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Fuzzy  classification  has become  of  great  interest  because  of  its ability  to  utilize  simple  linguistically  inter-
pretable  rules  and  has  overcome  the  limitations  of symbolic  or crisp  rule  based  classifiers.  This  paper
introduces  an  extension  to  fuzzy  classifier:  a neutrosophic  classifier,  which  would  utilize  neutrosophic
logic  for  its working.  Neutrosophic  logic  is  a  generalized  logic  that  is capable  of  effectively  handling  inde-
terminacy,  stochasticity  acquisition  errors  that  fuzzy  logic  cannot  handle.  The  proposed  neutrosophic
classifier  employs  neutrosophic  logic  for its  working  and  is  an  extension  of  commonly  used  fuzzy  clas-
eutrosophic logic
eutrosophic classifier

sifier.  It  is  compared  with  the  commonly  used  fuzzy  classifiers  on the  following  parameters:  nature  of
membership  functions,  number  of rules  and  indeterminacy  in the results  generated.  It  is  proved  in the
paper that  extended  fuzzy  classifier:  neutrosophic  classifier;  optimizes  the  said  parameters  in comparison
to  the  fuzzy  counterpart.  Finally  the  paper  is concluded  with  justifying  that neutrosophic  logic  though  in
its nascent  stage  still  holds  the potential  to be experimented  for further  exploration  in  different  domains.
. Introduction

Classification is the process of arranging data into homogeneous
lasses on the basis of the common features present in the data [1].

Various machine learning based techniques are used for input
ata classifications that provide a rational answer for all possi-
le inputs [2].  Fuzzy matching of input and subsequent fuzzy
rocessing is an active research area that has been successfully
pplied to varied domains from control theory to artificial intel-
igence [3,4].

This paper is written with the aim of focusing on the clas-
ification performed on the data which is uncertain, imprecise,
ncomplete and ambiguous. In this paper authors propose a new
lassification technique based on neutrosophic logic which is an
xtension of fuzzy logic.

. Present work

Fuzzy logic was given by Prof. L.A. Zadeh in his seminal paper
uring second half of last century [5]. Though with weak acceptance

nitially, slowly it has emerged as one of the important soft com-

uting techniques to model uncertainty [6].  Real world information

s full of uncertainties, gaps and inconsistent information. This
ncertainty can be encountered in varied forms like uncertainty

∗ Corresponding author. Tel.: +91 9717995716.
E-mail address: swati1178@gmail.com (S. Aggarwal).

568-4946/$ – see front matter © 2012 Elsevier B.V. All rights reserved.
ttp://dx.doi.org/10.1016/j.asoc.2012.08.002
© 2012  Elsevier  B.V.  All rights  reserved.

in outcome of tossing a coin; whether it will be a head or tail is an
example of classical bivalence where uncertainty disappears on the
completion of event. Or else accurate description of the statement
“Rose is red”; has fuzzy uncertainty associated with it as it is diffi-
cult to define red color due to various possible shades of the same
color applicable [7].

The main work of this paper is dedicated in providing extension
to commonly used fuzzy classifier in the form of neutrosophic clas-
sifier. Fuzzy classifier uses fuzzy logic. So this section gives brief
details of a fuzzy logic and fuzzy classifier in its general form.

Prof. L. Zadeh had revolutionized the field of logics by proposing
a novel fuzzy logic in 1965 where each element in fuzzy set has a
degree of membership [5].

Definition 1. Fuzzy sets and membership functions

If X is a collection of objects denoted generically by x, then a
fuzzy set A in X is defined as a set of ordered pairs:

A = {(x, �A(x)|x ∈ X} (1)

�A(x) is called the membership function of x in A. The membership
function maps each element of X to a continuous membership value
between 0 and 1.

It also has the provision of allowing linguistic variables whose
truth values may  vary between 0 and 1; in contrast to two  values

of classical logic [8].

Ever since the beginning of fuzzy set theory [5], classifica-
tion domain has been an important theoretical and practical
fuzzy application area [9].  Crisp classes represent an unrealistic

dx.doi.org/10.1016/j.asoc.2012.08.002
http://www.sciencedirect.com/science/journal/15684946
www.elsevier.com/locate/asoc
mailto:swati1178@gmail.com
dx.doi.org/10.1016/j.asoc.2012.08.002
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versimplification of reality, which fuzzy approach seems to handle
asily. Fuzzy classification applications assume C, a set of classes.
he problem is then to determine for every object x under consid-
ration, x ∈ X, the degree �c(x) to which object x belongs to class

 ∈ C.
So a membership function �c(x): X → [0,1] has been defined for

ach class c ∈ C [10].
Fuzzy classifier uses informal knowledge about problem domain

or classification. For example: “If it is sunny then it will not rain”.
uzzy classification is driven by creating fuzzy category member-
hip functions that convert objectively measurable parameters to
ategory memberships which are then used for fuzzy classification
11]. Membership functions refer to overlapping ranges of feature
alues.

efinition 2. Fuzzy classifier

Let x be a vector in an n-dimensional real space Rn (the feature
pace) and let C = {c1, c2, . . .,  cc} , be a set of class labels. Bezdek et al.
12] has defined crisp and fuzzy classifier.

