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Clustering algorithm is one of the important research topics in the field of machine learning. Neutrosophic clustering is the
generalization of fuzzy clustering and has been applied to many fields. *is paper presents a new neutrosophic clustering al-
gorithm with the help of regularization. Firstly, the regularization term is introduced into the FC-PFS algorithm to generate
sparsity, which can reduce the complexity of the algorithm on large data sets. Secondly, we propose a method to simplify the
process of determining regularization parameters. Finally, experiments show that the clustering results of this algorithm on
artificial data sets and real data sets are mostly better than other clustering algorithms. Our clustering algorithm is effective in
most cases.

1. Introduction

With the increasing development of information technol-
ogy, the data dimensions on the Internet have increased
exponentially. For example, dimensions of various docu-
ments, multimedia, and gene expression data can reach
hundreds of thousands. Facing these data, scholars have
proposed many data processing methods [1–3].

In 1965, Zedah [4] proposed the concept of fuzzy set.
Fuzzy theory is applied in many areas, such as multiattribute
decision-making [5–7], image processing [8], and cluster
analysis [9]. In particular, fuzzy clustering has made con-
siderable progress in the past few decades. Based on fuzzy
sets, FCM [10] algorithm is proposed. *e quality of the
clustering results is good, but there are still some problems
for uncertainty problems.*erefore, in recent years, scholars
have devoted themselves to propose a variety of methods to
improve the fuzzy c-means algorithm of various aspects.
Hwang [11] et al. combined the type-2 fuzzy set with the
FCM (T2-FCM) clustering algorithm and made an im-
provement on the uncertainty that affects the final class c
classification. Linda [12] et al. improved the general type-2
fuzzy set fuzzy c-means (GT2-FCM) algorithm through the
alpha surface representation theorem, described the

ambiguity in linguistic terms, and transformed the uncer-
tainty of the language into the uncertain fuzzy positions of
the extracted clusters. *e algorithm [12] works well when
there are noisy samples or insufficient training samples. *e
T2-FCM and GT2-FCM algorithms are all improved for the
uncertainty of fuzzy c-means algorithm.

In 1986, Atanassov [13] proposed the concept of
intuitionistic fuzzy sets, which solved some of the drawbacks
of traditional fuzzy sets, and is more capable of processing
uncertain information. Chaira [14] et al. introduced intui-
tionistic fuzzy entropy into the traditional fuzzy c-means
algorithm, and the new algorithm proposed was used to
cluster CT brain scan partial images, which can identify
brain abnormalities. Bukiewicz [15] et al. introduced a
variable to deal with the uncertainty and similarity mea-
surement between intuitionistic fuzzy sets in the fuzzy
c-means algorithm and proposed a data set fuzzy clustering
method based on the intuitionistic fuzzy set theory. Zhao
[16] et al. constructed the corresponding lambda cutting
matrix by calculating the correlation coefficient on the
intuitionistic fuzzy set and then clustered on the cutting
matrix. Cuong [17] proposed the concept of the picture fuzzy
set (PFS), which is a direct extension of a fuzzy set and
intuitive fuzzy set. *ong [18] proposed an image fuzzy
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clustering algorithm based on image fuzzy sets. *e algo-
rithms proposed in literatures [14–18] have better clustering
performance than the traditional general algorithm, but they
have certain limitations in the application. *e generated
membership matrix does not have sparseness, which will
increase the amount of calculation.

In view of the limitations of the intuitive fuzzy sets,
Smarandache [19] proposed the neutrosophic set theory.*e
basic idea is that everything can be described in three degrees
of truth, uncertainty, and distortion. Each object has three
degrees of membership function. Eachmembership function
belongs to the standard and nonstandard subsets of ]0− , 1+[.
*e neutrosophic set theory can not only describe the un-
certainty problems better but also solve the existing prob-
lems when applying fuzzy theory. *erefore, scholars have
done in-depth research on neutrosophic set [20–24] and
proposed many neutrosophic clustering algorithms. Ye [25]
proposed a single-valued neutrosophic minimum spanning
tree (SVNMST) clustering algorithm, which shows great
advantages in the clustering of single-valued neutrosophic
observation data. In the same year, Ye [26] proposed single-
valued neutrosophic clustering methods based on similarity
measures between single-valued neutrosophic sets (SVNSs).
Guo [27] proposed neutrosophic c-means clustering algo-
rithm (NCM). *e NCM algorithm can calculate certainty
and uncertainty, and the membership function is not af-
fected by noise. Nowadays, neutrosophic clustering has been
applied to many fields such as image segmentation and
biology [28–32]. PFS is a standardized form of neutrosophic
set.*e FC-PFS algorithm proposed in [18] is actually a kind
of neutrosophic set type algorithm. However, the algorithm
needs to calculate three matrices of the same scale, and the
membership matrix is not sparse, which affects the clus-
tering effect to a certain extent.

