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Abstract: In this paper, we explore the algebra structure based on neutrosophic quadruple numbers.
Moreover, two kinds of degradation algebra systems of neutrosophic quadruple numbers are
introduced. In particular, the following results are strictly proved: (1) the set of neutrosophic
quadruple numbers with a multiplication operation is a neutrosophic extended triplet group; (2) the
neutral element of each neutrosophic quadruple number is unique and there are only sixteen different
neutral elements in all of neutrosophic quadruple numbers; (3) the set which has same neutral
element is closed with respect to the multiplication operator; (4) the union of the set which has same
neutral element is a partition of four-dimensional space.
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1. Introduction

The notion of a neutrosophic set is proposed by F. Smarandache [1] in order to solve
real-world problems and some in-depth analysis and research have been carried out [2–5]. Recently,
Smarandache and Ali in [6] proposed a new algebraic system, neutrosophic triplet group (NTG), which
different from classical groups. From the original definition of NTG, the neutral element is different
from the classical algebraic unit element. By removing this restriction, the neutrosophic extended
triplet group (NETG) is proposed in [7,8] and the classical group is regarded as a special case of NETG.

As a new algebraic structure, NTG (NETG) immediately attracted the attention of scholars and
conducted in-depth research. These studies are mainly carried out by the following three aspects.
Firstly, the structure properties of NTG (NETG) have been studied deeply. For examples, paper [8] has
conducted an in-depth analysis of the nature of NTG, and the properties and structural features of
NTG are studied by using theoretical analysis and software calculations. In paper [9], the notion of the
neutrosophic triplet coset and its relation with the classical coset are proposed and the properties of the
neutrosophic triplet cosets are given. The neutrosophic duplet sets, neutrosophic duplet semi-groups,
and cancellable neutrosophic triplet groups are proposed and the characterizations of cancellable weak
neutrosophic duplet semi-groups are established in paper [10]. In order to explore the structure of
the algebraic system (Zn,⊗), where ⊗ is the classical mod multiplication, paper [11] reveals that for
each n ∈ Z+, n ≥ 2, (Zn,⊗) is a commutative NETG if and only if the factorization of n is a product of
single factors. Moreover, the generalized neutrosophic extended triplet group (GNETG) is proposed
in [11] and verify that for each n ∈ Z+, n ≥ 2, (Zn,⊗) is a commutative GNETG. Secondly, it is the
application research on the algebraic system NET. For example, In paper [12], the distinguishing
features between an NTG and other algebraic structures are investigated and the first isomorphism
theorem was established for NTGs, furthermore, applications of the results on NTG to management
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and sports are discussed. In paper [13], NTGs and their applications to mathematical models, such as
fuzzy cognitive maps model, neutrosophic cognitive maps model and fuzzy relational maps model,
are discussed. Thirdly, extend the idea of NTG(NETG) to another algebraic system. For example,
in paper [14,15], the extend to Abel–Grassmann groupoid (AG-groupoid) is studied. The neutrosophic
triplet ring and a neutrosophic triplet field are discussed in paper [16,17]. A notion of neutrosophic
triplet metric space is given and properties of neutrosophic triplet metric spaces are studied in [18].
The notion of neutrosophic triplet v-generalized metric space are introduced in [19]. Paper [20]
applies the neutrosophic set theory to pseudo-BCI algebras. The idea of a neutrosophic triplet set to
non-associative semihypergroups is given in paper [21]. The above results enrich the research content
of the algebraic system NTG (NETG).

In neutrosophic logic, each proposition is approximated to represent respectively the truth (T),
the falsehood (F), and the indeterminacy (I), where T, I, F are standard or non-standard subsets of
the non-standard unit interval ]0−, 1+[= 0− ∪ [0, 1] ∪ 1+. The notion of neutrosophic quadruple
number, which is represented by a known part and an unknown part to describe a neutrosophic logic
proposition, was introduced by Florentin Smarandache in [22]. The algebra system (NQ, ∗) based on
neutrosophic quadruple numbers are introduced and the properties have discussed [22,23]. In this
paper, we will reveal that (NQ, ∗) is a NETG and some properties are discussed.

The paper is organized as follows. Section 2 gives the basic concepts. In Section 3, (NQ, ∗) be a
NETG is proved and some properties are discussed. In Section 4, two kinds of degradation algebra
systems of (NQ, ∗) are introduced and studied. Finally, the summary and future work are presented
in Section 5.

2. Basic Concepts

In this section, we will provide the related basic definitions and properties of NETG and
neutrosophic quadruple numbers, the details can be seen in [7,8,22,23].

Definition 1 ([7,8]). Let N be a non-empty set together with a binary operation ∗. Then, N is called a
neutrosophic extended triplet set if for any a ∈ N, there exists a neutral of “a” (denote by neut(a)), and an
opposite of “a”(denote by anti(a)), such that neut(a) ∈ N, anti(a) ∈ N and:

a ∗ neut(a) = neut(a) ∗ a = a, a ∗ anti(a) = anti(a) ∗ a = neut(a).

The triplet (a, neut(a), anti(a)) is called a neutrosophic extended triplet.

Definition 2 ([7,8]). Let (N, ∗) be a neutrosophic extended triplet set. Then, N is called a neutrosophic
extended triplet group (NETG), if the following conditions are satisfied:

(1) (N, ∗) is well-defined, i.e., for any a, b ∈ N, one has a ∗ b ∈ N.
(2) (N, ∗) is associative, i.e., (a ∗ b) ∗ c = a ∗ (b ∗ c) for all a, b, c ∈ N.
A NETG N is called a commutative NETG if for all a, b ∈ N, a ∗ b = b ∗ a.

Proposition 1 ([8]). Let (N, ∗) be a NETG. We have:
(1) neut(a) is unique for any a ∈ N.
(2) neut(a) ∗ neut(a) = neut(a) for any a ∈ N.
(3) neut(neut(a)) = neut(a) for any a ∈ N.

Definition 3 ([22,23]). A neutrosophic quadruple number is a number of the form (a, bT, cI, dF),
where T, I, F have their usual neutrosophic logic meanings and a, b, c, d ∈ R or C. The set NQ, defined by

NQ = {(a, bT, cI, dF) : a, b, c, d ∈ R or C}. (1)
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is called a neutrosophic set of quadruple numbers. For a neutrosophic quadruple number (a, bT, cI, dF), a is
called the known part and (bT, cI, dF) is called the unknown part.

Definition 4 ([22,23]). Let N be a set, endowed with a total order a ≺ b, named “a prevailed by b” or “a
less stronger than b” or “a less preferred than b”. We consider a � b as “a prevailed by or equal to b” “a less
stronger than or equal to b”, or “a less preferred than or equal to b”.

For any elements a, b ∈ N, with a � b, one has the absorbance law:

a · b = b · a = absorb(a, b) = max(a, b) = b, (2)

which means that the bigger element absorbs the smaller element. Clearly,

a · a = a2 = absorb(a, a) = max(a, a) = a. (3)

and
a1 · a2 · · · an = max(a1, a2, · · · , an). (4)

Analogously, we say that “a � b” and we read: “a prevails to b” or “a is stronger than b” or “a is preferred
to b”. Also, a � b, and we read: “a prevails or is equal to b” “a is stronger than or equal to b”, or “a is preferred
or equal to b”.

