the visual analysis of real ultrasound images are shown with 
line profiles in this section. The real ultrasound image is shown 
in Fig. 6(a). Fig. 6(b) and Fig. 6(c) illustrate the visual results of 
NRSNR method and NTV method respectively. The visual re-
sults revealed that some of the important details have been lost 
and the contrast has been changed with speckle reduction.

The results of NNRSNR as shown in Fig. 6(d) shows that 
speckle noise is reduced efficiently but edges became slightly 
blurred. The NNRSNR method can preserve the nodule bound-
aries effectively while speckle removal but some minute details 
have been lost which are obscured under speckle. From re-
sults, it is observed that the NNTV method removed the speckle 
noise more effectively while preserving its original texture and 
highlighting the minute details as illustrated in Fig. 6(e). Also, 
NNTV improved the contrast between surrounding regions and 
nodule.

Fig. 7 shows the visual outcome of the NNRSNR and NNTV 
supplemented by their edge maps. The edge map is also utilized 
to detect and characterize the edges after speckle noise removal. 
From the analysis of denoised image, it is observed that the 
speckle reduction and edge preservation is better achieved by 
NNTV [Fig. 7(d)] in comparison to NNRSNR [Fig. 7(b)].



50 D. Koundal et al. / IRBM 39 (2018) 43–53
Fig. 4. Denoising results for the phantom image (img1) are shown via intensity profiles of images along highlighted line: (a) speckled image at variance 0.5, line
profile of (b) original and noisy image, (c) NRSNR, (d) NNRSNR, (e) NTV, (f) NNTV. (For interpretation of the references to colour in this figure, the reader is 
referred to the web version of this article.)
The edge map of despeckled image obtained by NNTV 
method has shown that the boundary of nodule can be clearly 
distinguished from its adjoining parenchyma as illustrated in 
Fig. 7(e) as compared to edge map of NNRSNR as shown in 
Fig. 7(c). The visual outcomes of NRSNR, NTV, NNRSNR and 
NNTV are also evaluated as shown in Fig. 8.

Further, with a closer glance in Fig. 8(d) and Fig. 8(f), it 
has been observed that NNRSNR and NNTV methods surpass 
the other methods by clearly highlighting the edges of thyroid 
nodule with the suppression of speckle noise as well as with 
the preservation of edges and corners in the thyroid gland ul-
trasound image. The methods in neutrosophic domain are able 
to preserve the corners, boundaries and sharp features of orig-
inal image. Also the minute subtle details which are hidden by 
speckle become noticeable in despeckled image processed by 
NNTV. It has been found that the NNTV method can better 
preserved the nodule’s boundaries in thyroid ultrasound image 
while the degree of speckle suppression is high as compared to 
SNR method. It is also observed that the speckle is removed 
effectively and structure of thyroid nodule has been well pre-
served by NNTV method using Nakagami distribution statis-
tics.

4.3. Evaluation by medical experts

Table 3 lists the Mean Opinion Score (MOS) for NRSNR, 
NNRSNR, NTV and NNTV obtained from medical experts. 
Total 13 images were randomly chosen from real ultrasound im-
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Fig. 5. Comparison of Noisy, NRSNR, NTV, NNRSNR and NNTV for image (img2) at (σ = 0.6) in terms of (a) VIF and UQI, (b) MSSIM and EPI.
Table 2
Comparison of different methods on img3 (at variance of 0.6) in terms of UQI, 
EPI, MSSIM, VIF and execution time.

Methods
Metrics

UQI EPI MSSIM VIF Time (s)

Noisy image 0.6653 0.6917 0.6581 0.2917 –
NRSNR 0.7026 0.8133 0.7678 0.3245 2.30
NNRSNR 0.7902 0.8718 0.8099 0.3565 2.55
NTV 0.7440 0.8505 0.7897 0.3667 2.12
NNTV 0.8606 0.8813 0.8139 0.3771 2.37

Fig. 6. (a) Original thyroid ultrasound image (img6). Image processed by
(b) NRSNR, (c) NTV, (d) NNRSNR, (e) NNTV.

Table 3
Average mean opinion score assigned by each expert.

Experts
Methods

Original NRSNR NNRSNR NTV NNTV

Expert 1 1.46 4.23 4.53 4.76 4.84
Expert 2 1.84 3.07 3.53 3.69 3.92
Expert 3 1.53 3.92 3.76 4.15 4.46
Average MOS 1.61 3.74 3.94 4.20 4.41

ages. For each case, total 13 images were evaluated including 
one original and 10 filtered. The experts have assigned score in 
the 1–5 scale corresponding to low and high visual perception 
criteria. One is assigned to an image with the poor visual per-
ception. The visual effectiveness of different methods was as-
sessed on the basis of speckle suppression, boundaries or edges, 
resolvable details and nodule’s anatomical structures preserva-
tion, improvement in visibility of small structures, and contrast 
enhancement between adjacent tissues and nodule. The experts 
identified the different anatomical structures and assigned the 
score to each processed image. The average value of score given 
for each method is calculated for each image by experts is re-
ported in Table 3. The methods with lower value of MOS are 
not clinically acceptable and with higher values are clinically 
acceptable. For the experts as listed in Table 3, the best despeck-
led method is the NNTV with highest score followed by NTV, 
NNRSNR and NRSNR. The average score has shown that the 
highest value was assigned to the NNTV as it can make good 
balance between speckle removal and edge preservation due to 
the use of Nakagami statistics in neutrosophic domain.

