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Abstract: Viable collection is one of the imperative instruments of decision-making hypothesis.
Collection operators are not simply the operators that normalize the value; theyrepresent
progressively broad values that can underline the entire information. Geometric weighted
operators weight the values only, andthe ordered weighted geometric operators weight the
ordering position only.Both of these operators tend to the value that relates to the biggest weight
segment. Hybrid collection operators beat these impediments of weighted total and request total
operators. Hybrid collection operators weight the incentive as well as the requesting position.
Neutrosophic cubic sets (NCs) are a classification of interim neutrosophic set and neutrosophic
set. This distinguishing of neutrosophic cubic set empowers the decision-maker to manage
ambiguous and conflicting data even more productively. In this paper, we characterized
neutrosophic cubic hybrid geometric accumulation operator (NCHG) and neutrosophic cubic
Einstein hybrid geometric collection operator (NCEHG). At that point, we outfitted these
operators upon an everyday life issue which empoweredus to organize the key objective to
develop the industry.

Keywords:neutrosophic cubic set, neutrosophic cubic hybrid geometric operator; neutrosophic
cubic Einstein hybrid geometric operator; multiattributedecision-making (MADM)

1. Introduction

Life is loaded with indeterminacy and vagueness, which makes it hard to get adequate and
exact information. This uncertain and obscure information can be tended to by fuzzy set [1],
interim-valued fuzzy set(IVFS) [2,3], intuitionistic fuzzy set(IFS) [4], interim-valued intuitionistic
fuzzy set(IVIFS) [5], cubic sets [6], neutrosophic set(Ns) [7], single-valued neutrosophic set(SVNs)
[8], interim neutrosophic set(INs) [9], and neutrosophic cubic set[10]. Smarandache first
investigated the hypothesis of neutrosophic sets [7].

Not long after thisinvestigation, it became a vital tool to manage obscure and conflicting
information. The neutrosophic set comprises of three segments: truth enrollment, indeterminant
participation, and deception enrollment. These segments can, likewise,be alluded to as participation,
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aversion, andnon-membership, and these segments range from ]0~,1*[. For science and designing
issues, Wang et al. [8] proposed the idea of a single-valued neutrosophic set, which is a class of
neutrosophic set, where the parts of single-valued neutrosophic set are in [0,1]. Wang et al.
stretched it outto the interim neutrosophic set [9]. Jun et al. [10] consolidated both of these
structures to frame the neutrosophic cubic set, which is the speculation of single-valued
neutrosophic set and interim neutrosophic set. These structures drew scientistsinto apply it to
various fields of sciences, building day-by-day life issues.

Decision-making is a basic instrument of everyday life issues. Analysts connected distinctive
collection operators to neutrosophic sets and its augmentations. Zhan et. al. [11] took a shot at
multicriteria decision-making on neutrosophic cubic sets. Banerjee et al. [12] utilized GRA(Grey
Rational Analysis) for multicriteria decision-making on neutrosophic cubic sets. Lu and Ye [13]
characterized cosine measure inneutrosophic cubic sets. Pramanik et al. [14] utilized a likeness
measure to neutrosophic cubic sets. Shi and Ye [15] characterized Dombi total operators on
neutrosophic cubic sets. Baolin et al. [16] connected Einstein accumulations to neutrosophic sets.
Majid et al. [17] proposed neutrosophic cubic geometric and Einstein geometric collection
operators. Different applied aspects of different types of fuzzy sets can be seen in [18-27].

A compelling accumulation is one of the imperative instruments of decision-making.
Collection operators are not simply the operators that normalize the value, theyrepresent
progressively broad values that can underline the entire data. The geometric weighted operator
weights the values just where the requested weighted geometric collection operators weight the
requesting position of values. In any case, the issue emerges when the load segments of weight
vectors are so that one segment is a lot bigger than the other in parts of the weight vector.
Motivated by such a circumstance, the thought of neutrosophic cubic crossbreed geometric and
neutrosophic cubic Einstein hybrid geometric total operators are proposed. That is the reason we
present the idea of neutrosophic cubic hybrid geometric and neutrosophic cubic Einstein hybrid
geometric (NCEHG) collection operators. More often than not, the decision-making strategies are
produced to pick one fitting option among the given. Be that as it may, frequently, in certain
circumstances,we instead organize the option to pick a suitable one. Roused by such a
circumstance, a technique is being created toprioritize the options. A numerical model is outfitted
upon these operators to organize the vital objective to develop the industry.

2. Preliminaries
This section consists of some predefined definitions and results. We recommend the reader to

see [1-3,6-10,16].