Definition 5 ([22,23]). Consider the set {T, I, F}. Suppose in an optimistic way we consider the prevalence
order T � I � F. Then we have: TI = IT = max(T, I) = T, TF = FT = max(T, F) = T, IF = FI =

max(I, F) = I, TT = T2 = T, I I = I2 = I, FF = F2 = F.
Analogously, suppose in a pessimistic way we consider the prevalence order T ≺ I ≺ F. Then we have:

TI = IT = max(T, I) = I, TF = FT = max(T, F) = F, IF = FI = max(I, F) = F, TT = T2 = T,
I I = I2 = I, FF = F2 = F.

Definition 6 ([22,23]). Let a = (a1, a2T, a3 I, a4F), b = (b1, b2T, b3 I, b4F) ∈ NQ, Suppose in an pessimistic
way, the neutrosophic expert considers the prevalence order T ≺ I ≺ F. Then the multiplication operation is
defined as following:

a ∗ b = (a1, a2T, a3 I, a4F) ∗ (b1, b2T, b3 I, b4F)
= (a1b1, (a1b2 + a2b1 + a2b2)T, (a1b3 + a2b3 + a3b1 + a3b2 + a3b3)I,

(a1b4 + a2b4 + a3b4 + a4b1 + a4b2 + a4b3 + a4b4)F).
(5)

Suppose in an optimistic way the neutrosophic expert considers the prevalence order T � I � F. Then:

a ? b = (a1, a2T, a3 I, a4F) ∗ (b1, b2T, b3 I, b4F)
= (a1b1, (a1b2 + a2b1 + a2b2 + a3b2 + a4b2 + a2b3 + a2b4)T,

(a1b3 + a3b1 + a3b3 + a3b4 + a4b3)I, (a1b4 + a4b1 + a4b4)F).
(6)

Proposition 2 ([22,23]). Let NQ = {(a, bT, cI, dF) : a, b, c, d ∈ R or C}. We have:
(1) (NQ, ∗) is a commutative monoid.
(2) (NQ, ?) is a commutative monoid.

3. Main Results

From Proposition 2, we can see that (NQ, ∗) (or (NQ, ?)) be a commutative monoid. In these
section, we will show that the algebra system (NQ, ∗)(or (NQ, ?)) is a NETG.

Theorem 1. For the algebra system (NQ, ∗), for every element a ∈ NQ, there exists the neutral element
neut(a) and opposite element anti(a).
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Proof analysis: the proof of this theorem contains two aspects. Firstly, given an element
a ∈ NQ, a = (a1, a2T, a3 I, a4F), ai ∈ R, i ∈ {1, 2, 3, 4}. Being ai can select every element in R, we should
discuss from different cases and in each case netu(a) and anti(a) should given. Secondly, we should
prove that all the cases discussed above include all the elements in NQ.

Proof. Let a = (a1, a2T, a3 I, a4F), we consider ai ∈ R, i ∈ {1, 2, 3, 4} and the same results can be gotten
when ai ∈ C.

Set neut(a) = (b1, b2T, b3 I, b4F), bi ∈ R, i ∈ {1, 2, 3, 4} and anti(a) = (c1, c2T, c3 I, c4F), ci ∈ R, i ∈
{1, 2, 3, 4}. From Definition 1 we can get a ∗ neut(a) = a, that is a1b1 = a1 should hold. So we discuss
from two cases, a1 = 0 or a1 6= 0.

Case A: when a1 = 0.
In this case, we have a = (0, a2T, a3 I, a4F). From Definition 1, a ∗ anti(a) = neut(a), that is

0 · c1 = b1, so we have b1 = 0, i.e., neut(a) = (0, b2T, b3 I, b4F). Moreover, from a ∗ neut(a) = a, we
have (0, a2T, a3 I, a4F) ∗ (0, b2T, b3 I, b4F) = (0, a2T, a3 I, a4F), so we have a2b2 = a2. So we discuss from
a2 = 0 or a2 6= 0.

Case A1: a1 = 0, a2 = 0. That is, a = (0, 0, a3 I, a4F), netu(a) = (0, b2T, b3 I, b4F), anti(a) =

(c1, c2T, c3 I, c4F). From a ∗ anti(a) = neut(a), we have 0c1 + 0(c1 + c2) = b2, so b2 = 0, i.e., netu(a) =
(0, 0, b3 I, b4F). From (0, 0, a3 I, a4F) ∗ (0, 0, b3 I, b4F) = (0, 0, a3 I, a4F), we have a3b3 = a3. So we discuss
from a3 = 0 or a3 6= 0.

Case A11: a1 = a2 = a3 = 0, that is, a = (0, 0, 0, a4F), netu(a) = (0, 0, b3 I, b4F), anti(a) =

(c1, c2T, c3 I, c4F). In the same way, from a ∗ anti(a) = neut(a), we have b3 = 0, i.e., netu(a) =

(0, 0, 0, b4F). From (0, 0, 0, a4F) ∗ (0, 0, 0, b4F) = (0, 0, 0, a4F), we have a4b4 = a4. So we discuss from
a4 = 0 or a4 6= 0.

Case A111: a1 = a2 = a3 = a4 = 0, that is, a = (0, 0, 0, 0), in this case, we can easily get
neut(a) = (0, 0, 0, 0) and anti(a) = (c1, c2T, c3 I, c4F), ci can be chosen arbitrarily in R.

Case A112: a1 = a2 = a3 = 0, a4 6= 0, being that a4b4 = a4 and a4 6= 0, we have b4 =

1, that is, a = (0, 0, 0, a4F), netu(a) = (0, 0, 0, F), anti(a) = (c1, c2T, c3 I, c4F). From (0, 0, 0, a4F) ∗
(c1, c2T, c3 I, c4F) = (0, 0, 0, F), we have a4(c1 + c2 + c3 + c4) = 1, so the opposite element of a should
satisfy c1 + c2 + c3 + c4 = 1

a4
, ci ∈ R.

Case A12: a1 = a2 = 0, a3 6= 0. From a3b3 = a3 and a3 6= 0, we have b3 = 1. That is a =

(0, 0, a3 I, a4F), netu(a) = (0, 0, I, b4F), anti(a) = (c1, c2T, c3 I, c4F). From (0, 0, a3 I, a4F) ∗ (0, 0, I, b4F) =
(0, 0, a3 I, a4F), we have 0b4 + 0b4 + a3b4 + a4(0+ 0+ 1+ b4) = a4, so (a3 + a4)b4 = 0. We discuss from
a3 + a4 = 0 or a3 + a4 6= 0.

