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Abstract: Aim of this present paper is to introduce and investigate new kind of neutrosophic continuous function
called neutrosophic econtinuous maps in neutrosophic topological spaces and also relate with their near continuous
maps. Also, a new irresolute map called neutrosophic e-irresolute maps in neutrosophic topological spaces is
introduced. Further, discussed about some properties and characterization of neutrosophic e-irresolute maps in
neutrosophic topological spaces.

Keywords and phrases: Neutrosophic e-open sets, neutrosophic e-continuous maps, neutrosophic eUs-space and
neutrosophic e-irresolute maps.

AMS (2000) subject classification: 03E72, 54A10, 54A40, 54C05.

1 Introduction

The concept of fuzzy set (briefly, fs) was introduced by Lotfi Zadeh in 1965 [17], then Chang depended the fuzzy set
to introduce the concept of fuzzy topological space (briefly, fts) in 1968 [5]. After that the concept of fuzzy set was
developed into the concept of intutionistic fuzzy set (briefly, Ifs) by Atanassov in 1983 [2, 3, 4], the intutionistic fuzzy
set gives a degree of membership and a degree of non-membership functions. Cokor in 1997 [5] relied on intutionistic
fuzzy set to introduced the concept of intutionistic fuzzy topological space (briefly, Ifts). In 2005 Smaradache [13]
study the concept of neutrosophic set (briefly, Ns). After that and as developed the term of neutrosophic set, Salama
has studied neutrosophic topological space (briefly, Nts) and many of its applications [8, 9, 10, 11]. In 2012 Salama
and Alblowi defined neutrosophic topological space [8]. Saha [7] defined J-open sets in topological spaces. Vadivel
et al. [15] introduced J-open sets in a neutrosophic topological space. In 2008, Ekici [6] introduced the notion of e-
open sets in a general topology. In 2014, Seenivasan et al. [12] introduced e-open sets in a topological space along
with e-continuity. Vadivel et al. [16] studied fuzzy e-open sets in intuitionistic fuzzy topological space. In this paper,
we develop the concept of neutrosophic e continuity in a topological spaces and also specialized some of their basic
properties with examples. Also, we discuss about properties and characterization of neutrosophic e-irresolute maps.
2 Preliminaries

The needful basic definitions & properties of neutrosophic topological spaces are discussed in this section.

Definition 2.1 [8] Let Y be a non-empty set. A neutrosophic set (briefly, Nss) L is an object having the form L =
{hy, 1 (y),ou(y), vi(y)i :y €Y } where p. — [0,1] denote the degree of membership function, . — [0,1] denote the
degree of indeterminacy function and v. — [0,1] denote the degree of non-membership function respectively of each
elementy €Y totheset L and 0 <uc(y) + oL(y) + vi(y) <3 foreachy €Y.

Remark 2.1 [8] A Nss L = {hy,u(y),ou(y),v(y)i : y €Y } can be identified to an ordered triple hy,u(y),or(y),v.(y)i in
[0,1]on Y.

Definition 2.2 [8] Let Y be a non-empty set & the Nss’s L & M in the form L = {hy,u.(y),o(y).v(y)i:y €Y}, M=
{hy,um(y).om(y), vm(y)i 1y €Y }, then

(i) On=hy,0,0,1i and 1n = hy,1,1,0i,

i) L EMiffu(y) <um(y), ou(y) <omly) &w(y) Zvm(y) 1y €Y,

i) L=MiffL<cMandM cL,

iv) In=L={hyu(y).l —aly)l(y)izy €Y} =L°

v) L UM = {hy,max(u(y),km(y)).max(oL(y).om(y)), min(v(y).vwm(y))i 1y €Y },

(vi) L 0 M= {hy,min(uc(y),im(y)).min(oi(y).om(y)).max(vi(y).vm(y))i -y €Y }.