In order to solve the abovementioned problems, this
paper proposes a new algorithm sparse neutrosophic fuzzy
clustering algorithm (SNCM). *e main idea is to introduce
a regularization term into FC-PFS algorithm. *e new al-
gorithm can produce sparsity, since it reduces the number of
eigenvalue vectors of the sample. *us, SNCM reduces the
complexity of the model. Experiments show that the per-
formance of the proposed algorithm is better than some
other clustering algorithms. *e experimental results pro-
duce a sparse membership matrix, which reflects the ef-
fectiveness of the algorithm. *e specific arrangements for
the rest of this article are as follows.

*e second section introduces the related basic concepts
and algorithms, the third section presents the new algorithm
proposed in this article and the solution process, the fourth
section proves the effectiveness of the proposed algorithm
through related experiments, and the fifth section gives
relevant conclusions.

2. Related Algorithms

In this paper, the data set contains n data points, each point
is a d-dimensional feature vector; the purpose of clustering is

to obtain c clusters. *e following introduces some clus-
tering algorithms FCM and FC-PFS.

2.1. FCM Algorithm. *e FCM algorithm proposed in 1984
is a very well-known algorithm. It is not only used in fuzzy
engineering but also popular in the fields of medical diag-
nosis and communication. *e FCM algorithm divides each
data point xi into a specific cluster vj, uij means the i-th data
point xi belongs to the membership value of the j-th cluster.
*e cluster center of the cluster is expressed as vj ∈ Rd, and
the objective function of the FCM algorithm is

J � 􏽘
n

i�1
􏽘

c

j�1
u

m
ij xi − vj

�����

�����
2
, (1)

wherem is a fuzzy parameter and the constraint condition of
formula (1) is as follows:

uij ∈ [0, 1],

􏽘

c

j�1
uij � 1.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(2)

Using Lagrangian multiplier method, the iterative
method of membership degree and cluster center is
obtained:

vj �
􏽐

n
i�1 uijxi

􏽐
n
i�1 uij

; j � 1, 2, . . . , c,

uij �
1

􏽐
c
l�1 xi − vj

�����

�����/ xi − vl

����
����􏼒 􏼓

2/(m− 1)
; i � 1, 2, . . . , n.

(3)

Until the number of iterations reaches the maximum
value or |J(t) − J(t− 1)|< ε, the iteration terminates, where J(t)

and J(t− 1)are the objective function values of the t and t − 1
iterations, and ε are the termination thresholds, generally in
the range of (0, 0.1). According to the fuzzy membership
value, if uil � max(ui1, ui2, . . . , uik), then xi is divided into j-
th cluster. It can be proved that the algorithm finally con-
verges to the local optimum or the saddle point of the
objective function.

2.2. FC-PFS Algorithm

Definition 1. A picture fuzzy set of nonempty set X is

_A � 〈x, μ _A(x), η _A(x), c _A(x)〉|x ∈ X􏼈 􏼉, (4)

where μ _A(x) is the degree of positive membership of each
xϵX in A, η _A(x) is the degree of neutral membership of x in
A, and c _A(x) is the degree of negative membership of x in A,
and it satisfies the following conditions:
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μ _A(x), η _A(x), c _A(x) ∈ [0, 1], ∀x ∈ X,

0≤ μ _A(x), η _A(x), c _A(x)≤ 1, ∀x ∈ X.
(5)

*e refusal degree of an element is calculated as

ξ _A(x) � 1 − μ _A(x) + η _A(x) + c _A(x)( 􏼁, ∀x ∈ X. (6)

Definition 2. X is an object (point) set, x is an element in X,
and the neutrosophic set A on X can be expressed as

A � x, TA(x), IA(x), FA(x)( 􏼁􏼂 􏼃|x ∈ X􏼈 􏼉, (7)

where TA(x) is the truth membership degree, IA(x) is the
indeterminacy membership degree, and FA(x) is the falsity
membership degree, which belongs to the standard and
nonstandard subset of ]0− , 1+[, i.e.,
TA(x), IA(x), FA(x)⟶ ]0− , 1+[. Because there is no re-
striction on the sum of TA(x), IA(x), FA(x), there is
0− ≤ supTA(x) + supIA(x) + supFA(x)≤ 3+.