Case A121: a1 = a2 = 0, a3 6= 0, a3 + a4 = 0, that is a = (0, 0, a3 I,−a3F), neut(a) =

(0, 0, I, b4F), anti(a) = (c1, c2T, c3 I, c4F). From a ∗ anti(a) = neut(a), that is (0, 0, a3 I,−a3F) ∗
(c1, c2T, c3 I, c4F) = (0, 0, I, b4F). So we have a3(c1 + c2 + c3) = 1 and a3c4 − a3(c1 + c2 + c3 + c4) = b4

i.e., c1 + c2 + c3 = 1
a3

and b4 = 1. Thus neut(a) = (0, 0, I,−F), anti(a) = (c1, c2T, c3 I, c4F), where
c1 + c2 + c3 = 1

a3
, c4 can be chosen arbitrarily in R.

Case A122: a1 = a2 = 0, a3 6= 0, a3 + a4 6= 0. From (a3 + a4)b4 = 0, we have b4 = 0. that
is a = (0, 0, a3 I, a4F), neut(a) = (0, 0, I, 0), anti(a) = (c1, c2T, c3 I, c4F). From a ∗ anti(a) = neut(a),
that is (0, 0, a3 I, a4F) ∗ (c1, c2T, c3 I, c4F) = (0, 0, I, 0). So we have a3(c1 + c2 + c3) = 1 and a3c4 −
a3(c1 + c2 + c3 + c4) = 0 i.e., c1 + c2 + c3 = 1

a3
and c4 = − a4

a3(a3+a−4) . Thus neut(a) = (0, 0, I, 0),

anti(a) = (c1, c2T, c3 I, c4F), where c1 + c2 + c3 = 1
a3

, c4 = − a4
a3(a3+a4)

.
Case A2: when a1 = 0, a2 6= 0. From a2b2 = a2, we have b2 = 1, that is, a =

(0, 0, a3 I, a4F), netu(a) = (0, T, b3 I, b4F), anti(a) = (c1, c2T, c3 I, c4F). In the same way, from a ∗
neut(a) = a, we have (a2 + a3)b3 = 0, so we discuss from a2 + a3 = 0 or a2 + a3 6= 0.

Case A21: when a1 = 0, a2 6= 0, a2 + a3 = 0. that is, a = (0, a2T,−a2 I, a4F), netu(a) =

(0, T, b3 I, b4F), anti(a) = (c1, c2T, c3 I, c4F). In the same way, from a ∗ neut(a) = a, we have
a4 + a4(b3 + b4) = a4, that is a4(b3 + b4) = 0, so we discuss from a4 = 0 or a4 6= 0.



Symmetry 2019, 11, 696 5 of 15

Case A211: when a1 = 0, a2 6= 0, a2 + a3 = 0, a4 = 0. that is, a = (0, a2T,−a2 I, 0), netu(a) =

(0, T, b3 I, b4F), anti(a) = (c1, c2T, c3 I, c4F). From (0, a2T,−a2 I, 0) ∗ (c1, c2T, c3 I, c4F) = (0, T, b3 I, b4F),
so we have a2(c1 + c2) = 1 and −a2(c1 + c2) = b3, that is b3 = −1. In the same way, we can get
b4 = 0. Thus neut(a) = (0, T,−I, 0), anti(a) = (c1, c2T, c3 I, c4F), where c1 + c2 = 1

a2
, c3, c4 can be

chosen arbitrarily in R.
Case A212: when a1 = 0, a2 6= 0, a2 + a3 = 0, a4 6= 0, From a4(b3 + b4) = 0, we have b3 + b4 =

0, that is, a = (0, a2T,−a2 I, a4F), netu(a) = (0, T, b3 I,−b3F), anti(a) = (c1, c2T, c3 I, c4F). From
(0, a2T,−a2 I, a4) ∗ (c1, c2T, c3 I, c4F) = (0, T, b3 I,−b3F), so we have a2(c1 + c2) = 1 and−a2(c1 + c2) =

b3, i.e., b3 = −1. Thus neut(a) = (0, T,−I, F), anti(a) = (c1, c2T, c3 I, c4F), where c1 + c2 = 1
a2

,
c3 + c4 = 1

a4
− 1

a2
.

Case A22: when a1 = 0, a2 6= 0, a2 + a3 6= 0. From (a2 + a3)b3 = 0, we have b3 = 0. that is,
a = (0, a2T,−a2 I, a4F), netu(a) = (0, T, 0, b4F), anti(a) = (c1, c2T, c3 I, c4F). From a ∗ neut(a) = a, we
have (a2 + a3 + a4)b4 = 0, so we discuss from a2 + a3 + a4 = 0 or a2 + a3 + a4 6= 0.

Case A221: when a1 = 0, a2 6= 0, a2 + a3 6= 0, a2 + a3 + a4 = 0. In this case a =

(0, a2T, a3 I, a4F), netu(a) = (0, T, 0, b4F), anti(a) = (c1, c2T, c3 I, c4F). From (0, a2T, a3 I, a4F) ∗
(c1, c2T, c3 I, c4F) = (0, T, 0, b4F), so we have a2(c1 + c2) = 1, c3 = − a3

a2(2+a3)
, (a2 + a3 + a4)b4 +

a4(c1 + c2 + c3) = b4, so we have b4 = −1. Thus neut(a) = (0, T, 0,−F), anti(a) = (c1, c2T, c3 I, c4F),
where c1 + c2 = 1

a2
, c3 = − a3

a2(2+a3)
, c4 can be chosen arbitrarily in R.

Case A222: when a1 = 0, a2 6= 0, a2 + a3 6= 0, a2 + a3 + a4 6= 0. From (a2 + a3 + a4)b4 = 0,
we have b4 = 0. that is, a = (0, a2T, a3 I, a4F), netu(a) = (0, T, 0, 0), anti(a) = (c1, c2T, c3 I, c4F).
From (0, a2T, a3 I, 0) ∗ (c1, c2T, c3 I, c4F) = (0, T, 0, 0), so we have a2(c1 + c2) = 1, c3 = − a3

a2(2+a3)
,

(a2 + a3 + a4)b4 + a4(c1 + c2 + c3) = 0, Thus neut(a) = (0, T, 0, 0), anti(a) = (c1, c2T, c3 I, c4F), where
c1 + c2 = 1

a2
, c3 = − a3

a2(2+a3)
, c4 = − a4

(a2+a3)(a2+a3+a4)
.

Case B: when a1 6= 0.
In this case, from a1b1 = a1 and a1 6= 0, we have b1 = 1. That is a = (a1, a2T, a3 I, a4F), neut(a) =

(1, b2T, b3 I, b4F), anti(a) = (c1, c2T, c3 I, c4F). From Definition 1, a ∗ neut(a) = a, that is a1b2 + a2 +

a2b2 = a2, so (a1 + a2)b2 = 0. So we discuss from a1 + a2 = 0 or a1 + a2 6= 0.
Case B1: when a1 6= 0, a1 + a2 = 0. That is a = (a1,−a1T, a3 I, a4F), neut(a) =

(1, b2T, b3 I, b4F), anti(a) = (c1, c2T, c3 I, c4F). From a ∗ anti(a) = neut(a), we have c1 = 1
a1

,
a1c2 − a1c1 − a1c2 = b2, so b2 = −1. From a ∗ neut(a) = a, so we have a3 + a3b2 + a3b3 = a3,
i.e., a3(b2 + b3) = 0. So we discuss from a3 = 0 or a3 6= 0.