Definition 1. [1] Mapping w :U —>[0,1] is called fuzzy set, y(u) is called membership function.
Simply denoted by .

Definition 2. [2,3] Mapping ¥.U > D[O,l], D[O,l] has interval value of [0,1], and is called
interval-valued fuzzy set(IVF). For all uelU
P(u)= {[l,//L (u),!//U (u)] & (u),l//U (u) e[0,1]and y* (u) <yY (u)} is membership degree of
u in V. Simply denoted by ¥ = [‘I’L,‘PU].

Definition 3. [6] A structure C = {(u,‘i’(u),\{’(u)) |ue U} is cubic set in U, in which ‘NP(M) is
IVE in Uie. ¥ Z[‘PL,‘PU], and W is fuzzy set in U. Simply denoted by CZ(‘P,‘P). cv

denotes collection of cubic sets in U .
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Definition 4. [7] A structure N = {(T v, 1, (u), F, (u)) lueU } is neutrosophic set(Ns), where

{TN (u),1,(u),F,(u)e ]()7, I [} and T, (u),I, (u),F,(u) are truthindeterminacy, andfalsity

function.

Definition 5. [8] A structure N = {(TN (w),1,(u),F, (u)) |ue U} is single value neutrosophic
set(SVNs), where {T v(), 1, (u), FN(u)E[O,l]} are called truth, indeterminacy, and falsity functions

respectively. Simply denoted by N = (T voly,Fy ) .

Definition 6. [9] An interval neutrosophic set (INs) in U is a  structure

N = {(fN (Z/l),jN (u),FN (u)) |ue U} where {TN (u),iN (u),FN (u)e D[O,l]} respectively  called
truth, indeterminacy, and falsity function in U . Simply denoted by N = (f N,j N,FN ) For convenience,

we denote N:(fN,jN,FN) by N:(fN=[T,§,T§J,iz\/=[lf],lg],ﬁ,\,=[FA§,FA[,/}).

Definition 7. [10] A structure N= {(u, (), T (), iy @), Ty (), I, (), Fy ) [u €U} i
neutrosophic cubic setin U, in which (T, =[1y,1{ | Iv=[ 1.1y |.Fy =[F&,F]) s an interval
neutrosophic  set and (T, 1, Fy) is neutrosophic set in U . Simply denoted by
N =(Ty,In, Fy, Ty, Iy, Fy ), [0,01< Ty + 1w+ F, <[3,3], and O<T, +1,+F, <3 . N

denotes the collection of neutrosophic cubic sets in U . Simply denoted by N = (f Vo 1 N, F, voly, Ly, Fy )

Definition 8. [16] The t-operators are basically Union and Intersection operators in the theory of fuzzy sets

which are denoted by t-conorm (F*) and t-norm (F), respectively. The role of t-operators is very

important in fuzzy theory and its applications.
Definition 9. [16] T : [0, 1] X [0, 1] - [O, 1] is called t-conorm if it satisfies the following axioms.

Axiom 1 T (l,u) =1
Axiom2 T (u,v) =T (v,u) for all a and b.
Axiom3 T~ (u,F* (v, W)) =T (F* (u,v) , w) for all a,b, and c.

F*(O,u)ZO

and

Axiom4If u<u and V<V, then F*(u,v)ﬁl“*(u',v')

Definition 10. [16] I': [0,1] X [0, 1] - [0, 1] is called t-norm if it satisfies the following axioms.
Axiom 1 F(l’u) Y F(O’u) =0
Axiom 2 F(u,v) = F(v,u) for all a and b.

Axiom 3 F(u,F(V,W))=F(F(u,V),W) for all a,b, and c.

Axiom 4 If u<u and vSv’, then F(u,v)SF(u',v')
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The t-conorms and t-norms families have a vast range, which correspond to unions and
intersections, among these, Einstein sum and Einstein product are good choices since they give

smooth approximations, like algebraic sum and algebraic product, respectively. Einstein sums @,

and Einstein products &, are respectively the examples of t-conorm and t-norm:

Fz(u,v): u-+v ,
I+uv
uv
T = )
s S (=)

fA:[TAL’TAU],jA:[]j,IZ],FA:[FAL’FAU], and B:( B’jB’FB’TB’IBJFB)’ where
fB =[TBL,TBU],}B=[I§,];/],FB =[FBL,FBU] is defined as

|7+ Ty -1, 1) + T, -T]T |,
(L1 —150y 1 + 1) 101 ],
|FiFy LR,
11,11, F,+F,—F,F,

A®B=

Definition 12. [17] The product between two neutrosophic cubic sets, A= (f A,i A,ﬁ 1 F A),
where fA :I:TAL,TAU],iA Z[]j,IZ],ﬁA Z[FAL,FAU], and BZ(fB,]B,FB,TB,IB,FB), where
fB =[TBL,TBU],L; =[lé,]§/],ﬁ3 =[FBL,FBU] is defined as