From the abovementioned two definitions, it can be seen
that the picture fuzzy set is actually the standard form of the
neutrosophic set. *erefore, the FC-PFS algorithm proposed
by *ong and Son is based on the neutrosophic set. *e
objective function of the algorithm is

J � 􏽘
n

i�1
􏽘

c

j�1
uij 2 − ξij􏼐 􏼑􏼐 􏼑

m
xi − vj

�����

�����
2

+ 􏽘
n

i�1
􏽘

c

j�1
ηij log ηij + ξij􏼐 􏼑.

(8)

Among them, uij, ξij, and ηij are the true membership
degree, refusal membership degree, and neutral membership
degree of the data points xi belonging to the j-th cluster,
respectively. *e constraints of formula (8) are

uij, ηij, ξij ∈ [0, 1],

uij + ηij + ξij ≤ 1,

􏽘

c

j�1
uij 2 − ξij􏼐 􏼑􏼐 􏼑 � 1,

􏽘

c

j�1
ηij +

ξij

c
􏼠 􏼡 � 1.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(9)

Using the Lagrangian multiplier method, the iterative
method is adopted to obtain the update formulas of uij, ξij,
ηij , and vj:

ξij � 1 − uij + ηij􏼐 􏼑 − 1 − uij + ηij􏼐 􏼑
α

􏼐 􏼑
1/α

, α ∈ [0, 1], (i � 1, . . . , n; j � 1, . . . , c),

uij �
1

􏽐
c
l�1 2 − ξil( 􏼁 xi − vj

�����

�����/ xi − vl

����
����􏼒 􏼓

2/(m− 1)
, (i � 1, 2, . . . , n; j � 1, 2, . . . , c),

ηij �
e

− ξij

􏽐
c
l�1 e

− ξil

1 −
1
c

􏽘

c

l�1
ξil

⎛⎝ ⎞⎠, (i � 1, . . . , n; j � 1, . . . , c),

vj �
􏽐

n
i�1 uij 2 − ξij􏼐 􏼑􏼐 􏼑

m
xi

􏽐
n
i�1 uij 2 − ξij􏼐 􏼑􏼐 􏼑

m , (j � 1, . . . , c).

(10)

*e iteration is terminated until the number of iterations
reaches the maximum or
u(t) − u(t− 1) + η(t) − η(t− 1) + ξ(t)

− ξ(t− 1) ≤ ε.

3. Sparse Neutrosophic Clustering Algorithm

3.1. Determining the Objective Function. In traditional k-
means clustering, each row of the membership matrix U

contains a 1, and the remaining c − 1 elements in this row are
0, so the row sum of U is 1, and each column sum represents
the number of sample points in each cluster, and the fuzzy c-
means algorithm needs to choose the appropriate fuzzy
degree m. Different from the abovementioned three clus-
tering algorithms, the algorithm in this paper relaxes each
element of U to a nonnegative value less than 1 under the
constraint conditions and presets the ambiguity m� 1. Our
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goal is to get a sparse U, so we introduce regular terms to get
the objective function of the new algorithm:

J � 􏽘
n

i�1
􏽘

c

j�1
uij 2 − ξij􏼐 􏼑􏼐 􏼑 xi − vj

�����

�����
2

+ 􏽘
n

i�1
􏽘

c

j�1
ηij log ηij + ξij􏼐 􏼑

+ c 􏽘
n

i�1
􏽘

c

j�1
uij 2 − ξij􏼐 􏼑􏼐 􏼑

2
⟶ min.

(11)

*e abovementioned formula satisfies the following
constraints:

uij, ηij, ξij ∈ [0, 1],

uij + ηij + ξij ≤ 1,

􏽘

c

j�1
uij 2 − ξij􏼐 􏼑􏼐 􏼑 � 1,

􏽘

c

j�1
ηij +

ξij

c
􏼠 􏼡 � 1.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

i � t1, 2n, q . . . h,n x; 7jC �; 1, 2, . . . , c( 􏼁.

(12)

We can see that if the sample point is divided into a
single cluster, uij(2 − ξij) is equal to 1. Otherwise, it is a
nonnegative value less than 1.