Case B11: when a1 6= 0, a1 + a2 = 0, a3 = 0. That is a = (a1,−a1T, 0, a4F), neut(a) =

(1,−T, b3 I, b4F), anti(a) = (c1, c2T, c3 I, c4F). From a ∗ neut(a) = a, we have a1b4− a1b4− 0b4 + a4(1−
1 + b3 + b4) = a4, i.e., a4(b3 + b4) = a4. So we discuss from a4 = 0 or a4 6= 0.

Case B111: when a1 6= 0, a1 + a2 = 0, a3 = 0, a4 = 0. That is a = (a1,−a1T, 0, 0), neut(a) =

(1,−T, b3 I, b4F), anti(a) = (c1, c2T, c3 I, c4F). From a ∗ anti(a) = neut(a), i.e., (a1,−a1T, 0, 0) ∗
(c1, c2T, c3 I, c4F) = (1,−T, b3 I, b4F), we have c1 = 1

a1
, b3 = b4 = 0. Thus neut(a) = (1,−T, 0, 0),

anti(a) = (c1, c2T, c3 I, c4F), which satisfies c1 = 1
a1

and c2, c3, c4 can be chosen arbitrarily in R.
Case B112: when a1 6= 0, a1 + a2 = 0, a3 = 0, a4 6= 0. From a4(b3 + b4) = a4, we have b3 + b4 =

1. That is a = (a1,−a1T, 0, a4F), neut(a) = (1,−T, b3 I, b4F), anti(a) = (c1, c2T, c3 I, c4F). From a ∗
anti(a) = neut(a), i.e., (a1,−a1T, 0, a4F) ∗ (c1, c2T, c3 I, c4F) = (1,−T, b3 I, b4F), we have c1 = 1

a1
,

b3 = 0, b4 = 1. Thus neut(a) = (1,−T, 0, F), anti(a) = (c1, c2T, c3 I, c4F), where c1 = 1
a1

and c2 + c3 +

c4 = 1
a4
− 1

a1
.

Case B12: when a1 6= 0, a1 + a2 = 0, a3 6= 0. From a3(b2 + b3) = 0 and a3 6= 0, we have b2 + b3 = 0,
i.e., b3 = 1. That is a = (a1,−a1T, a3 I, a4F), neut(a) = (1,−T, I, b4F), anti(a) = (c1, c2T, c3 I, c4F).
From a ∗ neut(a) = a, we have a3b4 + a4 + a4b4 = a4, i.e., (a3 + a4)b4 = 0. So we discuss from
a3 + a4 = 0 or a3 + a4 6= 0.

Case B121: when a1 6= 0, a1 + a2 = 0, a3 6= 0, a3 + a4 = 0. That is a = (a1,−a1T, a3 I,−a3F),
neut(a) = (1,−T, I, b4F), anti(a) = (c1, c2T, c3 I, c4F). From a ∗ anti(a) = neut(a), i.e.,
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(a1,−a1T, a3 I,−a3F) ∗ (c1, c2T, c3 I, c4F) = (1,−T, I, b4F), we have c1 = 1
a1

, c2 + c3 = 1
a3
− 1

a1
,

−a3(c1 + c2 + c3) = b4, i.e., b4 = −1. Thus neut(a) = (1,−T, I,−F), anti(a) = (c1, c2T, c3 I, c4F),
where c1 = 1

a1
, c2 + c3 = 1

a3
− 1

a2
, c4 can be chosen arbitrarily in R.

Case B122: when a1 6= 0, a1 + a2 = 0, a3 6= 0, a3 + a4 6= 0, from (a3 + a4)b4 = 0, we have b4 = 0.
That is a = (a1,−a1T, a3 I, a4F), neut(a) = (1,−T, I, 0), anti(a) = (c1, c2T, c3 I, c4F). From a ∗ anti(a) =
neut(a), i.e., (a1,−a1T, a3 I, a4F) ∗ (c1, c2T, c3 I, c4F) = (1,−T, I, 0), we have c1 = 1

a1
, c2 + c3 = 1

a3
− 1

a1
,

c4 = − a4
a3(a3+a4)

. Thus neut(a) = (1,−T, I,−F), anti(a) = (c1, c2T, c3 I, c4F), where c1 = 1
a1

, c2 + c3 =
1
a3
− 1

a1
, c4 = − a4

a3(a3+a4)
.

Case B2: when a1 6= 0, a1 + a2 6= 0, from (a1 + a2)b2 = 0, we have b2 = 0. That is a =

(a1,−a1T, a3 I, a4F), neut(a) = (1, 0, b3 I, b4F), anti(a) = (c1, c2T, c3 I, c4F). From a ∗ neut(a) = a, so we
have a1b3 + a2b3 + a3 + a3b3 = a3, i.e., (a1 + a2 + a3)b3 = 0. So we discuss from a1 + a2 + a3 = 0 or
a1 + a2 + a3 6= 0.

Case B21: when a1 6= 0, a1 + a2 6= 0, a1 + a2 + a3 = 0. That is a = (a1, a2T, a3 I, a4F), neut(a) =
(1, 0, b3 I, b4F), anti(a) = (c1, c2T, c3 I, c4F). From a ∗ neut(a) = a, so we have (a1 + a2 + a3)b4 + a4 +

a4b3 + a4b4 = a4, i.e., (b3 + b4)a4 = 0. So we discuss from a4 = 0 or a4 6= 0.
Case B211: when a1 6= 0, a1 + a2 6= 0, a1 + a2 + a3 = 0, a4 = 0. That is a =

(a1, a2T, a3 I, 0), neut(a) = (1, 0, b3 I, b4F), anti(a) = (c1, c2T, c3 I, c4F). From a ∗ anti(a) = neut(a), i.e.,
(a1, a2T, a3 I, 0) ∗ (c1, c2T, c3 I, c4F) = (1, 0, b3 I, b4F), we have c1 = 1

a1
, c2 = − a2

a1(a1+a2)
. a3(c1 + c2) = b3,

(a1 + a2 + a3)c4 + 0(c1 + c2 + c3 + c4) = 0, which means b3 = −1, b4 = 0. Thus neut(a) = (1, 0,−I, 0),
anti(a) = (c1, c2T, c3 I, c4F), where c1 = 1

a1
, c2 = − a2

a1(a1+a2)
, c3, c4 can be chosen arbitrarily in R.

Case B212: when a1 6= 0, a1 + a2 6= 0, a1 + a2 + a3 = 0, a4 6= 0. From (b3 + b4)a4 = 0, we have
b3 + b4 = 0. That is a = (a1, a2T, a3 I, a4F), neut(a) = (1, 0, b3 I,−b3F), anti(a) = (c1, c2T, c3 I, c4F).
From a ∗ anti(a) = neut(a), i.e., (a1, a2T, a3 I, a4F) ∗ (c1, c2T, c3 I, c4F) = (1, 0, b3 I,−b3F), we have
c1 = 1

a1
, c2 = − a2

a1(a1+a2)
. a3(c1 + c2) = b3, i.e., b3 = −1, b4 = 1. Thus neut(a) = (1, 0,−I, F),

anti(a) = (c1, c2T, c3 I, c4F), where c1 = 1
a1

, c2 = − a2
a1(a1+a2)

, c3 + c4 = 1
a4
− 1

a1+a2
.