[TAL TBL , TAU TBU :‘ ,
|11 |,
| Fi+Fy —F(F;,F] +F/ -F/F/],
T,+T,—-TT,1,+1,—11,,F,F,

AR®B=

Definition 13. [17] The scalar multiplication on a neutrosophic cubic set A= (TA,EA,F'A,TA,IA,FA),

where fA =|:TAL,TAU]jA =[Ij,]5],ﬁ;1 =[FAL,FAU], and a scalar k is defined.

[1-(-TH 1-(1-T])" |,

[1-a-1)h1-(-1)" ],
(27 (k1Y)

(TA)k ’(IA)k >1_(1_FA)k

The exponential multiplication is followed by the following result.

kA =
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Theorem 1. [17] Let A=(T,,14,F,T,,1,,F,), where T,=[T. 1| L=[LL10 | F=[FLF ], is a
neutrosophic cubic value, then, the exponential operation defined by
L@ @],
[aDahy ],
[1—(1—FAL)k,1—(1—FAU)k},
I=(1-7,) 1=(1-1,)" (£,

where A" = A® A®,....® A(k —times), moreover, 4 is a neutrosophic cubic value for every
positive value of k.

Definition 14. [17] The Einstein sum between two neutrosophic cubic sets A = (fA,jA,F'A,TA,IA,FA),
where 7:,4 = [TAL,TAU]jA Z[]j,IZ],ﬁA Z[FAL,FAU], and BZ(fB,}B,ﬁB,TB,IB,FB), where
fB =[TBL,TBU],L; =[lé,1g],ﬁ3 =[FBL,FBU] is defined as

Tr+Ty T +T,)
+TT 1+ TVTY |
I"+1; 1) +1]

N9 SR W A S

A®, B=

FALF; FAUFBU
1+(1-F))(1-F; ) 1+(1-F))(1-F} )
T,T, 1,1, F,+F,

1+(1-T)(1-T,) 1+ (1-1,)(1-1,) 1+ F,F,

Definition 15. [17] The Einstein product between two  neutrosophic — cubic  sets,
A=(T,, 10, F,,T,,1,,F,), where T, =[T{.7¢ ). 1a=[1415].F,=[Ff.F/], and

B= (fB,}B,FB,TB,IB,FB),where fB =[TBL,TBU},L; =[l§,]g},]5'3 =[F;,FBU} is defined as

TiTy T,
1+(1-TH(1-7; ) 1+ (-1 (1-1}) |

Iy L1y
A®, B= [1+(1—1§)(1—1§)’1+(1—1§’)(1—1§;)}’
[FAL+F; FAU+F:}
1+FIFf 1+ FUFY
T,+T, I,+1, F,F,
1+T,T, 1+1,1, 1+(1-F,)(1- F,)

Definition 16. [17] The scalar multiplication on a neutrosophic cubic set, A= (fAjA, ﬁA T,,1,,F, ) ,

where T 4 Z[TAL,TAUJJA 2[15,13],?/1 Z[FAL,FAU], and a scalar k is defined
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A+TH -A-TH" A+T)Y -A-TV)*
A+TH +A-TH) A+T) +(A-T) |
(+19) --1)" A+1)) —(1-1))"

A+ I+ Q=15 A+ 1D + Q=19 |
k.A= LK Uk

‘ 2(Fy) 2(F)

(i) +(m) () () |
2(1,)" 2(1,) (1+F) —(1-F,)
(2_TA)k+(TA)k’(Z_IA)k+(IA)k’(1+FA)k+(1_FA)k

The Einstein exponential multiplication is followed by the following result.

Theorem 2. [17] Let AZ(fA,jA,ﬁA,TA,[A,FA), where fAI[Tf,]f]jA=[[j,lﬂ,FA=[F/f,FAU}, is a

neutrosophic cubic value, then, the exponential operation defined by

21 21"
Q=T +(T@) Q-1 +T)) |

21" 201"
Q-1+ Q-1 +UD" |

ki

(I+F)) =(1-F)" (+F) -(-F/)
A+FD +(-FH A+ FYY +A-FY) |

k

A+T) —(1-T)" (1+1) —(1-1,)" 2(F,)
(+T) +(1-T) A+ 1) +(1-1) " (2—-F,) +(F,)"

where A5 =4 ®, A®,..®, A(k—times), moreover, A s a neutrosophic cubic value for

every positive value of k.
To compare two neutrosophic cubic values the score function is defined.