*e new algorithm considers the sparsity of the mem-
bership degree of each sample point assigned to different
clusters in the clustering process. In the process of mini-
mizing equation (11), the importance of each part is con-
trolled by the parameter c. If the parameter is zero, the
membership vector of each sample is not sparse. If the
parameter size is constantly adjusted, the sparsity of the
member vector will also change. As the parameter gradually
increases, the membership vector contains more and more
nonzero elements. When the maximum value is reached, all
elements of the membership vector are not zero, and the
membership vector is nonsparse at this time. *erefore, this
parameter controls the sparsity of the membership vector.
We will give a method to determine the appropriate pa-
rameters in the subsequent part to obtain more accurate
clustering results.

3.2. /e Proposed Model and Solutions. Solve the above-
mentioned model using alternating iteration method. First,
fix the variable U, ξ, η to find the cluster center V. *e
derivative of (11) in V is

zJ

zvj

� 􏽘
n

i�1
uij 2 − ξij􏼐 􏼑􏼐 􏼑 − 2xi + 2vj􏼐 􏼑,

· (i � 1, 2, . . . , n; j � 1, 2, . . . , c).

(13)

By considering zJ/zvj � 0, we have

􏽘

n

i�1
uij 2 − ξij􏼐 􏼑􏼐 􏼑 − 2xi + 2vj􏼐 􏼑 � 0, (i � 1, 2, . . . , n; j � 1, 2, . . . , c),

(14)

⇔􏽘
n

i�1
uij 2 − ξij􏼐 􏼑􏼐 􏼑xi

� 􏽘
n

i�1
uij 2 − ξij􏼐 􏼑􏼐 􏼑vj, (i � 1, 2, . . . , n; j � 1, 2, . . . , c),

(15)

⇔vj �
􏽐

n
i�1 uij 2 − ξij􏼐 􏼑􏼐 􏼑xi

􏽐
n
i�1 uij 2 − ξij􏼐 􏼑􏼐 􏼑

, (j � 1, . . . , c). (16)

Solve U with fixed V, ξ, and η. In order to facilitate the
solution, we make the following deformation of the objective
function:

min
sT

i
1�1,si>0

􏽘

n

i�1
􏽘

c

j�1
sijdij + cs

2
ij􏼐 􏼑, (17)

where sij � uij(2 − ξij) is an element of matrix S, sij is the i-
th row of matrix S, dij � ‖xi − vj‖

2is an element of distance
matrix D For each xi, problem (17) can be divided into n
subproblems:

min
sT

i
1�1,si>0

􏽘

c

j�1
sijdij + cis

2
ij􏼐 􏼑. (18)

*en, (18) is written in the following vector form:

min
sT

i
1�1,si>0

si +
di

2ci

��������

��������

2

. (19)

By solving problem (19), the solution of S can be ob-
tained, and the update formula of U can be further obtained

uij �

di,k+1 − dij

kdi,k+1 − 􏽐
k
l�1 dil􏼐 􏼑/ 2 − ξij􏼐 􏼑

, j≤ k,

0, j> k.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(20)

*e specific solution process for problem (19) is given in
Section 3.3. Fixed variables U, ξ andV , use the Lagrange
multiplier method to solve η:

L(η) � 􏽘
n

i�1
􏽘

c

j�1
ηij log ηij + ξij􏼐 􏼑 − λi 􏽘

c

j�1
ηij +

ξij

c
􏼠 􏼡 − 1⎛⎝ ⎞⎠.

(21)

We use the function L to derive η to make it equal to
zero, that is,
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zL(η)

zηij

� log ηij + 1 − λi + ξij � 0, (i � 1, 2, . . . , n; j � 1, 2, . . . , c),

(22)

⇔ηij � exp λi − 1 − ξij􏼐 􏼑, (i � 1, 2, . . . , n; j � 1, 2, . . . , c),

(23)

􏽘

c

j�1
e
λi − 1− ξij +

1
c

􏽘

c

j�1
ξij � 1, (i � 1, 2, . . . , n; j � 1, 2, . . . , c),

(24)

⇔e
λi− 1

􏽘

c

j�1
e

− ξij � 1 −
1
c

􏽘

c

j�1
ξij,

(i � 1, 2, . . . , n; j � 1, 2, . . . , c),

(25)

⇔e
λi − 1

�
1 − (1/c) 􏽐

c
j�1 ξij

􏽐
c
j�1 e

− ξij

, (i � 1, 2, . . . , n; j � 1, 2, . . . , c),

(26)

ηij �
e

− ξij

􏽐
c
l�1 e

− ξil

1 −
1
c

􏽘

c

l�1
ξil

⎛⎝ ⎞⎠, (i � 1, . . . , n; j � 1, . . . , c).