A crisp classifier is mapping of the type:

c : Rn → C (2)

A fuzzy classifier is any classifier which uses fuzzy sets either
uring training or during its operation. It uses fuzzy if-then infer-
nce system which yields a class label for x [10].

F : Rn → [0,  1]c (3)

So, instead of assigning a class label from C, OF assigns to x ∈ Rn

 soft class label with degrees of membership in each class.

n → �C (x) ∀x ∈ Rn and
c∑

i=1

�i(x) = 1 (4)

The result of fuzzy classification is represented by
F = {(x,�C(x))|x ∈ Rn}.

Next section is dedicated to the understanding of neutrosophic
ogic, which is essential in defining the underlying principle for the

orking of proposed neutrosophic classifier.

. Neutrosophic logic

Quite recently, neutrosophic logic was proposed by Florentine
marandache which is based on the non-standard analysis that
as given by Abraham Robinson in 1960s [13]. Neutrosophic logic
as developed to represent mathematical model of uncertainty,

agueness, ambiguity, imprecision, incompleteness, inconsistency,
edundancy and contradiction [14]. Neutrosophic logic is a logic in
hich each proposition is estimated to have the percentage of truth

n a subset T, the percentage of indeterminacy in a subset I, and the
ercentage of falsity in a subset F, where T, I, F are standard or
on-standard real subsets of]−0,1+[[15]:

with sup T = t sup, inf T = t inf

sup I = i sup, inf I = i inf

sup F = f sup, inf F = f inf

and

n sup = t sup + i sup + f sup

n inf = t inf + i inf + f inf.

The sets T, I and F are not necessarily intervals, but may  be any

eal sub-unitary subsets: discrete or continuous; single-element,
nite, or (countably or uncountably) infinite; union or intersection
f various subsets; etc. They may  also overlap [16]. Statically T, I
nd F are subsets. We  use a subset of truth (or indeterminacy, or
puting 13 (2013) 563–573

falsity), instead of a number only, because in many cases we are not
able to exactly determine the percentages of truth and of falsity
but approximate them: for example a proposition is between 30
and 40% true and between 60 and 70% false, even worst: between
30 and 40% or 45 and 50% true (according to various analyzers),
and 60% or between 66 and 80% false. Neutrosophic logic suggests
that neutrosophic probability (using subsets; not numbers as com-
ponents) should be used for better representation as it is a more
natural and justified estimation [15].

All the factors stated by neutrosophic logic are very integral to
human thinking, as it is very rare that we  tend to conclude/judge
in definite environments, imprecision of human systems could be
due to the imperfection of knowledge that human receives (obser-
vation) from the external world [17]. For example: for a given
proposition “Movie ABC would be hit”, human brain certainly in
this situation cannot generate precise answers in terms of yes or
no, as indeterminacy is the sector of unawareness of a proposition’s
value, between truth and falsehood; undoubtedly neutrosophic
components best fits in the modeling of simulation of human brain
reasoning.

Definition 3. Neutrosophic set [15]: Let X be a space of points
(objects), with a generic element in X denoted by x.

A neutrosophic set A in X is characterized by a truth-membership
function TA, a indeterminacy-membership function IA and a falsity-
membership function FA. TA(x), IA(x) and FA(x) are real standard or
non-standard subsets of]−0,1+[. That is

TA : X → ]−0, 1+[

IA : X → ]−0, 1+[

FA : X → ]−0, 1+[

(6)

There is no restriction on the sum of TA(x), IA(x) and FA(x), so

−0 = sup TA(x) + sup IA(x) + sup FA(x) = 3+ (7)

Also as neutrosophy allows the provision of reflecting the
dynamics of things and ideas [16]; the proposition “Movie ABC
would be hit” does not mean fixed value components structure;
the truth value of the proposition may  change from place to place.
For example: proposition “Movie ABC would be hit” may  yield neu-
trosophic components 0% true, 0% indeterminate and 100% false in
north sector and may  yield (1,0,0) in south sector.

Neutrosophy also allows change in values with respect to the
observer [16]. For example: proposition “Movie ABC would be hit”
may  yield neutrosophic components (t = 0.60, i = 0.30, f = 0.20) if
observed by any film critic then results would differ; like (t = 0.30,
i = 0.15, f = 0.80) if analyzed by other critic.

4. How neutrosophic logic is different from fuzzy logic

Neutrosophic logic proposes that between an idea 〈A〉 and its
opposite 〈Anti-A〉, there exists a gamut of continuous power spec-
trum of neutralities which can be represented by 〈Neut-A〉 [14].