Definition 17. [17] LetN=(TNJN,FN,TN,]N,E\,),where TN=[TNL,T;],]N=[IILV,IH,FNZ[FJ,FIH is a

neutrosophic cubic value, and the score function is defined as

S(N)=|Ty -Fy+T) = F +T, - F, |

If the score function of two values are equal, the accuracy function is used.

Definition 18. [17] Let NZ(TNJN,FN,TN,[N,FN), where fN =[TI5,T§/},}N =[]]LV,I§},]:TN =[FA§,F]” isa

neutrosophic cubic value, and theaccuracy function is defined as

H(u)=é{T,§ +Ie+Fe T + 1)+ FY + Ty + 1+ Fy )

The following definition describes the comparison relation between two neutrosophic cubic
values.
Definition 19. [17] Let N 1/ N , be two neutrosophic cubic values, with core functions S N, S N, and

accuracy function H N> H n, - Then,

1) SNI >SN2:>NI>N2
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ISy =Sy,

i) HN1 >HN2 = N, >N,

i) HN1 ZHN2 =N, =N,
Definition 20. [17] The neutrosophic cubic weighted geometric operator(NCWG) is defined as

NCWG:R" — R defined by NCWG, (N,,N,,...,N,)=®N,”,
j=r

where the weight W = (lewza---awm)T of Nj(j =1,2,3,...,m), such that w, €[0,1] and

=1.

M=

1

~.
Il

Definition 21. [17] The neutrosophic cubic ordered weighted geometric operator(NCOWG) is defined as
NCOWG:R" = R defined by NCOWG, (N,,N,,...,N, )=® N/

=1 Ny

where N

is the descending ordered neutrosophic cubic values, W=(W1,W2,...,Wm)T of
J

N,(j=1,2,3,...,m), suchthatw, €[0,1] and sz1=1.

Definition 22. [17] The neutrosophic cubic Einstein weighted geometric operator(NCEWG) is defined as
m P
NCEWG: R" — R defined by NCEWG, (N, N,,....,N,) = ®1(N/) ,
Jj= :

where W=(W1,W2,...,WM)T is weight of N, (j=1,2,3,...,m),suchthat w; €[0,1] and

Ms
|

J

Definition 23. [17] Order neutrosophic cubic Einstein weighted geometric operator(NCEOWG) is defined
as

m P
NCEOWG:R"™ — R by NCEOWGW(NI,NZ,...,Nm)=®1(Bj) ,
j=
where B, is the jth largest neutrosophic cubic value, and W = (wl,wz,...,wm)T is weight of

N,(j=1,2,3,..,m), suchthat w; €[0,1] and /221:1'

The neutrosophic cubic geometric aggregation operators weight only the neutrosophic cubic
values, whereas neutrosophic cubic order geometric aggregation operators weight the orders of the
values first then weight them. In the two cases, the amassed values that focused on the value relate
to the biggest weight. The accompanying precedents represent the impediments of the NCWG and
NCEWG.

Let W = (0.7,0.2,0.1) be the weight corresponding to the neutrosophic cubic values

N, =([0.2,0.7],[0.2,0.4],[0.2,0.5],0.8,0.5,0.8)
N, =([0.4,0.6],[0.4,0.7],[0.1,0.3],0.2,0.6,0.5)
N, =([0.5,0.8],[0.3,0.6],[0.4,0.9],0.5,0.8,0.9)

7

S(N)=02 S(N,)=03

Then , S(N3):—0.4‘

nd
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NCWG =([0.251,0.688],[0.239,0.465],[0.204,0.524],0.711,0.563,0.737)

Therefore,

NCOWG =([0.356,0.636],[0.338,0.616],[0.155,0.544],0.421,0.609,0.737)

an .
We observe that the higher the weight component, the aggregated value will tend to the
corresponding neutrosophic cubic value of that vector. In NCWG, the value tendsto N, as the
weight that corresponds to N; is highest, and in NCOWG, the highest component of weight
corresponds to N,. This situation often arises in aggregation problems. Motivated by such a
situation, the idea of neutrosophic cubic hybrid geometric and neutrosophic cubic Einstein hybrid
geometric operators are proposed.

3. Neutrosophic Cubic Hybrid Geometric and Neutrosophic Cubic Einstein Geometric Operators

This segment comprises of the following subsections. In Section 3.1 neutrosophic cubic
crossbreed, the geometric operator is characterized. In Section 3.2 neutrosophic cubic Einstein
crossbreed, the geometric operator is characterized. In Section 3.3, a calculation is characterized to
organize the neutrosophic cubic values utilizing these tasks. In Section 3.4, a numerical model is
outfitted upon Section 3.3.