Definition 2.3 [8] A neutrosophic topology (briefly, Nst) on a non-empty set Y is a family W of neutrosophic subsets
of Y satisfying
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(i) On, In €WPn.
(i) LiN L, ePnforanyLi,Ly €Pn.
(iii) SLx €PN, VLx:X EX S WP
Then (Y,%\) is called a neutrosophic topological space (briefly, Nsts) in Y . The Wn elements are called neutrosophic
open sets (briefly, Ns;os) in Y . A Nss C is called a neutrosophic closed sets (briefly, Nscs) iff its complement C€is N;0s.
Definition 2.4 [8] Let (Y,¥n) be Nsts on Y and L be an Nss on Y, then the neutrosophic interior of L (briefly, Nsint(L))
and the neutrosophic closure of L (briefly, Nscl(L)) are defined as
Nint(L) =K1:1 €L & lisaNsosinY}
Necl(L) =Y{l: LSl & lisaNssinY}.
Definition 2.5 [1] Let (Y,¥n) be Nsts on Y and L be an Nsson Y . Then L is said to be a neutrosophic regular open set
(briefly, Ngros ) if L = Nsint(Nscl(L)).
The complement of a Nsros is called a neutrosophic regular closed set (briefly, Ngrcs) in'Y .
Definition 2.6 [15] A set K is said to be a neutrosophic
(i) o interior of G (briefly, Nsdin#(K)) is defined by Nsdint(K) =S{B: B €K & Bisa NsrosinY }.
(ii) ¢ closure of K (briefly, Nsoc/(K)) is defined by Nsdcl(K) = T{A: K €A & AlisaNsrcsin Y }.
Definition 2.7 [15] A set L is said to be a neutrosophic
(i) o-open set (briefly, Nsdos) if L = Nsoint(L).
(ii) o-pre open set (briefly, NsoPos) if L < Nsint(Nsoc/(L)).
(iii) o-semi open set (briefly, NsdSos) if L < Nscl(Nsoint(L)).
(iv) e-open set (briefly, Nseos) [14] if L < Nscl(Nsoint(L)) U Nsint(Nsocl(L)).
(v) e*open set (briefly, Nse*0s) if L < NsCl(Nsint(Nsoci(L))).
The complement of an Nsdos (resp. NsoPos, NsdSos, Nseos & Nse*0s) is called a neutrosophic ¢ (resp. J-pre, -semi,
e & e”) closed set (briefly, Nsocs (resp. NsoPcs, NsoScs, Nsecs & Nse*cs)) in'Y .
Definition 2.8 [15] Let (X,%n) and (Y,®n) be any two Nts’s. A map h : (X,¥n) — (Y,®n) is said to be neutrosophic
(resp. 9, dS, 0P & e*) continuous (briefly, NsCts [10] (resp. NsoCts, NsoSCts, NsoPCts & Nse*Cts)) if the inverse image
of every Nsos in (Y,®n) is a Ns0s (resp. Nsdos, NsdSos, NsdPos & Nse*0s) in (X,¥n).
3 Neutrosophic e-continuous maps in Nsts
Definition 3.1 A map h : (X,zn) — (Y,0n) is called neutrosophic e-continuous (NseCts in short ) if h™1(1) is a Nsgos in
(X, 7v) for every Nsos 4 in (Y,0on).
Example 3.1 X ={a,b,c} =Y and define Nss’s X1,X2 & Xzin X and Y1in'Y are
pa pb pc ea ob oc  va vb ve

X1=hX,( , , , , , , , , )i,
0.20.304 050505 0.80.70.6
X2 = hX,( pab-HC ) 0a -6b ¢ ){va, vb-ve ), 010104 0505
05 090906pa b pc oa ob oc
— —va— vb— —ve— — — —
X3: hX-( ) ’ )!( ’ ' )!( ) ’ )Ix

Yl=hY,(pa, ub, uc),(oa, ob, oc),(va, vb, ve)i.
020404 050505 0.80.6 0.6
Then we have v = {On,X1,X2,1n} and on = {On,Y1,1n}. Let h : (X 7v) — (¥,0n) be an identity mapping, then h is
NseCts function.
Proposition 3.1 A map h : (X,=n) — (Y,0n), then the statements are hold but the converse does not true.
(i) Every NsoCts is a NsCts.
(ii) Every NsCts is a NsdSCts.
(iii) Every NsCts is a NsoPCts.
(iv) Every NsoSCts is a NseCts.
(v) Every NsoPCts is a NseCts.
(vi) Every NseCts is a Nse*Cts.
Proof. The proof of (i), (ii) & (iii) are studied in [15].
(iv) Let 1 bea NsosinY. Since his NsdSCts, h™X(1) is a NsdSos in X. Since every Nsdos is a Nseos [14], h™1(4) is a
Nseos in X. Hence h is a NseCts.
(v) LetAbeaNsosinY. Since his NsdPCts, h™3(1) is a NséPos in X. Since every NsdPos is a Nseos [14], h™1(4) is a
Nseos in X. Hence h is a NseCts.
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(vi) LetZ be a Nsos in h. Since h is NseCts, h™3(%) is a Nsgos in X. Since every Nseos is a Nse*0s [14], h™1(4) is a
Nse*os in X. Hence h is a Nse*Cts.