If 〈˛〉 be an attribute, for a proposition 〈P〉 and a referential sys-
tem {R}, applying Neutrosophic logic yields (T, I, F)]−0,1+[[3].  Then:

- 〈P〉 is T% 〈˛〉, I% indeterminate or 〈Neut-˛〉, and F% 〈Anti-˛〉.
- It can be shown that 〈˛〉 is at some degree 〈Anti-˛〉, while 〈Anti-˛〉

is at some degree 〈˛〉.

This important concept of range of neutralities is missing in

fuzzy logic and other allied logics, as fuzzy logic is concerned about
membership and non membership of a particular element to a par-
ticular class; and does not deals with indeterminate nature of data
acquired that could happen due to various reasons like incomplete
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nowledge (ignorance of the totality, limited view on a system
ecause of its complexity), stochasticity (the case of intrinsic imper-
ection where a typical and single value does not exist), or the
cquisition errors (intrinsically imperfect observations, the quan-
itative errors in measures) [17].

The concept of fuzzy logic is constrained with the fact that non-
embership value = 1 − membership value. In contrast to this the

dvantage of utilizing neutrosophic logic is that the values of its
omponents T, I and F are not confined to the range of [0,1], and
t well distinguishes between absolute true/false values from rela-
ive true/false values [16]. As neutrosophic logic has the provision
f assigning >1 as well as <1 values to its neutrosophic compo-
ents, (t,i,f), so whenever for any tautology t/i/f > 1, it would imply
bsolute true/indeterminate/false similarly whenever t/i/f < 1, it
ould imply conditional (relative) truth/indeterminacy/falsity.

his mechanism of assigning over boiling values (>1) or under dried
alues (<0) helps in justifying dissimilarity between uncondition-
lly true (t > 1, and f < 0 or i < 0) and conditionally true propositions
t ≤ 1, and f ≤ 1 or i ≤ 1) [16].

When the sets are reduced to an element only, then

t sup = t inf = t, i sup = i inf = i, f sup = f inf = f

and n sup = n inf = n = t + i + f

Hence, the neutrosophic logic generalizes the fuzzy logic (for
 = 1 and i = 0, and 0 ≤ t, i, f ≤ 1) [17].

. Neutrosophic classifier: an extension of fuzzy classifier

A classifier is an algorithm that predicts the class label on the
asis of the object descriptor. Commonly used classifier in the soft
omputing domain is fuzzy classifier. Fuzzy classifier uses fuzzy sets
r fuzzy logic in the course of its training or operation. This paper
roposes extension of fuzzy classifier that is neutrosophic classifier
hat will use neutrosophic logic which is a superset of fuzzy logic.

efinition 4. Neutrosophic classifier: a classifier that would use
eutrosophic logic principles and neutrosophic sets for the classifi-
ation. Neutrosophic classifier incorporates a simple, neutrosophic
ule based approach like: IF X and Y THEN Z, for solving problem
ather than attempting to model a system mathematically similar
o fuzzy classifier.

Let x be a vector in an n-dimensional real space Rn (the fea-
ure space) and let C = {c1, c2, . . .,  cc} , be a set of class labels. A
eutrosophic classifier is mapping of the type:

N : Rn → {TC (x), IC (x), FC (x)|x ∈ Rn} (8)

If the result of neutrosophic classification is represented by ON

hen

N = {(x, [TC (x), IC (x), FC (x)])|x ∈ Rn}

here

TC (x)] =

⎡
⎢⎢⎢⎢⎢⎣

tc1 (x)

tc2 (x)

.

.

tcc (x)

⎤
⎥⎥⎥⎥⎥⎦

, [IC (x)] =

⎡
⎢⎢⎢⎢⎢⎣

ic1 (x)

ic2 (x)

.

.

icc (x)

⎤
⎥⎥⎥⎥⎥⎦
nd [FC (x)] =

⎡
⎢⎢⎢⎢⎢⎣

fc1 (x)

fc2 (x)

.

.

fcc (x)

⎤
⎥⎥⎥⎥⎥⎦

(9)
Fig. 1. Diagrammatic representation of different types of output generated by Mam-
dani  type fuzzy classifier.

T, I and F component values are independent of each other and
there is no restriction on the sum of TC(x), IC(x) and FC(x), so

−0 ≤ TC (x) + IC (x) + FC (x) = 3+ (10)

The non-standard unit interval]−0, 1+[is merely used for philo-
sophical applications, especially when distinction is required
between absolute and relative truth/falsehood/indeterminacy. But
for technical applications of neutrosophic logic and set, the domain
of definition and range of the T, I and F can be restrained to the
normal standard real unit interval [0,1], which is easier to use.

Sections 6 and 7 discuss implementation of fuzzy classi-
fier and neutrosophic classifier, respectively. For simulations
iris dataset (http://archive.ics.uci.edu/ml/datasets/Iris) is used. All
experiments have been carried out on MATLAB 7.0 [18]. Iris dataset
consists of 4 attributes; sepal length, sepal width, petal length
and petal width and has 150 instances which are categorized into
three classes: iris-setosa, iris-versicolor and iris-virginica. Thirty
instances from each class have been used for training (for making
rule set) and 20 from each class have been used as test case.