(27)

Finally, using the similar technique of Yager [33] to
generate operators, we modify the hesitation of the intui-
tionistic fuzzy set π􏽢A

(x) � 1 − μ􏽢A
(x) − (1 − μ􏽢A

(x)α)1/α to
obtain the value of element rejection degree by replacing
uij + ηij with μ􏽢A

(x), as follows:

ξij � 1 − uij + ηij􏼐 􏼑 − 1 − uij + ηij􏼐 􏼑
α

􏼐 􏼑
1/α

, α ∈ [0, 1],

· (i � 1, . . . , n; j � 1, . . . , c).

(28)

3.3. Optimization Method for c. In specific practice, the
regularization parameter in question (19) is difficult to
determine, and its value can be from zero to infinity. In this
section, a method for determining the regularization pa-
rameter c is given. *e Lagrangian function of question (19)
is

L si, λ, βi( 􏼁 �
1
2

si +
di

2ci

��������

��������

2

− λ s
T
i · 1 − 1􏼐 􏼑 − βT

i si, (29)

where λ and βi are greater than zero and are Lagrange
multipliers.

According to the KKTcondition, the optimal solution of
is the following form

sij � −
dij

2ci

+ λ􏼠 􏼡
+

. (30)

In practice, if we focus on the locality of the data,
usually we can get better performance. *erefore, it is best

to learn a sparse si. Another advantage of learning sparse
matrix S is that it can greatly reduce the computational
burden of subsequent processing. Without loss of gener-
ality, it is assumed di1, di2, . . . , dic to be sorted from small to
large. If the optimal si only has k nonzero elements, then
according to equation (30), we know sik > 0 and si,j+1 � 0.
So, we have

−
dik

2ci

+ λ> 0,

−
di,k+1

2ci

+ λ≤ 0.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(31)

According to equation (30) and constraint sT
i 1 � 1, we

have

􏽘

k

j�1
−

dij

2ci

+ λ􏼠 􏼡 � 1

⇒λ �
1
k

+
1

2kci

􏽘

k

j�1
dij.

(32)

According to equations (38) and (39), we have an in-
equality of ci

k

2
dik −

1
2

􏽘

k

j�1
dij < ci ≤

k

2
di,k+1 −

1
2

􏽘

k

j�1
dij. (33)

*erefore, in order to obtain the optimal solution of
problem (19) with precise k nonzero values, we can make

ci �
k

2
di,k+1 −

1
2

􏽘

k

j�1
dij. (34)

Taking the average of c1, c2, . . . , cn, the calculation
formula is as follows:

c �
1
n

􏽘

n

i�1

k

2
di,k+1 −

1
2

􏽘

k

j�1
dij

⎛⎝ ⎞⎠. (35)

Equation (35) gives a method to determine the regula-
rization parameters.

According to equations (31), (33), and (35), the following
optimal solution can be obtained,

􏽢sij �

di,k+1 − dij

kdi,k+1 − 􏽐
k
l�1 dil

, j≤ k,

0, j> k.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(36)

3.3.1. Sparse Neutrosophic Clustering Algorithm
(i) Input: data set X, number of clusters c, and pa-

rameters α and k
(a) Initialization: set t� 0, random initialization meets

the restriction condition (12)
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(b) Set iteration:
(ii) for i� 1, 2, . . . maxSteps do
(c) Update V
(iii) calculate v

(t
j ) (j � 1, 2, . . . , c) by equation (16)

(d) Update U
(iv) for j� 1, 2, . . ., n do
(v) calculate S by equation (36)
(vi) end for
(vii) By solving problem (19), calculate u

(t)
ij (i � 1, 2,

. . . , n; j � 1, 2, . . . , c) by equation (18)
(e) Update η

(viii) Calculate η(t)
ij (i � 1, 2, . . . , n; j � 1, 2, . . . , c) by

equation (27)
(f ) Update ξ
(ix) Calculate ξ(t)

ij (i � 1, 2, . . . , n; j � 1, 2, . . . , c) by
equation (28)

(g) Set the conditions for jumping out of the iteration
u(t) − u(t− 1) + η(t) − η(t− 1) + ξ(t)

− ξ(t− 1) ≤ ε or
t>max steps

(x) end for
(xi) Output: clustering result y

Below, we analyze the algorithm complexity. First, we
analyze the time complexity of the algorithm. From the
algorithm steps, the basic sentence of the algorithm is the
loop body of the algorithm iterative calculation variable, and
the loop body for calculating u is embedded, so the time
complexity of the algorithm is O (nt), t is the number of
iterations and n is the number of sample points. Secondly,
the space complexity of the analysis algorithm is related to
the data scale, so the space complexity is O (nm), n is the
number of sample points, and m is the dimension.

