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Abstract. In this paper, the new concept of neutrosophic commutative N -ideal in KU -
algebras is introduced, and investigated some related properties. Also, a relations between a
neutrosophic N -ideal and a neutrosophic commutative N -ideal are discussed. Characterizations
of a neutrosophic commutative N -ideal are considered.
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1. Introduction
A (crisp) set A in a universe P can be defined in the form of its characteristic function
µA : P → {0, 1} yielding the value 1 for elements belonging to the set A and the value 0 for
elements excluded from the set A. So far, lost of the generalizations of the crisp set have been
conducted on the unit interval [0, 1], and they are consistent with the asymmetry observation.
In other words, the generalization of the crisp set to fuzzy sets relied on spreading positive
information that fit the crisp point {1} into the interval [0, 1]. Because no negative meaning
of information is suggested, we now feel a need to deal with negative information. To do so,
we also feel a need to supply a mathematical tool. To attain such an object, Jun et al. [2]
introduced a new function, called a negative-valued function, and constructed N -structures.
Zadeh [11] introduced the degree of membership/truth (t) in 1965 and defined the fuzzy set. As
a generalization of fuzzy sets, Atanassov [1] introduced the degree of nonmembership/falsehood
(f) in 1986 and defined the intuitionistic fuzzy set. Smarandache introduced the degree of
indeterminacy/neutrality (i) as an independent component in 1995 (published in 1999 ) [9] and
defined the neutrosophic set on three components:(t, i, f) = (truth, indeterminacy, falsehood).

For more details, refer to the following site: http:// fs.gallup.unm.edu/FlorentinSmarandache.htm
Jun et al. [2] introduced a new function which is called negative-valued function, and

constructed N -structures. Khan et al. [3] introduced the notion of Nn-structure and applied it
to a semigroup. Vasu and Ramesh Kumar [6] applied the notion of Nn-structure to KU -algebras.
They introduced the notions of a Nn-subalgebra and a (closed) Nn-ideal in a KU -algebra, and
investigated related properties. They also considered characterizations of a Nn-subalgebra and
a Nn-ideal, and discussed relations between a Nn-subalgebra and a Nn-ideal. They provided
conditions for a Nn-ideal to be a closed Nn-ideal. KU -algebras entered into mathematics in 2009
through the work of Prabpayak and Leerawat [7, 8], and have been applied to many branches of
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mathematics, such as group theory, functional analysis, probability theory and topology. Such
algebras generalize Boolean rings as well as Boolean D-posets (= MV -algebras).

The background of this study is displayed in the second section. In the third section, we
introduce the notion of a neutrosophic commutative N -ideal in KU -algebras, and investigate
several properties. We consider relations between a Nn-ideal and a neutrosophic commutative
N -ideal. We discuss characterizations of a neutrosophic commutative N -ideal.

2. Preliminaries
We let K(τ) be the class of all algebras with type τ = (2, 0). A KU -algebra [7, 8] refers to a
system P := (P, ∗, 0) ∈ K(τ) satisfies
(KU1) (l11 ∗ l22) ∗ ((l22 ∗ l33) ∗ (l11 ∗ l33)) = 0,
(KU2) l11 ∗ 0 = 0,
(KU3) 0 ∗ l11 = l11,
(KU4) l11 ∗ l22 = 0 and l22 ∗ l11 = 0 implies l11 = l22,
(KU5) l11 ∗ l11 = 0, for all l11, l22, l33 ∈ P .
On a KU -algebra (P, ∗, 0) we can define a binary relation ≤ by putting l11 ≤ l22 ⇔ l22 ∗ l11 = 0,
∀ l11, l22 ∈ P .

In a KU -algebra P , the following hold:
(KU1’) (l22 ∗ l33) ∗ (l11 ∗ l33) ≤ (l11 ∗ l22),
(KU2’) 0 ≤ l11,
(KU3’) l11 ≤ l22, l22 ≤ l11 implies l11 = l22,
(KU4’) l22 ∗ l11 ≤ l11.