6. MATLAB implementation of fuzzy classifier

6.1. Fuzzy classifier—Matlab implementation of FIS-iris
classification

Simple Mamdani type fuzzy classifier is designed using MATLAB
for iris data set.

As overlapping is inherent of fuzzy logic so appropriate over-
lapping membership functions have been designed for all the Iris
dataset attributes and output classes. Figs. 4a, 5a, 6a, 7a and 8a
gives the membership function designed for Iris sepal length, sepal
width, petal length, petal width and Iris output classes designed for
Mamdani type fuzzy classifier.

It can be generalized that the outputs generated after defuzzifi-
cation by FIS can be of two types:

Case a. When the output clearly lies in one of the output class.
Case b. When the defuzzified value belongs to the overlapping

range, this indicates certain degree of indeterminacy asso-
ciated for the values spanned by overlapping membership
functions. In this case there are following three possibili-
ties:

i. Higher membership value to correct class

ii. Equal membership value to two adjacent classes

iii. Higher membership value to wrong class

Cases a and b have been diagrammatically represented by Fig. 1.

http://archive.ics.uci.edu/ml/datasets/Iris
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Fig. 2. Block diagram for a neutrosophic classi

When the output belongs to case a, then it is 100% sure that
t belongs to a specific class, as for example 31st instance of iris
ataset generates de-fuzzified value of 0.13, that indicates its 100%
ssociation with iris-setosa. But when output belongs to case b,
hen it lies in the indeterminacy range where the output mem-
ership value belongs to multiple classes with varying degree of
embership.

. Proposing neutrosophic classifier on the lines of fuzzy
lassifier

Neutrosophic systems similar to their fuzzy counterparts would
e capable of utilizing knowledge obtained from human oper-
tors. In majority of the real world classifiers it is difficult to
evise a precise mathematical model that would simulate system
ehavior; also it is unlikely that the data acquired by the system
ould be 100% complete and determinate [11]. Incompleteness

nd indeterminacy in the data can arise from inherent non-
inearity, time-varying nature of the process to be controlled, large
npredictable environmental disturbances, degrading sensors or
ther difficulties in obtaining precise and reliable measurements.
umans can take intelligent decisions in such situations. Though

his knowledge is also difficult to express in precise terms, an
mprecise linguistic description of the manner of control can usu-
lly be articulated by the operator with relative ease.

Neutrosophic classifier using neutrosophic logic is designed
sing MATLAB. It has been suggested on the lines of fuzzy

ogic but instead of giving one defuzzified value, output value
n neutrosophic classifier takes the neutrosophic format of the
ype: output (truthness, indeterminacy, falsity) as represented by

q. (9).  Rest of the paper is organized in understanding of the con-
ept that for applications where proportion of truthness, falsity and
ndeterminacy exists in the result generated, then it is essential to
ode using neutrosophic logic.
n system using Fuzzy logic toolbox of Matlab.

Designing of neutrosophic classification inference system using
fuzzy methodology is based on the principles of Mamdani fuzzy
inference method [19]. Currently there are no softwares available
that supports neutrosophic logic, so the proposed work has been
implemented on Fuzzy logic toolbox of Matlab 2007.

Fig. 2 gives the block diagram representation of a neutrosophic
classification system using fuzzy logic toolbox of Matlab. As repre-
sented by Eq. (10), values of T, I and F neutrosophic components are
independent of each other. So using fuzzy logic toolbox of Matlab,
three FIS have been designed: one for neutrosophic truth com-
ponent, second for neutrosophic indeterminacy component and
third for neutrosophic falsity component. Though the working of
these components are independent of each other but a correlation
is drawn between membership functions of neutrosophic T, I and
F components so as to capture the truthness, indeterminacy and
falsity of the input as well as the output.

Pseudo code followed for implementation of neutrosophic clas-
sification inference system using fuzzy toolbox of Matlab is given
below:

1. For the given input dataset, make the training and testing sets
for each given class. Here first 30 instances from each of the Iris
class are used as training sets and last 20 from each of the Iris
class are used as testing cases.

2. Using FIS editor develop the following three inference systems
which are independent of each other:
a. Neutrosophic truth component
b. Neutrosophic indeterminacy component
c. Neutrosophic falsity component

3. Using the training set available, designing of inference system
for truth component is done as follows:

a. Membership functions for all the input and output variables

are designed in such a way  that there is no overlapping
between any two  membership functions using membership
function editor.
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minacy value is shown (Fig. 3c).
ig. 3. Correlation and criteria for designing MFs  for (a) fuzzy classifier, (b) neutro-
ophic truth component and (c) neutrosophic indeterminacy component.