(vii) m
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Figure 1: NseCts maps in Nsts
Example 3.2 In Example 3.1, h is NseCts but not Ns6PCts, the set h™1(Y1) = X3 is a Nseos but not NséPos.
Example 3.3 X ={a,b,c} =Y and define Nss’s X1,X2,X3& Xsin X and Y1in Y are
pa pb pc ea ob oc  va vb ve
Xi= hxv( ) ) )7( ’ ) )7( )In
0.3 0505 050505 0.70505
X2 = hX,( pa+Hb-HC){ ga ob -6¢ ){va , vb+ve )i, 0.40.2 0.6 0505
05 060804pa pb pC oa ob oc
— —va— vb— —ve— — — —
X3: hxv( ) ’ )7( ’ ’ )7( ' ’ )I’
0.4 0.50.66.50:50:50.6 65 04 uawd ucoa obocvavb ve
Xq= th( ) ) )l( ) ) )!( ) ) )I
Yi=hY,(u2, g, k€),( 62, 6°, 6°),(v3, v°, v°)i.
030504 050505 0.70.50.6
Then we have n = {On,X1,X2,X3,X1NX2,1n} and on = {On,Y1,1n}. Let h : (X,7v) — (Y,0n) be an identity mapping, then h
is NseCts but not NsoSCts, the set h™(Y1) = X4 is a Nseos but not Ns6Sos. Example 3.4 Let X = {a,b} = Y and define
Nss’s X1 & Xzin Xand Y1in Y are - 97_ _ g_ _
X1= X ua,ub,oa,ob,va,vb,03020505050.5
X2 = X, ua b -6a, db~va-vb, 0-3-050.50.50.7 0.6
Y, Ma,ub, oa,ob, va, vb.

Yl=
0.305 0505 0.70.6

Then we have oy = {On,X1,1n} and on = {On,Y1,1n}. Let h: (X,zn) — (Y, 0n) be an identity mapping, then h is Nse*Cts but
not NseCts, the set h™(Y1) = Xz is a Nse*0s but not Nseos.
Theorem 3.1 A map h : (X,=n) — (¥,0n) is NseCts iff the inverse image of each Nscs in Y is Nsecs in X.
Proof. Let 1 be a Nscs in Y . This implies A°is Nsos in Y . Since h is NseCts, h™1(1°) is Nseos in X. Since h (1) =
(h~}(2))%, h™1(A) is a Nsecs in X.