4. Results and Discussion

In order to verify the feasibility of the clustering algorithm
SNCM proposed in this paper, classic clustering algorithms
are selected: FCM [10], K-means [34], Ncut [35], Rcut [36],
FC-PFS, and an effective clustering method based on data
indeterminacy in neutrosophic set domain (INCM) [37], as
comparison algorithms. A variety of evaluation indicators
such as accuracy (ACC) and normalized mutual information
(NMI) are used to evaluate the clustering results.

In terms of parameters, due to the instability of the K-
means, FCM, and FS-PFC, a method of averaging them is
adopted for 50 runs. For the Rcut and the Ncut, the ex-
periment used the widely used self-tuning Gaussian method
to construct the affinity matrix (the value is self-tuning).
Take 0.9 for the parameter in FC-PFS algorithm. *e pa-
rameter values in INCM algorithm are the best values found
in literature [37]. *e parameter in SNCM algorithm is 0.9,
the value of parameter k is self-adjusted, and maxSteps is
1000.

In terms of experimental environment, all the experi-
mental environments in this article are Microsoft Windows

10 system, the processor is Intel(R) Core(TM) i5-7200U
CUP @ 250GHz 2.70GHz, memory 8.00GB, programming
software used is MATLAB R2016a.

4.1. SNCM Algorithm Descriptions. First, we illustrate the
process of the proposed algorithm SNCM clustering the
WBC data set; at this time, n� 683 and c� 2. *e initial
membership matrix, uncertainty matrix, and rejection
matrix are as follows:

u
(0)

�

0.413425 0.13977

0.030999 0.411379

· · ·

0.237233 0.029844

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

η(0)
�

0.193085 0.035479

0.269577 0.070174

· · ·

0.103972 0.127943

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

ξ(0)
�

0.076247 0.112293

0.165006 0.024957

· · ·

0.12897 0.127931

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(37)

*e distribution of data points according to these ini-
tializations is illustrated in Figure 1(a) in which the SNCM
algorithm is used to calculate the cluster centers using
equation (19):

v �

4.443498 4.4813

3.214702 3.165621

· · ·

1.649762 1.546717

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (38)

*en, we calculate the new membership matrix, un-
certainty matrix, and rejection matrix:

u
(1)

�

0 0.529743

0.544961 0

· · ·

0.534465 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

η(1)
�

0.461026 0.444704

0.420874 0.484144

· · ·

0.435548 0.436001

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

ξ(1)
�

0.074124 0.010408

0.013241 0.074029

· · ·

0.01189 0.073968

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(39)
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According to the abovementioned matrix, the calculated
value of u(t) − u(t− 1) + η(t) − η(t− 1) + ξ(t)

− ξ(t− 1) is greater
than ε, so the iterative step will continue. Figure 1(b) shows
the distribution of clusters after the first iteration.

*rough a similar process, we continue to calculate the
cluster center, membership degree, uncertainty degree, and
rejection matrix until the stopping condition is met. *e
final membership degree, hesitation degree, and rejection
degree matrix is as follows:

u
∗

�

0 0.500122

0.500122 0

· · ·

0.500122 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

η∗ �

0.463632 0.499062

0.499062 0.463632

· · ·

0.499062 0.463632

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

ξ∗ �

0.074125 0.000487

0.000487 0.074125

· · ·

0.000487 0.074125

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(40)

*e calculated final cluster centers are expressed as
follows, and the distribution of clusters and cluster centers is
shown in Figure 1(c):

v
∗

�

3.050885 7.164502

1.29646 6.779221

· · ·

1.112832 2.562771

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (41)

4.2. Verification of Sparsity. First of all, experiments are
carried out using artificial aggregation data sets and real
Wine data sets. *e aggregation data set is a data set

composed of 7 clusters of 788 2-dimensional data points.*e
Wine data set is a data set composed of 3 clusters of 178 12-
dimensional data points. *e parameter k satisfies k≤ c. *e
goal of the experiment is to show that the membership
matrix generated by the SNCM algorithm which is sparse
compared to the FCM algorithm. Due to the large number of
sample points, it is inconvenient to present the complete
membership matrix in the article, so we select some sample
points for display. Tables 1–4 are the membership matrix
results obtained by the SNCM algorithm and the FCM al-
gorithm on the two data sets. It can be seen from the ex-
perimental results that the SNCM algorithm effectively
reduces the complexity of the model.