Case B22: when a1 6= 0, a1 + a2 6= 0, a1 + a2 + a3 6= 0, from (a1 + a2 + a3)b3 = 0, we have b3 = 0.
That is a = (a1, a2T, a3 I, a4F), neut(a) = (1, 0, 0, b4F), anti(a) = (c1, c2T, c3 I, c4F). From a ∗ neut(a) = a,
so we have (a1 + a2 + a3 + a4)b4 + a4 = a4, i.e., (a1 + a2 + a3 + a4)b4 = 0. So we discuss from
a1 + a2 + a3 + a4 = 0 or a1 + a2 + a3 + a4 6= 0.

Case B221: when a1 6= 0, a1 + a2 6= 0, a1 + a2 + a3 6= 0, a1 + a2 + a3 + a4 = 0, That is
a = (a1, a2T, a3 I, a4F), neut(a) = (1, 0, 0, b4F), anti(a) = (c1, c2T, c3 I, c4F). From a ∗ anti(a) = neut(a),
i.e., (a1, a2T, a3 I, a4F) ∗ (c1, c2T, c3 I, c4F) = (1, 0, 0, b4F), we have c1 = 1

a1
, c2 = − a2

a1(a1+a2)
. c3 =

− a3
(a1+a2)(a1+a2+a3)

, a4(c1 + c2 + c3) = b4, so b4 = −1. Thus neut(a) = (1, 0, 0,−F), anti(a) =

(c1, c2T, c3 I, c4F), where c1 = 1
a1

, c2 = − a2
a1(a1+a2)

, c3 = − a3
(a1+a2)(a1+a2+a3)

, c4 can be chosen arbitrarily
in R.

Case B222: when a1 6= 0, a1 + a2 6= 0, a1 + a2 + a3 6= 0, a1 + a2 + a3 + a4 6= 0. From (a1 + a2 +

a3 + a4)b4 + a4 = a4, we have b4 = 0. That is a = (a1, a2T, a3 I, a4F), neut(a) = (1, 0, 0, 0), anti(a) =

(c1, c2T, c3 I, c4F). From a ∗ anti(a) = neut(a), i.e., (a1, a2T, a3 I, a4F) ∗ (c1, c2T, c3 I, c4F) = (1, 0, 0, 0),
we have c1 = 1

a1
, c2 = − a2

a1(a1+a2)
, c3 = − a3

(a1+a2)(a1+a2+a3)
. (a1 + a2 + a3 + a4)c4 + a4(c1 + c2 + c3) = 0,

i.e., c4 = − a4
(a1+a2+a3)(a1+a2+a3+a4)

. Thus neut(a) = (1, 0, 0, 0), anti(a) = (c1, c2T, c3 I, c4F), where

c1 = 1
a1

, c2 = − a2
a1(a1+a2)

, c3 = − a3
(a1+a2)(a1+a2+a3)

, c4 = − a4
(a1+a2+a3)(a1+a2+a3+a4)

.

Finally, we should show that all the above cases include each element a ∈ NQ, i.e., ai, i = 1, 2, 3, 4
can take all the values on R. It is obvious that a1 can take all the values on R because a1 = 0 according
to case A and that a1 6= 0 according to case B. Moreover, for case A, a2 can take all the values on R
because case A1 according to a2 = 0 and case A2 according to a2 6= 0. For case B, a2 can take all the
values on R because case B1 according to a1 + a2 = 0 and case B2 according to a1 + a2 6= 0. That is for
each element a = (a1, a2, a3, a4) ∈ NQ, a1, a2 can select all of value in R. We will verify that a3 and a4

can take all the values on R when case A1 or A2 or B1 or B2 respectively.
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For case A1, a3 can take all the value in R because case A11 according to a3 = 0 and case A12
according to a3 6= 0. Similarly, for case A11, a4 can take all the value in R because case A111 according
to a4 = 0 and case A112 according to a4 6= 0. For case A12, a4 can take all the value in R because
case A121 according to a3 + a4 = 0 and case A122 according to a3 + a4 = 0. The top left subgraph of
Figure 1 shows that the four cases A111, A112, A211 and A222. The unique � point represents the
case A111, the + points represent the case A112, the ∗ points represent the case A121 and the • points
represent the case A122. This explain the that for case A1, a3 and a4 can take all the points on the
plane. For case A2, B1 or B2, we can get that a3 and a4 can take all the points on the plane respectively.
The top right subgraph of Figure 1 represents the case A2 if we select a1 = 0, a2 = 1, the bottom left
subgraph of Figure 1 represents the case B1 if we select a1 = 1, a2 = −1 and bottom right subgraph of
Figure 1 represents the case B2 if we select a1 = 1, a2 = 0. The figure intuitively illustrates that all the
points (a1, a2, a3, a4), ai ∈ R are included.

Through the above analysis, we can get that for each element a ∈ NQ, there exists the neutral
element neut(a) and opposite element anti(a).
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Figure 1. The demonstration figure shows that case A1 (a1 = a2 = 0, the top left subgraph) or A2 (select
a1 = 0, 0 6= a2 = 1, the top right subgraph) or B1 (Select a1 6= 0, a2 = −1 which means a1 + a2 = 0, the
bottom left subgraph) or B2 (select a1 = 1, a2 = 0, which means a1 + a2 6= 0, the bottom right subgraph)
can take all the values on the plane.

For algebra system (NQ, ∗), Table 1 gives all the subset, which has the same neutral element, and
the corresponding neutral element and opposite elements.
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Table 1. The corresponding neutral element and opposite elements for (NQ, ∗).

The Subset of NQ Neutral Elements Opposite Element (c1, c2T , c3 I, c4F)

{(0, 0, 0, 0)} (0, 0, 0, 0) ci ∈ R

{(0, 0, 0, a4F)|a4 6= 0} (0, 0, 0, F) c1 + c2 + c3 + c4 = 1
a4

{(0, 0, a3 I,−a3F)|a3 6= 0} (0, 0, I,−F) c1 + c2 + c3 = 1
a3

, c4 ∈ R

{(0, 0, a3 I, a4F)|a3 6= 0, a3 + a4 6= 0} (0, 0, I, 0) c1 + c2 + c3 = 1
a3

, c4 = − a4
a3(a3+a4)

{(0, a2T,−a2 I, 0)|a2 6= 0 } (0, T,−I, 0)} c1 + c2 = 1
a2

, c3, c4 ∈ R

{(0, a2T,−a2 I, a4F)|a2 6= 0, a4 6= 0} (0, T,−I, F) c1 + c2 = 1
a2

, c3 + c4 = 1
a4
− 1

a2

{(0, a2T, a3 I, a4F)|a2 6= 0, a2 + a3 6=
0, a2 + a3 + a4 = 0}

(0, T, 0,−F) c1 + c2 = 1
a2

, c3 = − a3
a2(a2+a3)