Theorem 2.1 [4] In a KU -algebra P , the following axioms are satisfied: For all l11, l22, l33 ∈ P ,
(i) l11 ≤ l22 imply l22 ∗ l33 ≤ l11 ∗ l33,
(ii) l11 ∗ (l22 ∗ l33) = l22 ∗ (l11 ∗ l33), for all l11, l22, l33 ∈ P ,
(iii) ((l22 ∗ l11) ∗ l11) ≤ l22,
(iv) (((l22 ∗ l11) ∗ l11) ∗ l11) = (l22 ∗ l11).

A subset I of a KU -algebra P is called an ideal [7, 8] of P if it satisfies the following:
(I1) 0 ∈ I,
(I2) (∀ l11, l22 ∈ P ) (l22 ∗ l11 ∈ I, l22 ∈ I ⇒ l11 ∈ I).

A KU -algebra P is said to be commutative [5] if it satisfies the following equality:

(∀ l11, l22 ∈ P )((l22 ∗ l11) ∗ l11 = (l11 ∗ l22) ∗ l22). (1)

A subset I of a KU -algebra P is called a commutative ideal [5] of P if it satisfies (I1) and

(∀ l11, l22, l33 ∈ P )(l22 ∗ (l33 ∗ l11) ∈ I, l33 ∈ I ⇒ ((l11 ∗ l22) ∗ l22) ∗ l11 ∈ I). (2)

Lemma 2.1 An ideal I is commutative iff the following assertion is valid.

(∀ l11, l22 ∈ P )(l22 ∗ l11 ∈ I ⇒ ((l11 ∗ l22) ∗ l22) ∗ l11 ∈ I). (3)
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For any family {λj | j ∈ ∆} of real numbers, we define

∨
{λj | j ∈ ∆} :=

{
max {λj | j ∈ ∆} if ∆ is finite
sup {λj | j ∈ ∆} otherwise∧

{λj | j ∈ ∆} :=

{
min {λj | j ∈ ∆} if ∆ is finite
inf {λj | j ∈ ∆} otherwise

We mean by F(P, [−1, 0]) the collection of functions from a set P to [−1, 0]. We say that an
element of F(P, [−1, 0]) is a negative-valued function from P to [−1, 0] (briefly, N -function on
P ). An N -structure refers to an ordered pair (P, f) of P and an N -function f on P ( [2]). In
what follows, we let P denote the nonempty universe of discourse unless otherwise specified.

A neutrosophic N (briefly, Nn)-structure over P ([3]) is defined to be the structure:

PN :=
P

(TN , IN ,FN )
=

{
l11

(TN (l11), IN (l11),FN (l11))
| l11 ∈ P

}
(4)

where TN , IN and FN are N -functions called the negative truth (resp. indeterminacy and falsity)
membership function on P .

We note that every Nn-structure PN over P satisfies the condition:

(∀ l11 ∈ P ) (−3 ≤ TN (l11) + IN (l11) + FN (l11) ≤ 0) .

3. Neutrosophic Commutative N -ideals
In what follows, let P denote a KU -algebra unless otherwise specified.

Definition 3.1 A Nn-structure PN over P is called a Nn-ideal [6] of P if the following assertion
is valid.

(∀ l11, l22 ∈ P )

 TN (0) ≤ TN (l11) ≤
∨
{TN (l22 ∗ l11), TN (l22)}

IN (0) ≥ IN (l11) ≥
∧
{IN (l22 ∗ l11), IN (l22)}

FN (0) ≤ FN (l11) ≤
∨
{FN (l22 ∗ l11), FN (l22)}

 . (5)

Definition 3.2 A Nn-structure PN over P is called a neutrosophic commutative N (briefly,
Nnc)-ideal of P if the following assertions are valid.

(∀l11 ∈ P ) (TN (0) ≤ TN (l11), IN (0) ≥ IN (l11),FN (0) ≤ FN (l11)) (6)

(∀ l11, l22, l33 ∈ P )

 TN (((l11 ∗ l22) ∗ l22) ∗ l11) ≤
∨
{TN (l22 ∗ (l33 ∗ l11)),TN (l33)}

IN (((l11 ∗ l22) ∗ l22) ∗ l11) ≥
∧
{IN (l22 ∗ (l33 ∗ l11)), IN (l33)}

FN (((l11 ∗ l22) ∗ l22) ∗ l11) ≤
∨
{FN (l22 ∗ (l33 ∗ l11)),FN (l33)}

 (7)