Next, we perform experiments on the artificial data set.
Figures 2(a) and 2(b) show the distribution of the two data
sets, where data set (a) has four clusters and data set (b) has
three clusters. Clustering is performed using the proposed
algorithm, and the clustering results and the weighted
connection graph are shown in Figures 2(c)–2(f).
Figures 2(d) and 2(f ) use the final degree of membership as
the connection weight between the data point and the cluster
center. *e data point is connected to the cluster center. It
can be seen that the points within the cluster are closely
connected to the cluster center, and the points between the
clusters are separated from the cluster center. It is separated,
so the proposed algorithm can effectively cluster the
aforementioned data sets and can effectively divide clusters
with few categories.

4.3. Real Data Set. In addition, WBC, Vote, Dermatology,
Dnatest, Pima, Vowel, TOX-171, and Abalone are used for
experiments. *ese data sets are in the UCI Machine
Learning Library Data Set. *ey cover the characteristics of
various data sets such as high-dimensional and low-di-
mensional, multiple samples, and a few samples. *e in-
formation of the night real data sets is shown in Table 5.

*e experimental results on the real data set are shown in
Tables 6 and 7. *e folded data represent the best result,
followed by the italic. Table 6 shows the ACC comparison of
different algorithms under each data set. Table 7 shows the
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Figure 1: SNCM iteration diagram. (a)*e initialized clustering result graph. (b)*e clustering result graph after the first iteration. (c) *e
clustering result diagram of the final iteration.
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Table 1: *e membership results of the SNCM algorithm on the Wine data set.
0 0 0 0 0.4565 0 0 0 0 0
0.3568 0.3675 0.3043 0.2567 0.5435 0.2595 0.2805 0.2796 0.3714 0.3714
0.6432 0.6325 0.6957 0.7433 0 0.7405 0.7195 0.7204 0.6286 0.6286

Table 2: *e membership results of the FCM algorithm on the Wine data set.
0.766196 0.717242 0.990821 0.841821 0.001096 0.863302 0.977306 0.973795 0.699161 0.699258
0.182098 0.222463 0.006692 0.103933 0.995516 0.090537 0.015821 0.018236 0.237473 0.237411
0.051706 0.060295 0.002487 0.054246 0.003388 0.046161 0.006873 0.007968 0.063366 0.063331

Table 3: *e membership results of the SNCM algorithm on the aggregation data set.
0.0940 0.1643 0.1630 0.1641 0.1923 0.1954 0.1920 0.2095 0.2231 0.2245
0 0 0 0 0 0 0 0 0 0
0.8121 0.6713 0.6740 0.6718 0.6155 0.6092 0.6161 0.5810 0.5538 0.5510
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0.0940 0.1643 0.1630 0.1641 0.1923 0.1954 0.1920 0.2095 0.2231 0.2245

Table 4: *e membership results of the FCM algorithm on the aggregation data set.
0.035813 0.029956 0.029049 0.028797 0.024013 0.023168 0.024526 0.020445 0.019447 0.015821
0.198913 0.194136 0.18083 0.175156 0.162905 0.154372 0.153976 0.151758 0.162358 0.126154
0.055645 0.047094 0.044304 0.043175 0.036205 0.034272 0.035478 0.030937 0.030262 0.023555
0.56412 0.617044 0.639653 0.649182 0.694951 0.710882 0.704882 0.729989 0.725561 0.785736
0.043555 0.035687 0.03367 0.032841 0.02696 0.025497 0.026545 0.022652 0.021771 0.016962
0.032043 0.024869 0.02378 0.023332 0.018517 0.017567 0.018536 0.015159 0.014101 0.011123
0.069911 0.051214 0.048715 0.047517 0.036449 0.034242 0.036057 0.02906 0.0265 0.020648
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Figure 2: Continued.
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NMI comparison of different algorithms under each data set.
Experimental results on real data sets show that for different
real data sets, the clustering algorithm SNCM is superior to
other clustering algorithms in most cases. *erefore, this

also confirms the effectiveness of the clustering algorithm
SNCM.

Furthermore, taking the average ACC value of SNCM,
the average classification performance of the algorithm is
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Figure 2: Connection between clustering results and weights. (a), (b) Original graph of artificial data set. (c), (e) Clustering result graph. (d),
(f ) Weight connection diagram.

Table 5: Real data set information.