Conversely, let AbeaNscsinY . Then A¢isaNsos in Y . By hypothesis h™1(1°) is Nseos in X. Since h™1(4°) = (h1(1))¢,
(h™1(1))¢is a Nseos in X. Therefore h™1(4) is a Nsecs in X. Hence h is NseCts. [ |
Definition 3.2 A Nst (X, 7v) is said to be an neutrosophic eUs (in short NseU? )-space, if every Nseos in X is a Ns0s in X.
Theorem 3.2 Let h : (X,zv) — (Y,0n) be a NseCts, then h is a NsCts if X is a NseUz-space.
Proof. Let 4 be a Nsos in Y . Then h™1(J) is a Nseos in X, by hypothesis. Since X is a NseU3-space, h~*(1) is a Nsos in X.
Hence h is a NseCts.l
Theorem 3.3 Let h : (X,zn) — (¥,0n) be a NseCts map and g : (Y,on) — (Z,pn) be an NseCts, then g o /1 : (X,on) —
(Z,pn) is a NgeCts.
Proof. Let A be a Nseos in Z. Then g () is a Nsos in Y, by hypothesis. Since h is a NseCts map, h™1(g (1)) is a Nseos
in X. Hence g > i isa NseCts map. W
Remark 3.1 The composition of two NseCts maps need not be NseCts maps shown in following examples.
Example 3.5 Let X =Y =Z = {a,b,c} and define Nss’s X1 & Xzin X'and Y1,Y2,Y3& Ysin Y and Z; in Z are
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pa pb pe  oa b oc  va vb ve
X1= hX,( ) ’ )!( ) ’ )!( ’ ) )Ix
0.30.104 050505 030404
X2 = hx,( pa,-pb,pc).(oa,ab ,ac)(va, vb,vec)i, 0.30.20.505050.50.2
0.204
Y1 = hx,( pa—~ pb+ueK( oa6b+6c¢ Y{va , vb ve )i, 0.4 0.3 0.4 0505
05 040505pa b pe oa ob oc
— —va— vb- —ve— — — —
Yo=hx,( . , ) . . ) .
0:5050.50:5050.50:5 650.5zma ubucoa ob oc va vb ve
Y3 = hX,( ' ’ )!( ' 1 )!( 1 ) )Ix
05050.505050.504 05 0.5za ub ucoa ob oc va vb ve
Y4: hX,( , ’ )!( , ’ )!( ’ , )Ix
0.40.304050.50.505050.5 ua ub uc oa ob oc va vb ve
4= hX,( ’ ) )l( ’ ) )l( ) ’ )I
030404 050505 0.40.405
Then we have =y = {ON,Xl,Xz,lN}, ON= {ON,Y1,Y2,Y3,Y4,1N} and PN= {ON,Zl,lN}. Leth: (/Y,TN) — (Y,O‘N) and g: (Y,O‘N) —
(Z,pn) be an identity mapping, then h and g are NseCts function but g ° 4 is not a NseCts functions.
Theorem 3.4 h: (X, =) — (Y,0n) be a NseCts map. Then the following conditions are hold.
(i) h(Nsecl(2)) < Nscl(h()), for all Nscs 4 in X.
(i) Nsecl(h (W) <A Y(Nscl(u)), for all Nscs pin Y.
Proof. (i) Since Nsecl(h(4)) is a Nsecs in Y and h is NseCts, then h™(Nsecl(h(1))) is Nsec in Y . Now, since 1 <
h2(Nscl(h(%))), Nsecl(1) < A Y(Nsecl(h(%))). Therefore, h(Nsecl(1)) < Ncl(h(A)).
(i) By replacing A with p in (i), we obtain h(Nsecl(h™2())) < Nscl(h(h () < Nscl(p). Hence, Nsecl(h™1(p)) <
h™Y(Nscl (). [ ]
Remark 3.2 If h is NseCts, then
(i) h(Nsecl(2)) is not necessarily equal to Nscl(h(4)) where 2 € X.
(i) Nsecl(h™1(p)) is not necessarily equal to h™*(Nscl(u)) where p €Y .
Example 3.6 In Example 3.1, h is a NseCts.
(i) LetA= Op.a2, Op.b4, Op.c4, 0g.a5, 0g.b5, 0c.c5, Ov.a8, Ov.b6, Ov.c6. Then
h(Nsecl(2)) = h Nsecl ua, ubueoa+eb ,(gesvasvbsve (— — —
0.20.4040505050.80.60.6
=h pa pbs e (_O'a_U'b'U'C' (—vaﬁ/b,—vc
020404 050505 0.80.60.6
= &, | o, pc, \“ea;ob,oc, \Tva,vb;C.
020404 050505 0.80.60.6

But
pa pb pc oa ob oc va vb vec
1 1 )!( 1 1 )’( H )
020404 050505 0.80.60.6
= NSCI(h( Ha !‘H‘b ,‘He),(—\?a » GbTO-C_)T( VaTVb Ve )9* -
020404 050505 0.80.60.6
Ha f#b e oa ob ve  va vh ve
( )( .

Nscl(h(2)) = Nscl(h(h( )

= h( , , , , , ,
0.80.70.6 050505 020304
Thus h(Nsecl(1)) 6= Nscl(h(2)).