3.1. Neutrosophic Cubic Hybrid Geometric Operator

NCWG operator weights only the neutrosophic cubic values, where NCOWG weights only the
ordering positions. The idea of neutrosophic cubic hybrid geometric aggregation operators is
developed to overcome these limitations. NCHG weights both the neutrosophic cubic values and its
order positioning as well.

Definition 24. NCHG :Q" — Q is a mapping from m-dimenion, which has associated weight

W =(w,wy,...w,)" suchthatw, €[0,1] and X w, =1, such that
A e

NCHG ,(N;, Ny N,) = (N7, ) ©(N; ) ) ®,..,0(NS,,, )™,

where N ; Jth largest of the weighted neutrosophic  cubic  values

{NG)(N(}

,and m is the balancing coefficient.

)= N;nwj),j=1,2,3,,,m),W=(w,,w2,...,wm)T}, such that w; €[0,1]and 2w, =1

j=1

Theorem 3. Let Nj = (f\f}.’jt\’ﬁﬁz\fj)]j\fj’[]\ljsEV,. )7 where fNj = l:]j\%/_,ﬂxl';i'jl\’j = [[i’j’]gj i|7ﬁ1\’/. :|:F’\§}7E\L/:|a
(j=1,2,...,m) be collection of neutrosophic cubic values, then the aggregated value (NCHWG) is

also a cubic value and

mo L \"iom(_ U\ mo(o Lo\ U\
[%(TUU)) ’j@)_l(TU(j)) :|’[j@)_1(10(j)) ’(Ia(j)) :|’
_ m SV, S\
NCHG(N,) = {1—‘9(1—1{,(].)) ,1—/@_](1—1750)) } ,
1-&3(1—T ) ,1-%(1—1 ) ,é(ﬁ )’
Jj=1 ol(j j=1 o(j j=1 o(j)

the weight W = (w,, W, ,...,w, )", such that w; €[0,1] and 2 =1
=

Proof. By mathematical induction for m =2, using
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®N,’ =N ®N,*

J=1
TL ) W’l’ TU ‘1’1}’ [ TL ‘1’2’ TU ‘1’2}’
(T ) @, )
Loy ‘} [ Loy, 2}
b ) 1, )

V»’l Wl 11/‘2 w‘2
1-(1-F ) ,1—(1—FU ) , 1—(1—FL ) ,1—(1—FU ) ,
{ ( No(1) No() No(j) Vo)
" w w " " Wy
1-|1-(T, 1-(1-(7, . F, - 1-(T, - 1-(7 F
[ ( Nn(j) )j ’ ( ( N"(J))) ’( N[i(j)) ( ( N(I(j) )j ’ ( ( Nn(j) )j ,( N(J'(j))

w . 2 w . 2 w .
)«fH@(I,s )@Y )J},
A Ne(y 7S

2
ey
)8y,

No(j)

(/)

1 62<)(1 FL )le é(l FU )’
- =1 No(/) > =1 No() ’

2
[@(TNL
j=1

L ' é% U W CZ) L Wi CZ) U W
[1=1 Nam) ’.;=1( Na(f)) ]’[H( NGU)) s NG(H) }

o 1-®(1-Ft )Wj,l— m(l—FU )W’ ,
®Nij = |: 1=1( No( /) j=1 No()
=

m Wi m Wi m W,

1-®[1-T, 1-®[1-1 &\ F
jl( No‘(j)) i jl( No‘(j)) ’jl( No‘(j))

We prove the result form +1,

L Wil U Wil L Wil U Wil
[ D | ak hag ),

L Wil U Wi+l
o _ [1—(1—FNN) ,1—(1—FN]_+1) }

=(1-7,, )" a=(1-1y ) (A,)
Jj+1 Jj+1 Jj+1

as (N

Jj+1
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Brt Y8 Y| BaL y18uy @ ),
|:f-1(TVrr(j)) ’®1(TVJ( ) :|’|:/®—1([Na(/)) ’/®=1(1Nfr(1) :|’ Y "
v (E )Y )”f”],
o 1—®(1—F; ‘)],1—@(1—39 ‘)’ , [ ¥ ¥
QN @N = a(i) = a(i) ® " v
a1 J* |:1—(1—FL )/+1 1—(1—FU )/+1:|
m w. m Wi w N i+ ’ N it 3
1-@(1—3, )",1-@(1—&, )",@(FV )’ " "
A\ Telh) A\ Tl ) AN Tel)) Wiy un
=-m, ) i) )
J+l )y j+l

m+1 w.
® N

Jj=1

N1

m w]. L Wil m U ""j‘ U
[%(T”am) (T ) ’.g(T%(f)) (TNWI

IU

= Vo)