Data set WBC Vote Dermatology Dnatest Pima Vowel TOX-171 Abalone
No. of sample 683 435 366 1186 768 528 171 4177
No. of attribute 9 16 34 180 8 10 5748 7
No. of class 2 2 6 3 2 11 4 28

Table 6: ACC comparison of different algorithms under different data sets.

Algorithm WBC Vote Dermatology Dnatest Pima Vowel TOX-171 Abalone
K-means 0.9606 0.8178 0.7249 0.6830 0.6602 0.3683 0.4261 0.1436
FCM 0.9561 0.8138 0.5033 0.5735 0.6589 0.2387 0.3977 0.1214
Rcut 0.6437 0.6170 0.3138 0.5087 0.6494 0.0975 0.3163 0.1645
Ncut 0.6515 0.8248 0.6967 0.5126 0.6445 0.3197 0.2690 0.1386
PS-FCM 0.9561 0.8138 0.5027 0.5698 0.6589 0.2321 0.3977 0.1276
INCM 0.9065 0.8000 0.5314 0.6054 0.6510 0.2708 0.3918 0.1650
SNCM 0.9618 0.8226 0.7530 0.6984 0.6602 0.3743 0.4225 0.2172
*e bold values indicate the highest clustering accuracy (ACC), and the values in italics indicate the second highest.
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Figure 5: *e convergence curves of SNCM on (a) Abalone, (b) Dermatology, (c) Dnatest, (d) Pima, (e) TOX-171, (f ) Vote, (g) Vowel, and
(h) WBC.

Table 7: NMI comparison of different algorithms under different data sets.

Algorithm WBC Vote Dermatology Dnatest Pima Vowel TOX-171 Abalone
K-means 0.7436 0.3387 0.8231 0.2675 0.0267 0.4469 0.1418 0.1591
FCM 0.7223 0.3333 0.3203 0.1778 0.0317 0.2397 0.0722 0.1412
Rcut 0.0042 0.0045 0.0201 0.0018 0.0010 0.0203 0.0222 0.0054
Ncut 0.0024 0.3458 0.6556 0.0090 0.0043 0.3833 0.0181 0.1617
FC-PFS 0.7223 0.3333 0.3193 0.1682 0.0317 0.2063 0.0722 0.1456
INCM 0.1148 0.2918 0.0117 0.1787 0.0022 0.2341 0.0685 0.1596
SNCM 0.7494 0.3478 0.8079 0.2786 0.0267 0.4436 0.1355 0.1286
*e bold values indicate the highest NMI, and the values in italics indicate the second highest.
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Figure 3: *e average accuracy of the algorithm.
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Figure 4: *e average accuracy of the algorithm under different indices.
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61.38%, which is higher than INCM (54.02%), FCM
(53.30%), FC-PFS (53.23%), K-means (59.81%), Ncut
(50.72%)), and Rcut (41.39%).*e specific situation is shown
in Figure 3.

For the parameters, in Figure 4, different exponents are
given to verify the algorithm, and the average clustering
accuracy of the proposed algorithm under different expo-
nents is listed in the chart. We find that the clustering quality
of SNCM is relatively stable. As the index increases, the
accuracy of the SNCM algorithm also tends to increase.
*erefore, the parameter value in the experimental part is 0.9
to improve the clustering accuracy of the SNCM algorithm.

Finally, we test the convergence of SNCM on the data
sets. *e results are shown in Figure 5. It can be seen that
SNCM algorithm can absolutely converge with few inter-
action steps.

*e SNCM algorithm improves the generalization ability
of the algorithm by introducing regularization terms, so that
the membership matrix has sparseness, and the calculation
of membership considers the degree of sparseness k.
Compared with the comparison algorithm, in most cases,
the result of this algorithm is better than that of the com-
parison algorithm. *e experiment of the algorithm on
multiple data sets can also illustrate this point, and the
parameter k has great influence on results.

5. Conclusion

In this paper, we have proposed a novel method, called
neutrosophic clustering algorithm based on sparse regular
term constraint. Different from the previous neutrosophic
clustering algorithm, the algorithm proposed in this paper
can handle the case of ambiguity m� 1, not limited to the
condition of m> 1. Furthermore, the regular term is in-
troduced to make the algorithm sparse, thereby reducing the
computational complexity of the algorithm. Moreover, we
propose a method to simplify the process of determining
regularization parameters and improve the clustering effect.
In addition, a large number of experiments show that the
clustering results of the proposed algorithm on artificial data
sets and real data sets are mostly better than other clustering
algorithms. However, the parameter k in the algorithm has a
greater impact on the clustering effect. So, we will focus on
this in the future.
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