Fig. 3a and b gives the correlation and criteria for design-
ng membership functions for FIS and neutrosophic truth
omponent.

For range [0 − a]: fuzzy classifier shows 100% belongingness
Fig. 3a), same is retained in neutrosophic truth component for class

 (Fig. 3b).
For range [a − (a + b)/2]: fuzzy classifier shows overlapping

etween class I, II and decrease in membership value. Till point
a + b)/2; class I has higher membership value as compared to class
I (Fig. 3a), so decrease in truth MF  for class I is shown for the range
a − (a + b)/2] (Fig. 3b).

For range [(a + b)/2 − b]: this is the overlapping zone represented
y fuzzy classifier (Fig. 3a) in which MF  value (class II) > MF  value
class I). So increase in the neutrosophic truth MF  for class II is
hown for the range [(a + b)/2 − b] (Fig. 3b).

For ranges [b–c], [c − (c + d)/2] and [(c + d)/2 − d] same truth
embership function designing criteria is followed as by [0 − a],

a − (a + b)/2] and [(a + b)/2 − b], respectively.
Figs. 4b, 5b, 6b, 7b and 8b shows truth membership functions

or attribute sepal length, sepal width, petal length, petal width
nd 3 iris classes. Truth membership functions have been designed
n such a way  that there is zero overlapping, for the ranges where
verlapping was designed using FIS. Overlapping regions that were
ecorded in the conventional FIS, have been captured by neutro-
ophic indeterminacy and falsity components. Neutrosophic truth
omponent, here defined by Iris-t shows zero overlapping with
ruth value steadily decreasing for overlapping ranges contrary to
hat was designed for conventional FIS.
. Appropriate rules are developed using rule editor.
Fig. 4. Membership functions for attribute sepal length designed in (a) FIS, (b) neu-
trosophic truth component and (c) neutrosophic indeterminate component.

Rule base for neutrosophic truth component for Iris dataset is
shown in Fig. 9.

4. Using the training set available, designing of inference system
for indeterminacy component is done as follows:

a. Membership functions for all the input and output variables are
designed using membership function editor in such a way that
there is no overlapping between any two  membership func-
tions and indeterminacy and falsity membership functions exist
only for the ranges which would been spanned by two  adjacent
membership functions if were designed for fuzzy logic, as that
common area has indeterminacy and falsity associated with it.

For range [0 − a]: fuzzy classifier shows 100% belongingness to
class I (Fig. 3a) so indeterminacy for this range is 0 (Fig. 3c).

For range [a − (a + b)/2]: as truth value for class I is steadily
decreasing here (Fig. 3a and b), so corresponding increase in inde-
terminacy is shown (Fig. 3c), with (a + b)/2 point representing
highest indeterminacy value (because at point (a + b)/2 – both
classes I and II give equal membership value in Mamdani fuzzy
classifier (Fig. 3a)).

For range [(a + b)/2 − b]: as truth value for class II is steadily
increasing (Fig. 3a and b) so corresponding decrease in indeter-
As range [a − b], is the overlapping zone for class I and II in
fuzzy classifier, so this range is represented as class I–class II–i;
for indeterminacy component of neutrosophic logic.
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case ii FIS output = 0.65, indicates equal membership with versi-
ig. 5. Membership functions for attribute sepal width designed in (a) FIS, (b) neu-
rosophic truth component and (c) neutrosophic indeterminate component.

For ranges [b − c], [c − (c + d)/2] and [(c + d)/2 − d] same inde-
erminacy MF  designing criteria is followed as above by [0 − a],
a − (a + b)/2] and [(a + b)/2 − b], respectively.

Indeterminacy and falsity neutrosophic components have been
esigned for Iris dataset for the ranges that were shown overlap-
ing in FIS. Figs. 4c, 5c, 6c, 7c and 8c show membership functions
f indeterminacy component Iris-i for attribute sepal length, sepal
idth, petal length, petal width and 3 iris classes.

. Appropriate rules are developed using rule editor.

Rule base designed for neutrosophic indeterminacy component
or Iris dataset is shown in Fig. 10.

. Using the training set available, designing of inference system
for neutrosophic falsity component is done in the same way as
for indeterminacy component discussed in step 4; except that
here for this classification example, height of all the membership
functions is 0.5.

. After training, the three components are tested independently
using the testing data.

. For each testing instance, final result is generated by consolidat-
ing results from truth, indeterminacy and falsity component in
the triplet format of (T,I,F).
. If a particular testing instance generates (x,y,z), it is interpreted
as x grade of membership of instance to truth set, y and z; grade
of indeterminacy and falsity membership to the respective sets.
Fig. 6. Membership functions for attribute petal length designed in (a) FIS, (b) neu-
trosophic truth component and (c) neutrosophic indeterminate component.