5. Conclusions

In this work, variational method has been proposed in neu-
trosophic domain using Nakagami distribution for speckle re-
duction in ultrasound image. Initially, the image is transformed 
into neutrosophic domain by defining true, false and indeter-
minacy membership. The entropy in neutrosophic domain is 
used to assess the indeterminacy. A neutrosophic variational 
filtering operation based on Nakagami statistics is proposed to 
reduce the indeterminacy and speckle in the image. The pro-
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Fig. 7. Visual results on the thyroid ultrasound image (img4): (a) original image, (b) image processed by NNRSNR, (c) edge map of NNRSNR, (d) image processed 
by NNTV, (e) edge map of NNTV.

Fig. 8. Visual results on the thyroid ultrasound image (img9). (a) Original image. Denoised results on the image processed by (b) NRSNR, (c) NTV, (d) NNRSNR,
(e) NNTV method.
posed method has been evaluated quantitatively using synthetic 
images by conducting various experiments at different noise 
levels and qualitatively using real ultrasound images. In experi-
ments, the proposed method is evaluated with its counterpart to 
show the efficacy of neutrosophic domain. The proposed NNTV 
method performed better than NTV, NRSNR and NNRSNR in 
terms of SNR as listed in Table 1. Moreover, the values of edge 
preserving metrics such as VIF, EPI, UQI and MSSIM are also 
in favour of NNTV method [Table 2]. The NNTV method has 
an average SNR gain of 1.91 dB over NNRSNR. Medical ex-
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perts also performed the subjective evaluation by computing the 
mean opinion score to show the robustness of proposed NNTV 
method. The proposed NNTV method has got score of 4.41 
followed by NTV (4.2), NNRSNR (3.94) and NRSNR (3.74) 
out of 5 as given in Table 3. From results, it is observed that 
NNTV is able to handle the indeterminate pixels and preserve 
the valuable information such as texture and edges. Besides, 
neutrosophic domain methods are slightly more complex due 
to transformation of images in neutrosophic domain. Hence, 
NNTV method can assist endocrinologists in improving the 
quality of ultrasound images for accurate segmentation of thy-
roid nodules which is very important in Computer aided detec-
tion systems.

Conflict of interest statement

There is no conflict of interest.

References

[1] Kharchenko VP, Kotlyarov PM, Mogutov MS, Alexandrov YK, Sen-
cha AN, Patrunov YN, et al. Ultrasound diagnostics of thyroid diseases. 
Springer Science & Business Media; 2010.

[2] Koundal D, Gupta S, Singh S. Survey of computer-aided diagnosis of thy-
roid nodules in medical ultrasound images, vol. 2. In: Proceedings of the 
second international conference on advances in computing and informa-
tion technology, vol. 2. Springer AISC, vol. 177. 2012. p. 459–67.

[3] Rudin L, Lions PL, Osher S. Multiplicative denoising and deblurring: the-
ory and algorithms. In: Osher S, Paragios N, editors. Geometric level sets 
in imaging, vision, and graphics; 2003. p. 103–19.

[4] Aubert G, Aujol JF. A variational approach to remove multiplicative noise. 
SIAM J Appl Math 2003;68:925–46.

[5] Shi J, Osher S. A nonlinear inverse scale space method for a convex mul-
tiplicative noise model. SIAM J Appl Math 2008;1(3):294–321.

[6] Han Y, Feng X, Baciu G. Nonconvex sparse regularizer based speckle 
noise removal. Pattern Recognit 2013;46:989–1001.

[7] Koundal D, Gupta S, Singh S. Nakagami-based total variation method for 
speckle reduction in thyroid ultrasound images. Proc Inst Mech Eng, H J 
Eng Med 2016;230(2):97–110.

[8] Keerthivasan A, Babu JJ, Sudha GF. Speckle noise reduction in ultrasound 
images using fuzzy logic based on histogram and directional differences. 
In: IEEE international conference on communication and signal process-
ing; 2013. p. 499–503.

[9] Salama AA, Smarandache F, Elsa M. Introduction to image processing via 
neutrosophic techniques. Neutrosoph Sets Syst 2014;5:59–64.

[10] Guo Y, Cheng HD, Zhang Y, Zhao W. A new neutrosophic approach to 
image denoising. In: 11th joint conference on information science on com-
puter vision, pattern recognition and image processing; 2008.

[11] Guo Y, Cheng HD, Zhang Y. A new neutrosophic approach to image de-
noising. New Math Nat Comput 2009;5(3):653–62.

[12] Mohan J, Krishnaveni V, Guo Y. A neutrosophic approach of MRI denois-
ing. In: Proceeding of IEEE international conference on image information 
processing; 2011. p. 1–6.
[13] Mohan J, Krishnaveni V, Guo Y. Performance analysis of neutrosophic set 
approach of median filtering for MRI denoising. Int J Electron Commun 
Eng Technol 2012;3(2):148–63.

[14] Mohan J, Thilaga AP, Chandra S, Krishnaveni V, Guo Y. Image denois-
ing based on neutrosophic Wiener filtering. In: Proceedings of the second 
international conference on advances in computing and information tech-
nology, vol. 2177. 2012. p. 459–67.

[15] Mohan J, Thilaga AP, Chandra S, Krishnaveni V, Guo Y. Evaluation of 
neutrosophic set filtering technique for image denoising. Int J Multimedia 
Appl 2012;4(4):73–81.

[16] Mohan J, Krishnaveni V, Guo Y. A new neutrosophic approach of Wiener 
filtering for MRI denoising. Meas Sci Rev 2013;13(4):177–86.

[17] Mohan J, Krishnaveni V, Guo Y. MRI denoising using nonlocal neutro-
sophic set approach of Wiener filtering. Biomed Signal Process Control 
2013;8(6):779–91.
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