(IL

No())

et

1-®(1-FF )7 +1-(1- F* )Wm+1—(1—é'>(1—FNL )“’f'](l—(l—FNL ) ),
= o(j) mel = o(j) mel

It )Wm+1 m
N )

8r,) (2

N

1—(1=FY y'mn ) ,

m+1

CR(—FY VI al—(1—FU Vi _[1-&(1—FY "
1=QU-F )7 +1-(1=F] ) (1 OU-F ) j(

=G (n,, ) e (n, e (- ga(n ) J(-a(n, )
=&a-(r, P er-a-(r, ) 7[1 -&a-(1,,,, )" j(l (1))

m w Wt
j=1 (FNGU) ) (FNm+1 )
e, 7 0, ) B ) B, )
2\ Moy ) T =\ V() N A\ Yo ) A\ Ne() ’
m+1

m+1

W W w m+l W W
2-®@(U-FF )/ —1+®(U-F¢f )/ +(-FF Y -l ®(A-Ff )/ |A=FF )™,
J=1 o(/) J=1 (/) m+l J=1 (/) m+l

>

m+1 w. m+1 W w m+1 W, w
2-®0-F )’/ -1+®0-FY )’/ +(1-F! )"’*'—(@(I—F,f,’ )~’j(1—F,{,J )
Jj=1 (/) J=1 (/) ml J=1 @) me+l

m+1

m—+1

k

Jj=1

m+1 w m+1 W
2-®(1-T, )’/ -1+®(1-T, )7 +(1-T,
j=1 (/) J=1 (/) mt

m+1

L

(T

Ne ()

[

w .
J
>

2-®@U-1, ) -1+®@0-1, )7 +1-1I,
Jj=1 () Jj=1 () m+

m+1
,®
Jj=1
m—+1 U
(29 (T
=1\ Ne(s)

m—+1

W m+1
1—®(1—F,§ ) /1 — (11—
J=1 a(J) J=1

m—+1 Wy
1— (17, ,1—
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which completes the proof. [

m+1 Wi m+l Wy
®(1—71 | F
j=1( Na(j)) ’f'=1( Ncr(j))

Theorem 4. The NCWG is a special case of NCHG operator.

1 1 1
Proof. LetW = (—,—,...,—)" . Then,

NCHG(N,,N,....N,)" =(N,,)" ®(N, )" ®....8(

(Mow)

m m m

1 1
m

1
®(N;, Now)

o (m)

)m ®,...0(

A

a(m)

)
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1

=(N,,N,,...,.N )"

= (V)" (M) (V)™
= NCWG(N,,N,,..,N,). O

Theorem 5. The NCOWG is a special case of NCHG.

1 1 1
Proof. Let W = (—,—,...,—)" . Then,
mm m

NCHG(N,,N,,..,N,)" =N )" ®(N) ) ®,... (N, )"

1 1 1

-(No)) ®(Nop) ®.n®(N)
1

=(N,,N,,...,N )"

=(N)" L (N,)2 s (N,) ™
= NCOWG(N,,N,,...,N,). O

3.2. Neutrosophic Cubic Einstein Hybrid Geometric Operator

NCEWG operator weights only the neutrosophic cubic values,where NCEOWGA weights only
the ordering positions. The idea of neutrosophic cubic Einstein hybrid aggregation operators
(NCEHG) is developed to overcome these limitations, which weights both the given neutrosophic
cubic value and its order position as well.

Definition 25. NCEHG :Q" — Q is a map from m-dimension which has an associated vector

W=(wl,wz,...,wm)T,wherer €[0,1] and 2. =1, such that
=

_ -\ -\ - Wi

NCEHGW(NI,NZ,...,N,”)—(Na(l)) ®; (M) ®prn®: (Noi) ,

where N; isthe jth largest of the weighted neutrosophic cubic values

{N(;)(N(“j)=wa-f),j=1,2,3,,,m),W=(w1,w2,...,wm)f},with w, €[0,1] and j2=1=1, and

m is the balancing coefficient.