, c4 ∈ R

{(0, a2T, a3 I, a4F)|a2 6= 0, a2 + a3 6=
0, a2 + a3 + a4 6= 0}

(0, T, 0, 0) c1 + c2 = 1
a2

, c3 = − a3
a2(a2+a3)

,

c4 = − a4
(a2+a3)(a2+a3+a4)

{(a1,−a1T, 0, 0)|a1 6= 0} (1,−T, 0, 0)} c1 = 1
a1

, c2, c3, c4 ∈ R

{(a1,−a1T, 0, a4F)|a1 6= 0, a4 6= 0} (1,−T, 0, F) c1 = 1
a1

, c2 + c3 + c4 = 1
a4
− 1

a1

{(a1,−a1T, a3 I,−a3F)|a1 6= 0, a3 6= 0} (1,−T, I,−F) c1 = 1
a1

, c2 + c3 = 1
a3
− 1

a1
, c4 ∈ R

{(a1,−a1T, a3 I, a4F)|a1 6= 0, a3 6=
0, a3 + a4 6= 0}

(1,−T, I, 0) c1 = 1
a1

, c2 + c3 = 1
a3
− 1

a1
,

c4 = − a4
a3(a3+a4)

{(a1, a2T, a3 I, 0)|a1 6= 0, a1 + a2 6=
0, a1 + a2 + a3 = 0}

(1, 0,−I, 0) c1 = 1
a1

, c2 = − a2
a1(a1+a2)

, c3, c4 ∈ R

{(a1, a2T, a3 I, a4F)|a1 6= 0, a1 + a2 6=
0, a1 + a2 + a3 = 0, a4 6= 0}

(1, 0,−I, F) c1 = 1
a1

, c2 = − a2
a1(a1+a2)

,

c3 + c4 = 1
a4
− 1

a1+a2

{(a1, a2T, a3 I, a4F)|a1 6= 0, a1 + a2 6=
0, a1 + a2 + a3 6= 0, a1 + a2 + a3 + a4 =
0}

(1, 0, 0,−F) c1 = 1
a1

, c2 = − a2
a1(a1+a2)

,

c3 = − a3
(a1+a2)(a1+a2+a3)

, c4 ∈ R

{(a1, a2T, a3 I, a4F)|a1 6= 0, a1 + a2 6=
0, a1 + a2 + a3 6= 0, a1 + a2 + a3 + a4 6=
0}

(1, 0, 0, 0) c1 = 1
a1

, c2 = − a2
a1(a1+a2)

,

c3 = − a3
(a1+a2)(a1+a2+a3)

,

c4 = − a4
(a1+a2+a3)(a1+a2+a3+a4)

Example 1. For the algebra system (NQ, ∗), if a = (a1, a2, a3, a4) = (1,−T, 3I,−F), i.e., a1 6= 0, a1 + a2 =

0, a3 6= 0, a3 + a4 6= 0, then from Table 1, we can get neut(a) = (1,−T, I, 0). Let anti(a) = (c1, c2T, c3 I, c4F),
so c1 = 1

a1
= 1, c2 + c3 = 1

a3
− 1

a1
= − 2

3 , c4 = − a4
a3(a3+a4)

= 1
6 , so anti(a) = (1, c2T, c3 I, 1

6 F), where

c2 + c3 = − 2
3 . Thus we can easily get the neutral element and opposite elements of each neutrosophic quadruple

number. For more examples, see the following:

1. Let b = (0, 0, I,−F), then neut(b) = (0, 0, I,−F) and anti(b) = (c1, c2T, c3 I, c4F), where c1 + c2 +

c3 = 1, c4 can be can be chosen arbitrarily in R.
2. Let c = (1, T, I,−F), then neut(c) = (1, 0, 0, 0) and anti(c) = (1,− 1

2 T,− 1
6 I, 1

6 F).
3. Let d = (0, T, I, F), then neut(d) = (0, T, 0, 0) and anti(d) = (c1, c2T,− 1

2 I,− 1
6 F), where c1 + c2 = 1.

In the following, we will discuss the algebra structure properties of (NQ, ∗).

Proposition 3. For algebra system (NQ, ∗), let NS = {neut(a)|a ∈ NQ}, we have:
(1) NS = {(1, 0, 0, 0), (0, 0, 0, F), (0, 0, I,−F), (0, 0, I, 0), (0, T,−I, 0), (0, T,−I, F), (0, T, 0,−F), (0, T, 0, 0),

(1,−T, 0, 0), (1,−T, 0, F), (1,−T, I,−F), (1,−T, I, 0), (1, 0,−I, 0), (1, 0,−I, F), (1, 0, 0,−F), (1, 0, 0, 0)}.
(2) NS is closed with respect to operation ∗.
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(3) Set IS = {a|a2 = a, a ∈ NQ}, which is all the set of idempotent elements of (NQ, ∗), then NS = IS.

Proof. (1) Obviously.
(2) If c, d ∈ NS, that is neut(a) = c, neut(b) = d, a, b ∈ NQ. From Proposition 1, neut(a) ∗

neut(b) = neut(a ∗ b), i.e., c ∗ d = neut(a ∗ b), then form Theorem 1, every element in NQ has neutral
element, so a ∗ b also has neutral element, that is neut(a ∗ b) ∈ NS, i.e., c ∗ d ∈ NS, thus NS is closed
with respect to operation ∗.

(3) From Proposition 1, neut(a) ∗ neut(a) = neut(a), so neut(a) is a idempotent element and
NS ⊆ IS. On the other hand if a is a idempotent element, so a ∗ a = a, that is a exists the neutral
element a and the opposite element a, so a is a neutral element, that is IS ⊆ NS. Thus NS = IS.

Proposition 4. For algebra system (NQ, ∗), let Vc = {a|a ∈ NQ ∧ neut(a) = c}, Vc∗d = {a ∗ b|a, b ∈
NQ ∧ neut(a) = c ∧ neut(b) = d}, we have:

(1) Vc is closed with respect to operation ∗.
(2) Vc∗d is closed with respect to operation ∗.

Proof. (1) If a, b ∈ Vc, that is neut(a) = neut(b) = c. From Proposition 1, neut(a) ∗ neut(b) =

neut(a ∗ b), we can see that neut(a ∗ b) = neut(a) = c, i.e., the neutral element of a ∗ b is the neutral
element of a, so a ∗ b ∈ Vc, that is Vc is closed with respect to operation ∗.

(2) If a1 ∗ b1, a2 ∗ b2 ∈ Vc∗d, i.e., neut(a1) = neut(a2) = c, neut(b1) = neut(b2) = d.
From Proposition 3(2), a1 ∗ a2 = a3 ∈ Vc, b1 ∗ b2 = b3 ∈ Vd, so neut(a3) = c, neut(b3) = d, from
(a1 ∗ b1) ∗ (a2 ∗ b2) = a3 ∗ b3, so neut(a1 ∗ a2 ∗ b1 ∗ b2) = neut(a3 ∗ a4), that is a3 ∗ a4 ∈ Vc∗d, that means
a1 ∗ a2 ∗ b1 ∗ b2 ∈ Vc∗d. Thus Vc∗d is closed with respect to operation ∗.