Example 3.1 Consider a KU -algebra P = {0, a5, b5, c5} with the following Cayley table.
∗ 0 a5 b5 c5
0 0 a5 b5 c5
a5 0 0 a5 c5
b5 0 0 0 c5
c5 0 a5 b5 0

The Nn-structure PN =
{

0
(−0.7,−0.2,−0.6) ,

a5
(−0.5,−0.3,−0.4) ,

b5
(−0.5,−0.3,−0.4) ,

c5
(−0.3,−0.8,−0.5)

}
be a

Nn-structure over P . Then PN is a Nnc-ideal of P .
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Theorem 3.1 Every Nnc-ideal is a Nn-ideal. But not conversely.

Proof. Let PN be a Nnc-ideal of P. For every l11, l33 ∈ P, we have

TN (l11) = TN (((l11 ∗ 0) ∗ 0) ∗ l11) ≤
∨
{TN (0 ∗ (l33 ∗ l11)),TN (l33)} =

∨
{TN (l33 ∗ l11),TN (l33)} ,

IN (l11) = IN (((l11 ∗ 0) ∗ 0) ∗ l11) ≥
∧
{IN (0 ∗ (l33 ∗ l11)), IN (l33)} =

∧
{IN (l33 ∗ l11), IN (l33)}

FN (l11) = FN (((l11 ∗ 0) ∗ 0) ∗ l11) ≤
∨

{fN (0 ∗ (l33 ∗ l11)),FN (l33)} =
∨
{FN (l33 ∗ l11),FN (l33)}

by putting l22 = 0 in (7) and using (KU3). Therefore, PN is a Nnc-ideal of P.

Example 3.2 Consider a KU -algebra P = {0, a5, b5, c5, d5} with the following Cayley table.
∗ 0 a5 b5 c5 d5
0 0 a5 b5 c5 d5
a5 0 0 a5 a5 b5
b5 0 0 0 a5 a5
c5 0 0 a5 0 b5
d5 0 0 0 0 0

The Nn-structure
PN =

{
0

(−0.7,−0.2,−0.6) ,
a5

(−0.5,−0.3,−0.4) ,
b5

(−0.5,−0.3,−0.4) ,
c5

(−0.3,−0.8,−0.5) ,
d5

(−0.3,−0.8,−0.5)

}
. Then

PN is a Nn-ideal of P but not a Nnc-ideal of P , since FN (((a5 ∗ 0) ∗ 0) ∗ a5) = −0.4 6≤
−0.5

∨
{FN (0 ∗ (c5 ∗ a5)), FN (c5)}.

Theorem 3.2 Let PN be a Nn-ideal of P . Then, PN is a Nnc-ideal of P iff the following
assertion is valid.

(∀ l11, l22 ∈ P )

 TN (((l11 ∗ l22) ∗ l22) ∗ l11) ≤ TN (l22 ∗ l11)
IN (((l11 ∗ l22) ∗ l22) ∗ l11) ≥ IN (l22 ∗ l11)
FN (((l11 ∗ l22) ∗ l22) ∗ l11) ≤ FN (l22 ∗ l11)

 (8)

Proof. Assume that PN is a Nnc-ideal of P . The assertion (8) is by taking n = 0 in (7) and
using (KU3) and (6).

Conversely, suppose that a Nn-ideal PN of P satisfies the condition (8). Then,

(∀ l11, l22 ∈ P )

 TN (l22 ∗ l11) ≤
∨
{TN (l33 ∗ (l22 ∗ l11)),TN (l33)}

IN (l22 ∗ l11) ≥
∧
{IN (l33 ∗ (l22 ∗ l11)), IN (l33)}

FN (l22 ∗ l11) ≤
∨
{FN (l33 ∗ (l22 ∗ l11)),FN (l33)}

 (9)

It follows that the condition (7) is induced by (8) and (9). Therefore, PN is a Nnc-ideal of P.