(i) Letn =h(0p.a2, Ou.b4, Op.cd),(0g.a5, 00.b5, 00.¢5),(0v.a8, Ov.b6, 0v.c6)i. Then

Nsecl(h—1(7)) < Nsecl(h—1(h( pa,pb-pc ) loa,ab, ac),(va, vb, ve)i))
020404 050505 0.80.60.6
= Nsecl(h( pa, gb-, pe),Cea , oboc K vavb ,ve)iy}— —
0.20.404 050505 0.80.6 0.6
H#a b fe ova ob o va vb ve

=h( ( )( )8

020404 050505 080606

But
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h™(Nscl(n)) = h™{(Nscl(h( @, p2,pe)( 62, 0", a°),(12, v2,1)i))0.20.4 0.40.50.5 0.5
0.80.60.6
= h=1(h(aHb e ) {oa, ob; oe)(va, vbve i} —
0.80.70.6 050505 0.20.304
= h( pas pbs pe),( oaobroc Jva, vb-, ve)i.—
0.80.70.6 050505 0.20.304
Thus Nsecl(h~1(7)) 6= h~(Nscl(1).

Theorem 3.5 If h is NseCts, then h™(Nsint(p)) < Nseint(h~(p)), for all Nscs pin'Y .

Proof. If h is NseCts and 1 € on. Nsint(l) is Nso in Y and hence, h™(Nsint(l)) is Nseo in X. Therefore Nseint(h 1(Nse
int(W))) = h™3(Nsint(u)). Also, Nsint() < u, implies that h™Y(Nsint(n)) < A7*(u). Therefore Neint(h™(Nsint(p))) <
Nseint(h=1(W)). That is h™*(Nsint(W)) < Nseint (h~(W)).

Conversely, let h™3(Nsint(n)) < Nseint(h™X(u)) for all subset g of Y . If pis Nso in Y , then Nsint(n) = p. By
assumption, h™(Nsint(l)) < Nseint(h™1(W)). Thus h=3(u) < Neeint(h~X(u)). But Nseint(h=(1)) < A %(u). Therefore
Nseint(h=2(w)) = h~*(w). That is, h™1(u) is Nseo in X, for all Nsos W in Y . Therefore h is NseCts on X. m
Remark 3.3 If h is NseCts, then Ngeint(h~2()) is not necessarily equal to h™(Nsint(p)) where g €Y .

Example 3.7 In Example 3.1, h is a NseCts. Let # = h(Op.a2, Op.b4, 0p.c4),(0g.a5, 00.b5, 00.¢5),(0v.a8, 0v.b6, Ov.c6)i.
Then
Neeint(h () < Neeint(h 2 (h( P2, Lot Jo? 62, o362 2)i) — — —
0.204040505050.80.60.6
fa b e oo ob oo va Vb o
=Neintth( ., , ) . . ) .
— — 020404 050505 0:80.6 0.6
pa pb P oa ob oc va vb vc

)( )(

)i)

= h( )i.

020404 050505 0.80.60.6
But
h—1(Nsint(y)) = h—1 N§int ( pa , b~ pe),(we, oboc Kfvasvb, ve) 0-20.4-0.40.50.50.5
0.80.60.6
= h=1(h(pa, pb, pe),( oaob5oc)(va vb ,vo)iy—
0.10.104 050505 0.90.90.6
=t(ua  pb~mce ),(Ga ,ob , o0),( va, vb, vei
0.10.104 050505 0.90.90.6
Thus Neeint(h(5)) 6= h™(Nsint(z)).
4 Neutrosophic e-irresolute maps in Nsts
In this section we introduce neutrosophic e-irresolute maps and study some of its characterizations.
Definition 4.1 A map h : (X,zn) — (¥,0n) is called a neutrosophic e-irresolute (briefly, Nselrr) map if h=*(%) is a Nseos
in (X,zv) for every Nseos A of (Y,on).
Theorem 4.1 Let h: (X;zn) — (Y,0n) be a Nselrr, then h is a NseCts map. But not conversely.
Proof. Let h be a Nselrr map. Let A be any Ns0s in Y . Since every Ns0s is a Nseos, 4 is a Nseos in Y . By hypothesis
h~1(%) is a Nseos in Y . Hence h is a NseCts map. [ |
Example 4.1 Let X = {a,b,c} = Y and define Nss’s X1,X2 & Xzin X and Y1 & Y, in Y are
X1 =hX,(pa,pb, pc),(oa,ob,oc)(va, vb, ve)i,
0.20.3040505050.80.70.6
X2 = hX,( pa b pc),( oa ,ab ,ac ) (va, vb, vei,
0.10.104050505090.90.6

X3 = hX,( pa+Hb-HC){ 0a -6b -o¢ ){va, vbve )i, 0.20.4 0.4 0.50.5
05 08060.6p2 P pe o? a® ot
— A VL — -
Y1= hY!( ) ’ )!( ’ ) )7( ) ' )In
0:10104050505096906— — —
ua ub uc oa ob oc va vb ve
Y2 =hY,( , , )( , )i.