Fig. 11 gives the number of training and testing data used for the
implementation of fuzzy and neutrosophic classifier. As this work
is dedicated to extend fuzzy classifier to neutrosophic classifier and
discussing merits of neutrosophic classifier over conventional fuzzy
classifier so same dataset and equal numbers of training and testing
data cases are used for both.

8. Experimental results

Table 1 shows the details of training and testing sample using
FIS. 30 instances from each class have been used for training (for
making rule set) and 20 from each class have been used for testing.

Table 2 discusses the results of testing done using FIS. When FIS
is used for classification, two  overlapping zones are recorded for
output classes (Fig. 8a).

Overlapping zone 1 Iris setosa and versicolor (no FIS result was
recorded in this overlapping zone)

Overlapping zone 2 Iris versicolor and virginica

case i FIS output < 0.65, indicates higher membership with versi-
color
color and virginica
case iii FIS output > 0.65, indicates higher membership with vir-

ginica
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ig. 7. Membership functions for attribute petal width designed in (a) FIS, (b) neu-
rosophic truth component and (c) neutrosophic indeterminate component.
Here as the authors are concerned about dealing with the test
ases whose result matched with the specifications of case b (Sec-
ion 6), so for the 60 testing instances (20 from each of the three Iris
lasses); following Table 3 gives an overview of the results recorded

able 1
etails of training and testing samples using FIS.

Iris classes Number of training samples used
(serial number in the dataset)

Iris-setosa 30 (1–30)
Iris-versicolor 30 (51–80) 

Iris-virginica 30 (101–130) 

able 2
etails and interpretation of testing results lying in overlapping zones using FIS.

Iris classes Analysis of the outputs (using test cases) 

Iris-setosa Results indicate clear belongingness to class setosa. 

Iris-versicolor 16 cases indicate clear belongingness to class versicolor. 4 cases
generated results lying in overlapping zone of versicolor and virgin

Iris-virginica 2 cases indicate clear belongingness to class virginica 18 cases
generated results lying in overlapping zone of versicolor and virgin
Fig. 8. Membership functions designed for output classes designed in (a) FIS, (b)
neutrosophic truth component and (c) neutrosophic indeterminate component.

in the overlapping zones for the three classes which account for the

indeterminacy associated, when fuzzy classifier is employed.

Table 4 shows the details of training and testing sample using
Neutrosophic truth component. Thirty instances from each class
have been used for training (for making rule set) and 20 from each

Numbers of rules
formed

Number of testing samples used
(serial number in the dataset)

28
20 (31–50)
20 (81–100)
20 (131–150)

Details of outputs lying in overlapping zones

No result is recorded in the overlapping zone of setosa and versicolor

ica.
case (i): Output of instance 91 is 0.648 that is correct belongingness to
the  desired class
case (ii): Output of instance 88 is 0.65 that is ambiguous belongingness
to  two adjacent classes
case (iii): Output of instances 84 and 86 is 0.676 that is more
belongingness to wrong class

ica.
case (ii): Output of instance 134 is 0.65 that is ambiguous
belongingness to two adjacent classes
case (iii): Output of 17 instances 131, 133, 135–146, 148–150 is >0.65
that is correct belongingness to the desired class
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Fig. 9. Rule base for neutrosophic truth component.

sophic indeterminacy component.
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Fig. 10. Rule base for neutro

lass have been used for testing. Also it lists the results of testing
one using Neutrosophic truth component Iris-t. All testing sam-
les generate results that indicate that samples clearly belong to
esired class-t.

Table 5 shows the details of training and testing samples using
eutrosophic indeterminacy component and Neutrosophic falsity
omponent. The results obtained are same for indeterminacy and
alsity component, so same table (5) is used to gives details for
oth. 30 instances from each class have been used for training
for making rule set) and 20 from each class have been used for
esting. Whenever result obtained is zero for falsity and inde-
erminacy components; this indicates that their generated truth
omponent indicates correct belongingness to either of the classes:
ris-setosa/versicolor/virginica class.

Once the testing has been performed using all the three NIS-

, NIS-i, NIS-f, the results can be analyzed like if for example iris-
etosa-t = 0.127, this quantifies the grade of membership of element
.127 to neutrosophic set: iris-setosa-t; finally the results can be
onsolidated instance by instance in the triplet format of (t,i,f).

able 3
ummary of FIS results lying in overlapping range.

Higher membership
value to correct class

FIS-Iris-setosa 0 

FIS-Iris-versicolor 1 

FIS-Iris-virginica 17 

able 4
etails of training and testing samples using neutrosophic truth component Iris-t.

Iris classes Training samples used (serial
number in the dataset)

Numbers of rules
formed

Iris-setosa-t 30 (1–30)
21Iris-versicolor-t  30 (51–80) 

Iris-virginica-t 30  (101–130) 
truth component, neutrosophic indeterminate component and neutrosophic falsity
component, respectively.