Lemma 3.1 [6] For any Nn-ideal PN of P, we have

(∀ l11, l22, l33 ∈ P )

l22 ∗ l11 � l33 ⇒

 TN (l11) ≤
∨
{TN (l22),TN (l33)}

IN (l11) ≥
∧
{IN (l22), IN (l33)}

FN (l11) ≤
∨
{FN (l22),FN (l33)}

 (10)

Theorem 3.3 In a commutative KU -algebra, every Nn-ideal is a Nnc-ideal.

Proof. Let PN be a Nn-ideal of a commutative KU -algebra P. For any l11, l22, l33 ∈ P We have

(((l11 ∗ l22) ∗ l22) ∗ l11) ∗ ((l22 ∗ (l33 ∗ l11)) ∗ l33)
= (l22 ∗ (l33 ∗ l11)) ∗ ((((l11 ∗ l22) ∗ l22) ∗ l11) ∗ l33)
= (l22 ∗ (l33 ∗ l11)) ∗ ((((l22 ∗ l11) ∗ l11) ∗ l11) ∗ l33)
= (l33 ∗ (l22 ∗ l11)) ∗ ((((l22 ∗ l11) ∗ l11) ∗ p) ∗ l33)
≤ l33 ∗ ((l11 ∗ l11) ∗ l33) = 0
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that is, (((l11 ∗ l22) ∗ l22) ∗ l11) ∗ (l22 ∗ (l33 ∗ l11)) � l33. It follows from Lemma 3.1 that

TN (((l11 ∗ l22) ∗ l22) ∗ l11) ≤
∨
{TN (l22 ∗ (l33 ∗ l11)),TN (l33)}

IN (((l11 ∗ l22) ∗ l22) ∗ l11) ≥
∧
{IN (l22 ∗ (l33 ∗ l11)), IN (l33)}

FN (((l11 ∗ l22) ∗ l22) ∗ l11) ≤
∨
{FN (l22 ∗ (l33 ∗ l11)),FN (l33)}

Therefore, PN is a Nnc-ideal of P.
Let PN be a Nn-structure over P and let λ, µ, δ ∈ [−1, 0] be such that −3 ≤ λ + µ + δ ≤ 0.

Consider the following sets.

Tλ
N := {l11 ∈ P | TN (l11) ≤ λ} ,

IµN := {l11 ∈ P | IN (l11) ≥ µ} ,
Fδ
N := {l11 ∈ P | FN (l11) ≤ δ} .

The set
PN (λ, µ, δ) := {l11 ∈ P | TN (l11) ≤ λ, IN (l11) ≥ µ,FN (l11) ≤ δ}

is called the (λ, µ, δ)-level set of PN . It is clear that

PN (λ, µ, δ) = Tλ
N ∩ IµN ∩ Fδ

N .

Theorem 3.4 If PN is a Nn-ideal of P, then Tλ
N , IµN and Fδ

N are commutative ideals of P for
all λ, µ, δ ∈ [−1, 0] with −3 ≤ λ+ µ+ δ ≤ 0 whenever they are nonempty.

We call Tλ
N , IµN and Fδ

N level commutative ideals of PN .

Proof. Assume that Tλ
N , IµN and Fδ

N are nonempty for all λ, µ, δ ∈ [−1, 0] with −3 ≤
λ + µ + δ ≤ 0. Then, l11 ∈ Tλ

N , l22 ∈ IµN and l33 ∈ Fδ
N for some l11, l22, l33 ∈ P. Thus,

TN (0) ≤ TN (l11) ≤ λ, IN (0) ≥ IN (l22) ≥ µ and FN (0) ≤ FN (l33) ≤ δ, that is, 0 ∈ Tλ
N ∩ IµN ∩Fδ

N .
Let l22 ∗ (l33 ∗ l11) ∈ Tλ

N and l33 ∈ Tλ
N . Then, TN (l22 ∗ (l33 ∗ l11)) ≤ λ and TN (l33) ≤ λ, which

imply that

TN (((l11 ∗ l22) ∗ l22) ∗ l11) ≤
∨

{TN (l22 ∗ (l33 ∗ l11)),TN (l33)} ≤ λ,

that is, ((l11 ∗ l22) ∗ l22) ∗ l11 ∈ Tλ
N . If b5 ∗ (c5 ∗ a5) ∈ IµN and c5 ∈ IµN , then IN (b5 ∗ (c5 ∗ a5)) ≥ µ

and IN (c5) ≥ µ. Thus

IN (((a5 ∗ b5) ∗ b5) ∗ a5) ≥
∧

{IN (b5 ∗ (c5 ∗ a5)), IN (c5)} ≥ µ,

and so ((a5 ∗ b5) ∗ b5) ∗ a5 ∈ IµN . Finally, suppose that v ∗ (w ∗ u) ∈ Fδ
N and w ∈ Fδ