Definition 7. Assume that (N, ∗) is a neutrosophic triplet group and H be a nonempty subset of N. Then H is
called a neutrosophic triplet subgroup of N if;

(1) a ∗ b ∈ H for all a, b ∈ H;
(2) there exists anti(a) ∈ {anti(a)} such that anti(a) ∈ H for all a ∈ H, where {anti(a)} is the set of

opposite element of a in (N, ∗).

Theorem 2. For algebra system (NQ, ∗), let Vc = {a|a ∈ NQ ∧ neut(a) = c}, Vc∗d = {a ∗ b|a, b ∈
NQ ∧ neut(a) = c, neut(b) = d}, we have:

(1) Vc is a neutrosophic triplet subgroup of NQ.
(2) Vc∗d is a neutrosophic triplet subgroup of NQ.

Proof. (1) From Proposition 3, we can see that Vc is closed with respect to operation ∗. In the following,
we will prove there exists anti(a) ∈ {anti(a)} such that anti(a) ∈ Vc for all a ∈ Vc.

Proof by contradiction.
Assume that {anti(a)} ∩Vc = ∅. From Proposition 1 we can see that a ∗ anti(a) = c. On the other

hand, anti(a) ∈ NQ, so anti(a) exists neutral element, denoted by neut(anti(a)). Being anti(a) 6∈ Vc,
so neut(anti(a)) 6= c.

From a ∗ anti(a) = c, we have a ∗ anti(a) ∗ neut(anti(a)) = c ∗ neut(anti(a)), being anti(a) ∗
neut(anti(a)) = anti(a) and a ∗ anti(a) = c, we have c ∗ neut(anti(a)) = c, and then we have a ∗
c ∗ neut(anti(a)) = a ∗ c = a, that means a ∗ neut(anti(a)) = a, so neut(anti(a)) is also a neutral
element of a. This leads to the contradiction being the uniqueness of neutral element for each element.
Therefore {anti(a)} ∩Vc 6= ∅. Thus from Definition 7, Vc is a neutrosophic triplet subgroup of NQ.

(2) The same way we can get Vc∗d is a neutrosophic triplet subgroup of NQ.

Theorem 3. For algebra system (NQ, ∗), let Vc = {a|a ∈ NQ ∧ neut(a) = c}, we have:
(1) Vc ∩Vd = ∅ if c 6= d.
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(2) NQ = ∪c∈NSVc. So ∪c∈NSVc is a partition of NQ, where NS is a set, which contains all the neutral
elements of (NQ, ∗).

Proof. (1) Proof by contradiction.
Assume Vc ∩Vd 6= ∅ when c 6= d, so exist a ∈ Vc ∩Vd, such that a has two neutral elements c and

d. This leads to the contradiction being the uniqueness of neutral element. So Vc ∩Vd = ∅ if c 6= d.
(2) From the proof of Theorem 1, we can get NQ = ∪c∈NSVc. So ∪c∈NSVc is a partition of NQ.

For the algebra system (NQ, ?), we have the similar results. We describe as following and omit
the proof.

Theorem 4. For the algebra system (NQ, ?), for every element a ∈ NQ, there exists the neutral element
neut(a) and opposite element anti(a).

For algebra system (NQ, ?), Table 2 gives all the subset, which has the same neutral element, and
the corresponding neutral element and opposite elements.

Table 2. The corresponding neutral element and opposite elements for (NQ, ?).

The Subset of NQ Neutral Elements Opposite Element (c1, c2T , c3 I, c4F)

{(0, 0, 0, 0)} (0, 0, 0, 0) ci ∈ R

{(0, a2T, 0, 0)|a2 6= 0} (0, T, 0, 0) c1 + c2 + c3 + c4 = 1
a2

{(0,−a3T, a3 I, 0)|a3 6= 0} (0,−T, I, 0) c1 + c3 + c4 = 1
a3

, c2 ∈ R

{(0, a2T, a3 I, a4F)|a3 6= 0, a2 + a3 6= 0} (0, 0, I, 0) c1 + c3 + c4 = 1
a3

,
c2 = − a2

a3(a2+a3)

{(0, 0,−a4 I, a4F)|a4 6= 0} (0, 0,−I, F)} c1 + c4 = 1
a4

, c2, c3 ∈ R

{(0, a2T,−a4 I, a4F)|a2 6= 0, a4 6= 0} (0, T,−I, F) c1 + c4 = 1
a4

, c2 + c3 = 1
a2
− 1

a4

{(0, a2T, a3 I, a4F)|a4 6= 0, a3 + a4 6= 0, a2 +
a3 + a4 = 0}

(0,−T, 0, F) c1 + c4 = 1
a4

, c3 = − a3
a4(a3+a4)

, c2 ∈ R

{(0, a2T, a3 I, a4F)|a4 6= 0, a3 + a4 6= 0, a2 +
a3 + a4 6= 0}

(0, 0, 0, F) c1 + c4 = 1
a4

, c3 = − a3
a4(a3+a4)

,

c2 = − a2
(a3+a4)(a2+a3+a4)

{(a1, 0, 0,−a1F)|a1 6= 0} (1, 0, 0,−F)} c1 = − 1
a1

, c2, c3, c4 ∈ R

{(a1, a2T, 0,−a1F)|a1 6= 0, a2 6= 0} (1, T, 0,−F) c1 = 1
a1

, c2 + c3 + c4 = 1
a2
− 1

a1

{(a1,−a3T, a3 I,−a1F)|a1 6= 0, a3 6= 0} (1,−T, I,−F) c1 = 1
a1

, c3 + c4 = 1
a3
− 1

a1
, c4 ∈ R

{(a1, a2T, a3 I,−a1F)|a1 6= 0, a3 6= 0, a2 +
a3 6= 0}

(1, 0, I,−F) c1 = 1
a1

, c3 + c4 = 1
a3
− 1

a1
,

c2 = − a2
a3(a2+a3)

{(a1, 0, a3 I, a4F)|a1 6= 0, a1 + a4 6= 0, a1 +
a3 + a4 = 0}

(1, 0,−I, 0) c1 = 1
a1

, c4 = − a4
a1(a1+a4)

, c2, c3 ∈ R

{(a1, a2T, a3 I, a4F)|a1 6= 0, a1 + a4 6= 0, a1 +
a3 + a4 = 0, a2 6= 0}

(1, T,−I, 0) c1 = 1
a1

, c4 = − a4
a1(a1+a4)

,

c2 + c3 = 1
a2
− 1

a1+a4

{(a1, a2T, a3 I, a4F)|a1 6= 0, a1 + a4 6= 0, a1 +
a3 + a4 6= 0, a1 + a2 + a3 + a4 = 0}

(1,−T, 0, 0) c1 = 1
a1

, c4 = − a4
a1(a1+a4)

,

c3 = − a3
(a1+a4)(a1+a3+a4)

, c2 ∈ R

{(a1, a2T, a3 I, a4F)|a1 6= 0, a1 + a4 6= 0, a1 +
a3 + a4 6= 0, a1 + a2 + a3 + a4 6= 0}

(1, 0, 0, 0) c1 = 1
a1

, c4 = − a4
a1(a1+a4)

,

c3 = − a3
(a1+a4)(a1+a3+a4)

,

c2 = − a2
(a1+a3+a4)(a1+a2+a3+a4)
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Theorem 5. For an algebra system (NQ, ?), let Vc = {a|a ∈ NQ ∧ neut(a) = c}, Vc?d = {a ? b|a, b ∈
NQ ∧ neut(a) = c, neut(b) = d}, we have:

(1) Vc is a neutrosophic triplet subgroup of NQ.
(2) Vc?d is a neutrosophic triplet subgroup of NQ.