Equal membership value to
two  adjacent class

Higher membership
value to wrong class

0 0
1 2
1 0

Testing samples used (serial
number in the dataset)

Details and interpretation
of incorrect results

20 (31–50) None
20 (81–100) None
20 (131–150) None



A.Q. Ansari et al. / Applied Soft Computing 13 (2013) 563–573 571

Table  5
Details of training and testing samples using neutrosophic indeterminacy component Iris-i.

Iris classes
Indeterminacy
component/Falsity
component

Training samples used (serial
number in the dataset)

Numbers of rules
formed

Testing samples used (serial
number in the dataset)

Details of instances with non
zero indeterminacy and falsity

Iris-setosa-versicolor-
i/Iris-setosa-
versicolor-f

90
(1–30)
(51–80)
(101–130)

15 60
(31–50)
(81–100)
(131–150)

Instances:
32nd, 33rd and 40th
86th, 89th and 92nd, 96th, 99th
134th, 137–139th and
147–149th

Iris-versicolor-
virginica-i/Iris-
versicolor-virginica-f

Table 6
Analysis of NIS-i, NIS-f against values given by FIS.

Instance number Values recorded
using FIS

Correct/desired class Values recorded using NIS (t,i,f)

Neutrosophic truth
component (t)

Neutrosophic indeterminacy
component (i)

Neutrosophic falsity
component (f)

32 0.135
Setosa

Iris-setosa-t = 0.127
Iris-setosa-versicolor-
i = 0.35

Iris-setosa-versicolor-
f = 0.35

33  0.156 Iris-setosa-t = 0.156
40 0.127 Iris-setosa-t = 0.127
Interpretation:  FIS results indicate correct membership to setosa, neutrosophic result is (t, i, f) = (>0.5, 1,0.5); indicating that truth values recorded are greater
than  0.5 for all the three instances, with indeterminacy recorded is as high as 1 and falsity 0.5 (refer Fig. 8).
86  0.676

Versicolor

Iris-versicolor-t = 0.5 Iris-versicolor-
virginica-i = 0.65

Iris-versicolor-
virginica-f = 0.6587  0.5

88 0.65
89 0.5
92 0.5
96 0.5
99 0.5 Iris-versicolor-t = 0.5 Iris-versicolor-

virginica-i = 0.35
Iris-versicolor-
virginica-f = 0.35

Interpretation:  All FIS results indicate correct belongingness to versicolor, except 88th instance which reflects equal degree of membership to versicolor and
virginica (refer Table 2); and 86th instance also which lies in the overlapping region of versicolor and virginica, shows higher membership value to virginica
(refer  Table 2).
NIS result is (1,1,0.5); indicating that truth values recorded are 1 for versicolor, indeterminacy recorded is as high as 1 and falsity is 0.5 (refer Fig. 8).
134  0.65 Virginica Iris-versicolor-t = 0.5 0.5 0.5
Interpretation:  Fuzzy results indicate ambiguity that is equal membership to versicolor and virginica, but neutrosophic results is (1,0,0); indicating clear
membership to versicolor, also indeterminacy and falsity recorded for this instance is nil; which is not in accordance with the desired result (refer Fig. 8).
137  0.678

Virginica

Iris-virginica-t = 0.683

Iris-versicolor-
virginica-i = 0.65

Iris-versicolor-
virginica-f = 0.65

138  0.678 Iris-virginica-t = 0.684
139  0.685 Iris-virginica-t = 0.703
147 0.842 Iris-virginica-t = 0.84
148  0.683 Iris-virginica-t = 0.697
149  0.683 Iris-virginica-t = 0.697
Interpretation:  All FIS results indicate correct belongingness to virginica.
Neutrosophic result is (<0.5, 1,0.5); that reflects that the instances lie in the zone of high indeterminacy, result indicate that various truth values recorded are
less  than 0.5 for versicolor, with indeterminacy recorded is as high as 1 and falsity 0.5 (refer Fig. 8).

Table 7
Analysis of wrong fuzzy results with neutrosophic results.

Instance number Fuzzy results Interpretation of fuzzy
results

Neutrosophic truth
component (t)

Neutrosophic
indeterminacy
component (i)

Neutrosophic falsity
component (f)

88 (correct class:
versicolor) 0.65

Instances have equal
degree of membership
in versicolor and
virginica, which leads
to ambiguity.