N . Then,
FN (v ∗ (w ∗ u)) ≤ δ and FN (w) ≤ δ. Thus,

FN (((u ∗ v) ∗ v) ∗ u) ≤
∨

{FN (v ∗ (w ∗ u)),FN (w)} ≤ δ,

that is, ((u ∗ v) ∗ v) ∗ u ∈ Fδ
N . Therefore, Tλ

N , IµN and Fδ
N are commutative ideals of P.

Corollary 3.1 Let PN be a Nn-structure over P and let λ, µ, δ ∈ [−1, 0] be ∈ −3 ≤ λ+µ+δ ≤ 0.
If PN is a Nnc-ideal of P , then the nonempty (λ, µ, δ)-level set of PN is a commutative ideal of
P .

Lemma 3.2 [6] Let PN be a Nn-structure over P and assume that Tλ
N , IµN and Fδ

N are ideals
of P ∀ λ, µ, δ ∈ [−1, 0] with −3 ≤ λ+ µ+ δ ≤ 0. Then PN is a Nn-ideal of P .
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Theorem 3.5 Let PN be a Nn-structure over P and assume that Tλ
N , IµN and Fδ

N are
commutative ideals of P ∀ λ, µ, δ ∈ [−1, 0] with −3 ≤ λ + µ + δ ≤ 0. Then, PN is a Nnc-
ideal of P .

Proof. If Tλ
N , IµN and Fδ

N are commutative ideals of P, then they are ideals of P. Hence, PN is a
Nn-ideal of P by Lemma 3.2. Let l11, l22 ∈ P and λ, µ, δ ∈ [−1, 0] with −3 ≤ λ+µ+ δ ≤ 0 such
that TN (l22∗ l11) = λ, IN (l22 ∗ l11) = µ and FN (l22 ∗ l11) = δ. Then, l22 ∗ l11 ∈ Tλ

N ∩IµN ∩Fδ
N . Since

Tλ
N ∩ IµN ∩Fδ

N is a commutative ideal of P, it follows from Lemma 2.1 that ((l11 ∗ l22)∗ l22)∗ l11 ∈
Tλ
N ∩ IµN ∩ Fδ

N Hence

TN (((l11 ∗ l22) ∗ l22) ∗ l11) ≤ λ = TN (l22 ∗ l11),
IN (((l11 ∗ l22) ∗ l22) ∗ l11) ≥ µ = IN (l22 ∗ l11),
FN (((l11 ∗ l22) ∗ l22) ∗ l11) ≤ δ = FN (l22 ∗ l11).

Therefore, PN is a Nnc-ideal of P by Theorem 3.2.

Theorem 3.6 Let f : P → P be an injective mapping. Given a Nn-structure PN over P the
following are equivalent.

(i) PN is a Nnc-ideal of P , satisfying the following condition.

(∀l11 ∈ P )

 TN (f(l11)) = TN (l11)
IN (f(l11)) = IN (l11)
FN (f(l11)) = FN (l11)

 . (11)

(ii) Tλ
N , IµN and Fδ

N are commutative ideals of PN , satisfying the following condition.

f
(
Tλ
N

)
= Tλ

N , f
(
IµN

)
= IµN , f

(
Fδ
N

)
= Fδ

N . (12)

Proof. Let PN be a Nnc-ideal of P , satisfying the condition (11). Then, Tλ
N IµN and Fδ

N are
commutative ideals of PN by Theorem 3.4. Let λ ∈ Im (TN ) , µ ∈ Im (IN ) , δ ∈ Im (FN ) and
l11 ∈ Tλ

N ∩IµN ∩Fδ
N . Then TN (f(l11)) = TN (l11) ≤ λ, IN (f(l11)) = IN (l11) ≥ µ and FN (f(l11)) =