Theorem 6. Let Nj=(TNj,[Nj,FNj,TN_,INJ_,E\,j), where TNj{TVL]_,T%},IN],=[1§j,1‘$j],FNj=[F\§j,FVUJ,

J

N= TNj,INJ,FN],,TNI,INJ_,FNJ_), where TN,,{T;J_,TNUJ },INI.{I;J_,IH,FN]{EVLJ F } (G =1,2,.,m) is

acollection of neutrosophic cubic values, then, their aggregated value by NCEWG operator is also a
cubic value and
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NCEHG(N,) =

where W = (w,,w,,...,
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 28(my,) 28,
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w, )" isweightof N, (j=1,2,3,..,m),with w, €[0,1] and 1221 =1.

Proof. We use mathematical induction to prove this result for k =2, using definition
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m+1
® (2 -F

j=l No(5)

wj
+

Theorem 7. The NCEWG is special case of the NCEHG operator.

Wj
® (F”cr(j) )

J=l1

so the result holds for all values of m. O

Proof. Followed by Theorem 4. [
Theorem 8. The NCOWG is a special case of NCEHG.
Proof. Followed by Theorem 5. [

3.3. An Application of Neutrosophic Cubic Hybrid Geometric and Einstein Hybrid Geometric Aggregation
Operator to Group Decision-Making Problems

In this section, we develop an algorithm for group decision-making problems using the
neutrosophic cubichybrid geometric and Einstein hybrid geometric aggregation(NCHWG and
NCEHWG).

Algorithm 1. LetF={F1,F2,...,F;l} be the set of n alternatives, H={H1,H2,...,Hm} be the m

attributes subject to their corresponding weight W = {WDWZ""’Wm}’ such that w, €[0,1] and

Mz

= 1. The method has the following steps.
J

Step 1: First of all, we construct neutrosophic cubic decision matrix D = [N ; /,]

nxm

Step 2: The attributes H = {H nHy, o H m} are weighted to their corresponding weight
W= {Wv Wy W, } , and these values multipliedby the balancing coefficient m .

Step 3: The new weights are calculated using [18] so that we get new weights V' = {v1 3 Vo 5uens vm} .

Step 4: By using aggregation operators like (NCHG, NCEHG), the decision matrix is aggregated by
the new weightsassigned to the m attributes.

Step 5: The n alternatives are ranked according to their scores and arranged in descending order
to select the alternative with highest score.
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3.4. Numerical Application

A steering committee is interested in prioritizingthe set of information for improvement of the
project using a multiple attribute decision-making method. The committee must prioritize the
development and implementation of a set of six information technology improvement projects Aj

(j=1,2,...,6) . The three factors, B, productivity, to increase the effectiveness and efficiency, B,

differentiation, from products and services of competitors, and B3 management, to assist the
management in improving their planning, are considered to assess the potential contribution of

each project. The list of proposed information systems are 4, Quality Assurance, 2) A4, Budget
Analysis, 3) A, Itemization, 4) A, Employee Skills Tracking, 5) 4; Customer Returns and
Complaints, and 6) A, Materials Acquisition.Suppose the weight WZ(O.5,0.3,O.2)
corresponds to the B, (j=1,2,3) factors and characteristics of projects 4 (i=1,2,...,10) by

the neutrosophic cubic value N;.

Step 1: Construction of neutrosophic cubic decision matrix D = [ N, ]6 ,

0506[020ﬂ [0.3,0.7],[0.1,0.6], [0.4,0.8] osoq
' {[0.4,0.8],0.7,0.8,0.4 [0307 040702 0507 ,0.4,0.2,0.6
[ [0-2.05].[0.7.09]. [0.1,0.6],[0.4,0.7], [0.2,0.6],[0.1,0.7],
’ 0307 ,0.8,0.5,0.3 0205 060407 [0.3,0.7], 060408
, [ [04.07][02,05], [0.3,0.8],[0.1,0.4], [0.3,0.5],[0.5,0.9],
p=|" 1[0.5,0.7],0.3,0.6,0.2) ([0.6,0.7], 060206 [0.2,0.7],0.7,0.5,0.6
[ [03.06].[0.4.07], [0.5,0.8],[0.1,0.5], [0.1,0.7],[0.2,0.6],
“ |[0.2,0.5], 060407 [0.3,0.8],0.4,0.8,0.6 ) ([0.4,0.7],0.5,0.6,0.8
[ [02,05].[0.3,07], [0.4,0.8],[0.3,0.7], [0.6,0.8],[0.5,0.9],
°* ([0.2,0.6],0.5,0.3,0.8 ) ([0.1,0.6] 040607 0409 ,0.6,0.8,0.3
[ [01,06].[0.3,0.6], [0.2,0.7],[0.6,0.9], [0.4,0.7],[0.3,0.5],
° |[0.4,0.8], 060904 0306 ,0.4,0.8,0.3 ) ([0.1,0.6],0.4,0.6,0.7