Iris-versicolor-t = 0.5 Iris-versicolor-
virginica-i = 0.65

Iris-versicolor-
virginica-f  = 0.65

134  (correct class:
virginica)

Iris-versicolor-t = 0.5 0.5 0.5

Interpretation
88:  Fuzzy results indicate ambiguity, but neutrosophic results is (1,1,0.5); indicating clear membership to versicolor, also indeterminacy recorded for this
instance is high as 1, and falsity is 0.5.
134: Fuzzy results indicate ambiguity, but neutrosophic results is (1,0,0); indicating clear membership to versicolor, also indeterminacy and falsity recorded
for  this instance is nil; which is not in accordance with the desired result. Neutrosophic component is generating versicolor because 134th instance
specifications are covered by the rule designed for versicolor (for truth, indeterminacy and falsity component).
84

0.676
Instances report higher
membership values to
virginica which is wrong
class but versicolor is
actual class

Iris-versicolor-t = 0.5 0.5 0.5
86  Iris-versicolor-t = 0.5 Iris-versicolor-

virginica-i = 0.65
Iris-versicolor-
virginica-f  = 0.65

Interpretation
84:  Fuzzy results indicate wrong higher membership to virginica, but neutrosophic result is (1,0,0); indicating clear membership to versicolor, also
indeterminacy an falsity recorded for this instance is nil.
86: Fuzzy results indicate wrong higher membership to virginica, but neutrosophic result is (1,1,0.5); indicating clear membership to versicolor, also
indeterminacy recorded for this instance is high as 1, and falsity is 0.5.



572 A.Q. Ansari et al. / Applied Soft Com

Fig. 12. Comparison of ambiguous results given by FIS and NIS.
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ig. 13. Block diagram representing consolidation of independent results in neu-
rosophic format (t, i, f).
Table 6 gives the details of the instances in which indeterminacy
nd falsity values were recorded using neutrosophic indeterminacy
nd falsity component, respectively, against the values obtained
rom conventional FIS.

Fig. 14. Comparison of ambiguous and non-ambiguous results generated 
puting 13 (2013) 563–573

Table 7 does the comparison of wrong fuzzy results with neu-
trosophic results.

9. Evaluation of results

Fig. 12 gives the analysis of the results of testing done using
neutrosophic classifier in comparison to the results generated by
fuzzy classifier. It particularly gives the result analysis of the values
lying in ambiguous zone (values given by indeterminacy and falsity
in neutrosophic logic and results lying in overlapping regions for
fuzzy logic).

Results generated by FIS and NIS are labeled as follows:

a. Non-ambiguous: FIS results that lie in single output membership
function indicate clear belongingness to a particular class, hence
non-ambiguous. NIS results which have zero indeterminacy and
falsity component associated are clear non-ambiguous results.

b. Ambiguous: For the results generated by FIS, if they lie in the
overlapping range of two adjacent membership functions, this
indicates certain degree of ambiguity associated with it; hence
are ambiguous. If the results generated by NIS have falsity and
indeterminacy values, this indicates ambiguity in the results
generated.

For the ambiguous results generated by NIS, a confidence value
can be defined for the truth component. For example if for truth
component the confidence value set ≥ 50%, then for the truth
exceeding the confidence threshold, the associated indeterminacy
and falsity values should be considered insignificant; else the result
generated for the given instance has significant proportion of inde-
terminacy and/or falsity associated with it and would call for
human expert intervention for final interpretation. Here in this
paper confidence value ≥50% is set for truth component, as shown
in Fig. 13.

i/f =
{

insignificant if t ≥ 50%

significant if t < 50%
(11)
Fig. 14 discusses the final non-ambiguous and ambiguous
results once confidence value is taken into consideration. Conven-
tional fuzzy classifier generated total 22 ambiguous results for 60
testing instances, which constitutes 36.6%. This is quite contrary

by NIS after being filtered from the truth confidence threshold limit.
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A.Q. Ansari et al. / Applied So

o 6 ambiguous results out of 60 testing instance (which is 10%),
hat lie in the ambiguous zone for which human expert interven-
ion is seeked for final interpretation of the result rest all results
except for 134th instance) generated by neutrosophic classifier
re in accordance with the desired results.

0. Conclusions

As the proposed neutrosophic approach partitions the pattern
pace into non-overlapping decision regions for pattern classifica-
ion so both the complexity and computational load of the classifier
re reduced and thus the training time and classification time are
xtremely short. Although the decision regions are partitioned into
on-overlapping subspaces, we can achieve good classification per-

ormance since the decision regions can be correctly determined via
ur proposed neutrosophic approach. Furthermore as the results
enerated by neutrosophic classifier has three components of truth,
ndeterminacy and falsity so the neutrosophic classifier would be

 special system which would be more generalized and indetermi-
acy tolerant in its working as compared to the fuzzy counterparts;
hough neutrosophic systems classifiers as proposed would vary
ubstantially according to the nature of the control problems that
hey are supposed to solve. Here we have confined ourselves to the
xplanation of relatively simple classifier problem.

1. Future directions

Results shown in the paper are encouraging so in future pro-
osed extension of fuzzy classifier that is neutrosophic classifier
an be extended by exploring more complicated domains in which
ndeterminacy and falsity is tightly integrated in the data captured.
f after detailed investigation strong correlation is found between
uman reasoning and neutrosophic classifier results then defi-
itely a real time application exploiting neutrosophic logic can be
eveloped; possibly replacing existing conventional fuzzy classifier
ystems. Also with the optimistic results, possible integration of
eutrosophic logic with other soft computing domains like neural
etwork and genetic algorithm can also be tried.
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