FN (l11) ≤ δ. Thus, f(l11) ∈ Tλ
N ∩ IµN ∩ Fδ

N , which shows that f
(
Tλ
N

)
⊆ Tλ

N , f
(
IµN

)
⊆ IµN

and f
(
Fδ
N

)
⊆ Fδ

N . Let l22 ∈ P be such that f(l22) = x. Then, TN (l22) = TN (f(l22)) =
TN (l11) ≤ λ, IN (l22) = IN (f(l22)) = IN (l11) ≥ µ and FN (l22) = FN (f(l22)) = FN (l11) ≤ δ,
which imply that l22 ∈ Tλ

N ∩ IµN ∩ Fδ
N . Thus, l11 = f(l22) ∈ f

(
Tλ
N

)
∩ f

(
IµN

)
∩ f

(
Fδ
N

)
, and so

Tλ
N ⊆ f

(
Tλ
N

)
, IµN ⊆ f

(
IµN

)
and Fδ

N ⊆ f
(
Fδ
N

)
. Therefore (12) is valid.

Conversely, assume that Tλ
N , IµN and Fδ

N are commutative ideals of PN , satisfying the condition
(12). Then, PN is a Nnc-ideal of P by Theorem 3.5. Let l11, l22, l33 ∈ P be such that
TN (l11) = λ, IN (l22) = µ and FN (l33) = δ. Note that

TN (l11) = λ ⇐⇒ l11 ∈ Tλ
N and l11 /∈ Tλ̃

N for all λ > λ̃,

IN (l22) = µ ⇐⇒ l22 ∈ IµN and l22 /∈ Iµ̃N for all µ < µ̃,

FN (l33) = δ ⇐⇒ l33 ∈ Fδ
N and l33 /∈ Fδ̃

N for all δ > δ̃.

It follows from (12) that f(l11) ∈ Tλ
N , f(l22) ∈ IµN and f(l33) ∈ Fδ

N . Hence, TN (f(l11)) ≤
λ, IN (f(l22)) ≥ µ and FN (f(l33)) ≤ δ. Let λ̃ = TN (f(l11)), µ̃ = IN (f(l22)) and δ̃ = FN (f(l33)).

If λ > λ̃, then f(l11) ∈ Tl
N = f

(
Tλ
N

)
, and thus l11 ∈ Tλ̃

N since f is one to one. This is a
contradiction. Hence, TN (f(l11)) = λ = TN (l11). If µ < µ̃, then f(l22) ∈ Iµ̃N = f

(
Iµ̃N

)
which

implies from the injectivity of f that l22 ∈ Iµ̃N , a contradiction. Hence, IN (f(l11)) = µ = IN (l11).
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If δ > τ, then f(l33) ∈ Fδ̃
N = f

(
Fδ̃
N

)
. Since f is one to one, we have l33 ∈ Fδ̃

N which is a
contradiction. Thus, FN (f(l11)) = δ = FN (l11). This completes the proof.

For any elements ζt, ζi, ζf ∈ P, we consider sets:

P ζt
N := {l11 ∈ P | TN (l11) ≤ TN (ζt)} ,

P ζi
N := {l11 ∈ P | IN (l11) ≥ IN (ζi)} ,

P
ζf
N := {l11 ∈ P | FN (l11) ≤ FN (ζf )} .

Obviously, ζt ∈ P ζt
N , ζi ∈ P ζi

N and ζf ∈ P
ζf
N .

Lemma 3.3 [6] Let ζt, ζi and ζf be any elements of P. If PN is a Nn-ideal of P, then P ζt
N P ζi

N

and P
ζf
N are ideals of P .

Theorem 3.7 Let ζt, ζi and ζf be any elements of P. If PN is a Nnc-ideal of P then P ζt
N , P ζi

N

and P
ζf
N are commutative ideals of P .