0.10.405 050505 0.90.605
Then we have v = {On,X1,X2,1n} and on = {On,Y1,1n}. Let h : (X,zn) — (Y,0n) be an identity mapping, then h is NseCts
but not Nselrr, the set Y2is a Nsgos in Y but h™1(Y>) is not Nseos in X.
Theorem 4.2 Let h : (X,7n) — (Y,0n) be a Nselrr, then h is a NsIrr map if X is a NseUz-space.

373



Neutrosophic e-Continuous Maps and Neutrosophic e-Irresolute Maps

Proof. Let /. be a Nsos in Y . Then 1 is a Nseos in Y . Therefore h™(1) is a Nseos in X, by hypothesis. Since X is a NseU
z-space, h™1(4) is a Nsos in X. Hence h is a Nslrr map. m

Theorem 4.3 Leth : (X;on) — (Y,on) and g : (Y,0n) — (Z,pn) be Nselrr maps, then g o 4 : (Xon) — (Z,pn) 1S @ Nselrr
map.

Proof. Let 4 be a Nseos in Z. Then g~1(1) is a Nseos in Y . Since h is a Nselrr map. h™1(g~(1)) is a Nseos in X. Hence g
oh is a Nselrr map. |

Theorem 4.4 Let h: (X;zn) — (Y,0n) be Nselrr map and g : (Y,on) — (Z,pn) be NseCts map, then g o 4 @ (X, mn) —
(Z,pn) is a NseCts map.

Proof. Let A be a Nsos in Z. Then g~*(4) is a Nseos in Y . Since h is a Nselrr, h™*(g~1(4)) is a Nseos in X. Hence g © A is
aNeCtsmap. ®
Theorem 4.5 Let h : (X,=) — (¥,0n) be a map. Then the following conditions are equivalent if X and Y are NseUs3-
spaces.

(i) hisaNselrr map.

(i) h7(u) is a Nseos in X for each Nseos pLin'Y .

(i) Nscl(h (W) €h *(Nscl(p)) for each Nss p of Y.
Proof. (i) — (ii): Let 1 be any Nseos in Y. Then pCis a Nsecs in Y. Since h is Nselrr, h=() is a Nsgcs in X. But h=2(p°)
= (h~}())c. Therefore h=*(u) is a Nseos in X.

(i) — (iii): Let p be aany Nss in Y and u < Nscl(u). Then h™(u) < A 1(Nscl(W)). Since Nscl(W) is a Nscs in Y,
Nscl(W) is a Nsecs in Y. Therefore (Nscl())¢is a Nsgos in Y . By hypothesis, h™((Nscl(l)))¢ is a Nseos in X. Since
h™((Nscl())®) = (h(Nscl(W)))¢, h 3 (Nscl(p)) is a Nsecs in X. Since X is NseUs-space, h™*(Nscl(l)) is a Nscs in X.
Hence Nscl(h (1)) < Nscl(h 2 (Nscl(p))) = h~3(Nscl(p)). That is Nscl(h™2(1)) < h (Nscl(p)).

(iii) — (i): Let p be any Nsecs in Y. Since Y is NseU3z-space, | is a Nscs in Y and Nscl(u) = p. Hence h () =
h 1(Nsecl(u)) 2 Nsecl(h~(p)). But clearly h=3(u) < Nscl(h~1(W)). Therefore Nscl(h~1(p)) = h~(p). This implies h=*(p)
is a Nscs and hence it is a Nsecs in X. Thus h is a Nselrr map. ®
5  Conclusions
In this research paper using Nseos we are defined NseCts map and analyzed its properties. After that we were compared
already existing neutrosophic continuity maps to Nse continuity maps. Furthermore we were extended to this maps to
Nse-irresolute maps, Finally this concepts can be extended to future research for some mathematical applications.
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