Step 2: The attributes are weighted W = (0.5, 0.3, 0.2) and multiplied by balancing coefficient 3.
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Aé

Bl
[0.3535,0.4647],
[0.0894,0.3535],
[0.5352,0.9105],

0.8356,0.9105,0.2529
[0.0894,0.3535],
[0.5856,0.8538],
[0.4143,0.8356],
0.9105,0.6464,0.1643
[0.2529,0.5856],
[0.0894,0.3535],
[0.6464,0.8356],
0.4143,0.7470,0.0894
[0.1643,0.4647],
[0.2529,0.5856],
[0.2844,0.6464],
0.7470,0.5352,0.5856
[0.0894,0.5353],
[0.1643,0.5856],
[0.2844,0.7470],
0.6464,0.4143,0.7155
[0.0316,0.4647],
[0.1643,0.4647],
[0.5352,0.9105],
0.7470,0.9683,0.2529

B2
[0.3383,0.7254],
[0.1258,0.6314],
[0.27453,0.6616],
0.3685,0.6616,0.2349
[0.1258,0.6314],
[0.4383,0.7254],
[0.1819,0.4641],
0.5616,0.3685,0.7254
[0.3383,0.8180],
[0.1258,0.4383],
[0.5616,0.6616],
0.5616,0.1819,0.6314
[0.5358,0.8180],
[0.1258,0.5358],
[0.2745,0.7650],
0.3685,0.7650,0.6314
[0.4383,0.8180],
[0.3383,0.7254],
[0.0904,0.5616],
0.3685,0.5616,0.7254
[0.2349,0.7254],
[0.6314,0.9035],
[0.2745,0.5616],
0.3685,0.7650,0.3383

BB
[0.5770,0.8746],
[0.4855,0.7360],
[0.4229,0.5144],

0.2639,0.1253,0.7360
[0.3807,0.7360],
[0.2511,0.8073],
[0.1926,0.5144],
0.4229,0.2639,0.8073
[0.4855,0.6597],
[0.6597,0.9387],
[0.1253,0.5144],
0.5144,0.3402,0.7360
[0.2511,0.8073],
[0.3807,0.7360],
[0.2639,0.5144],
0.6402,0.4229,0.8073
[0.7360,0.8073],
[0.6597,0.9387],
[0.2639,0.7488],
0.4229,0.6192,0.4855
[0.5770,0.8073],
[0.4855,0.6597],
[0.0612,0.4229],
0.2639,0.4229,0.8073

17 of 19

Step 3: The new weights are calculated using the normal distribution method. Let W =
(0.2429,0.5142,0.2429) be its weighting vector derived by the normal distribution-based
method [18].

Step 4: By neutrosophic cubic weighted geometric aggregation operator (NCWG), the decision
matrix is aggregated by the new weights assigned to the m attributes.

(
[
[
A4[
(
(

Step 5: The scores are

[0.3892,0.6812].[0.1606,0.5692],
[0.3840,0.7325],0.5273,0.6914,0.3270
[0.1852,0.5692],[0.4107,0.7745],
[0.2480,0.4946].0.6813,0.4306,0.5190
[0.3441,0.7158].[0.1731,0.5005],
[0.7078,0.6899],0.5178,0.4161,0.4076
[0.3344,0.7107].[0.1950,0.5913],
[0.2743,0.6904],0.7010,0.6550,0.6580
[0.3378,0.7375].[0.3338,0.7331],
[0.1848,0.6649],0.4633,0.5454,0.6557

[0.1795,0.6681],[0.4271,0.7122],
[0.3068,0.6813].,0.4751,0.8937,0.3893

S(4)=0.1542,5(4,) = 0.1741,8(4,) = ~0.2276,5 (4,) = 0.1297,8 (4, ) = 0.0332,5 (4, ) = ~0.0547,

S(4,)>S(4)>S(4,)>S(4)>S(4)>5(4)

List of priorities are as follows.

A A > A, > A, > 4, > A,

Hence, the project 4, has the highest potential contribution to the firm’s strategic goal of

gaining competitive advantage in the industry.

4. Conclusion
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This paper was influenced by the impediment of neutrosophic cubic geometric and Einstein
geometric collection operators as preliminarily discussed, that is, we observed that the higher the
weight component, the aggregated value tended to the corresponding neutrosophic cubic value of
that vector. Consequent upon such circumstances, we characterized neutrosophic cubic hybrid and
neutrosophic cubic Einstein hybrid aggregation operators. At that point, these operators are
outfitted upon a day-by-day life precedent structure industry to organize the potential
contributions that serve to achieve the strategic objective of getting favorable circumstances in
industry.
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