Proof. If PN is a Nnc-ideal of P , then it is a Nn-ideal of P and so P ζt
N , P ζi

N and P
ζf
N are

ideals of P by Lemma 3.3. Let l22 ∗ l11 ∈ P ζt
N ∩ P ζi

N ∩ P
ζf
N for any l11, l22 ∈ P. Then,

TN (l22 ∗ l11) ≤ TN (ζt) , IN (l22 ∗ l11) ≥ IN (ζi) and FN (l22 ∗ l11) ≤ FN (ζf ) . It follows from
Theorem 3.2 that

TN (((l11 ∗ l22) ∗ l22) ∗ l11) ≤ TN (l22 ∗ l11) ≤ TN (ζt) ,
IN (((l11 ∗ l22) ∗ l22) ∗ l11) ≥ IN (l22 ∗ l11) ≥ IN (ζi) ,
FN (((l11 ∗ l22) ∗ l22) ∗ l11) ≤ FN (l22 ∗ l11) ≤ FN (ζf ) .

Hence, ((l11 ∗ l22) ∗ l22) ∗ l11 ∈ P ζt
N ∩ P ζi

N ∩ P
ζf
N , and therefore P ζt

N , P ζi
N and P

ζf
N are commutative

ideals of P by Lemma 2.1.

Theorem 3.8 Any commutative ideal of P can be realized as level commutative ideals of some
Nnc-ideal of P .

Proof. Let A be a commutative ideal of P and let PN be a Nn-structure over P in which

TN : P → [−1, 0], p 7→
{

λ if l11 ∈ A,
0 otherwise,

IN : P → [−1, 0], p 7→
{

µ if l11 ∈ A,
−1 otherwise,

FN : P → [−1, 0], p 7→
{

δ if l11 ∈ A,
0 otherwise

where λ, δ ∈ [−1, 0) and µ ∈ (−1, 0]. Division into the following cases will verify that PN is
a Nnc-ideal of P. If l22 ∗ (l33 ∗ l11) ∈ A and l33 ∈ A, then ((l11 ∗ l22) ∗ l22) ∗ l11 ∈ A. Thus,

TN (l22 ∗ (l33 ∗ l11)) = TN (l33) = TN (((l11 ∗ l22) ∗ l22) ∗ l11) = λ,
IN (l22 ∗ (l33 ∗ l11)) = IN (l33) = IN (((l11 ∗ l22) ∗ l22) ∗ l11) = µ,
FN (l22 ∗ (l33 ∗ l11)) = FN (l33) = FN (((l11 ∗ l22) ∗ l22) ∗ l11) = δ,

and so (7) is clearly verified. If l22 ∗ (l33 ∗ l11) /∈ A and l33 /∈ A, then TN (l22 ∗ (l33 ∗ l11)) =
TN (l33) = 0, IN (l22 ∗ (l33 ∗ l11)) = IN (l33) = −1 and FN (l22 ∗ (l33 ∗ l11)) = FN (l33) = 0. Hence

TN (((l11 ∗ l22) ∗ l22) ∗ l11) ≤
∨
{TN (l22 ∗ (l33 ∗ l11)),TN (l33)} ,

IN (((l11 ∗ l22) ∗ l22) ∗ l11) ≥
∧
{IN (l22 ∗ (l33 ∗ l11)), IN (l33)} ,

FN (((l11 ∗ l22) ∗ l22) ∗ l11) ≤
∨
{FN (l22 ∗ (l33 ∗ l11)),FN (l33)} .
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If l22∗(l33∗l11) ∈ A and l33 /∈ A, then TN (l22∗(l33∗l11)) = λ,TN (l33) = 0, IN (l22∗(l33∗l11)) =
µ, IN (l33) = −1 FN (l22 ∗ (l33 ∗ l11)) = δ and FN (l33) = 0. Therefore,

TN (((l11 ∗ l22) ∗ l22) ∗ l11) ≤
∨
{TN (l22 ∗ (l33 ∗ l11)),TN (l33)} ,

IN (((l11 ∗ l22) ∗ l22) ∗ l11) ≥
∧
{IN (l22 ∗ (l33 ∗ l11)), IN (l33)} ,

FN (((l11 ∗ l22) ∗ l22) ∗ l11) ≤
∨
{FN (l22 ∗ (l33 ∗ l11)),FN (l33)} .2

Similarly, if l22 ∗ (l33 ∗ l11) /∈ A and l33 ∈ A, then (7 ) is verified. Therefore, PN is a Nnc-ideal
of P. Obviously, Tλ

N = A, IµN = A and Fδ
N = A.
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