Theorem 6. For algebra system (NQ, ?), Let Vc = {a|a ∈ NQ ∧ neut(a) = c}, we have:
(1) Vc ∩Vd = ∅ if c 6= d.
(2) NQ = ∪c∈NSVc. So ∪c∈NSVc is a partition of NQ, where NS is a set, which contains all the neutral

elements of (NQ, ?).

4. Two Kinds of Degenerate Systems of Neutrosophic Quadruple Numbers

The neutrosophic quadruple numbers consider (T, I, F) to solve real problems. In this section,
we will explore two kinds of degenerate systems about neutrosophic quadruple numbers. The first
system is only consider logical true, and the second system is only consider logical true and
logical indeterminacy.

4.1. The Neutrosophic Binary Numbers

Definition 8. A neutrosophic binary number is a number of the form (a, bT), where T have their usual
neutrosophic logic true and a, b ∈ R or C. The set NB defined by

NB = {(a, bT) : a, b ∈ R or C}. (7)

is called a neutrosophic set of binary numbers. For a neutrosophic binary number (a, bT), a is called the known
part and (bT) is called the unknown part.

Definition 9. Let a = (a1, a2T), b = (b1, b2T) ∈ NB, the multiplication operation is defined as following:

a ∗ b = (a1, a2T) ∗ (b1, b2T) = (a1b1, (a1b2 + a2b1 + a2b2)T). (8)

We have the following results similar to (NQ, ∗).

Theorem 7. For the algebra system (NB, ∗), for every element a ∈ NB, there exists the neutral element
neut(a) and opposite element anti(a).

For algebra system (NB, ∗), Table 3 gives all the subset, which has the same neutral element, and
the corresponding neutral element and opposite elements.

Table 3. The corresponding neutral element and opposite elements for (NB, ∗).

The Subset Neutral Elements Opposite Element (c1, c2T)

{(0, 0)} (0, 0) ci ∈ R

{(0, a2T)|a2 6= 0} (0, T) c1 + c2 = 1
a2

{(a1,−a1T)|a1 6= 0} (1, 0) c1 = 1
a1

, c2 ∈ R

{(a1, a2T)|a1 6= 0 (1,−T) c1 = 1
a1

, c2 = − a2
a1(a1+a2)

Theorem 8. For algebra system (NB, ∗), let Vc = {a|a ∈ NB ∧ neut(a) = c}, Vc∗d = {a ∗ b|a, b ∈
NB ∧ neut(a) = c, neut(b) = d}, we have:

(1) Vc is a neutrosophic triplet subgroup of NB.
(2) Vc∗d is a neutrosophic triplet subgroup of NB.
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Theorem 9. For an algebra system (NB, ∗), let Vc = {a|a ∈ NB ∧ neut(a) = c}, we have:
(1) Vc ∩Vd = ∅ if c 6= d.
(2) NB = ∪c∈NSVc. So ∪c∈NSVc is a partition of NB, where NS is a set, which contains all the neutral

elements of (NB, ∗).

4.2. The Neutrosophic Triple Numbers

Definition 10. A neutrosophic triple number is a number of the form (a, bT, cI), where T, I have their usual
neutrosophic logic meanings and a, b, c ∈ R or C. The set NT defined by

NT = {(a, bT, cI) : a, b, c ∈ R or C} (9)

is called a neutrosophic set of triple numbers. For a neutrosophic triple number (a, bT, cI), a is called the known
part and (bT, cI) is called the unknown part.

Definition 11. Let a = (a1, a2T, a3 I), b = (b1, b2T, b3 I) ∈ NT, suppose in an pessimistic way, the
neutrosophic expert considers the prevalence order T ≺ I. Then the multiplication operation is defined
as following:

a ∗ b = (a1, a2T, a3 I) ∗ (b1, b2T, b3 I)
= (a1b1, (a1b2 + a2b1 + a2b2)T, (a1b3 + a2b3 + a3b1 + a3b2 + a3b3)I.

(10)

Suppose in an optimistic way the neutrosophic expert considers the prevalence order T � I. Then:

a ? b = (a1, a2T, a3 I) ∗ (b1, b2T, b3 I)
= (a1b1, (a1b2 + a2b1 + a2b2 + a2b2 + a3b2)T, (a1b3 + a3b1 + a3b3)I).

(11)

Theorem 10. For the algebra system (NT, ∗), for every element a ∈ NT, there exists the neutral element
neut(a) and opposite element anti(a).

For algebra system (NT, ∗), Table 4 gives all the subset, which has the same neutral element, and
the corresponding neutral element and opposite elements.

Table 4. The corresponding neutral element and opposite elements for (NT, ∗).

The Subset Neutral Elements Opposite Element (c1, c2T , c3 I)

{(0, 0, 0)} (0, 0, 0) ci ∈ R

{(0, 0, a3 I)|a3 6= 0} (0, 0, I) c1 + c2 + c3 = 1
a3

{(0, a2T,−a2 I)|a2 6= 0, a2 + a3 = 0} (0, T,−I) c1 + c2 = 1
a2

, c3 ∈ R

{(0, a2T, a3 I)|a2 6= 0, a2 + a3 6= 0} (0, T, 0) c1 + c2 = 1
a2

, c3 = − a3
a2(a2+a3)

{(a1,−a1T, 0)|a1 6= 0} (1,−T, 0)} c1 = 1
a1

, c2, c3 ∈ R

{(a1,−a1T, a3 I)|a1 6= 0, a3 6= 0} (1,−T, I) c1 = 1
a1

, c2 + c3 = 1
a3
− 1

a1

{(a1, a2T, a3 I)|a1 6= 0, a1 + a2 6= 0, a1 +
a2 + a3 = 0}

(1, 0,−I) c1 = 1
a1

, c2 = − a2
a1(a1+a2)

, c3 ∈ R

{(a1, a2T, a3 I)|a1 6= 0, a1 + a2 6= 0, a1 +
a2 + a3 6= 0}

(1, 0, 0) c1 = 1
a1

, c2 = − a2
a1(a1+a2)

,

c3 = − a3
(a1+a2)(a1+a2+a3)
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Theorem 11. For an algebra system (NT, ∗), let Vc = {a|a ∈ NT ∧ neut(a) = c}, Vc∗d = {a ∗ b|a, b ∈
NT ∧ neut(a) = c, neut(b) = d}, we have:

(1) Vc is a neutrosophic triplet subgroup of NT.
(2) Vc∗d is a neutrosophic triplet subgroup of NT.

Theorem 12. For an algebra system (NT, ∗), let Vc = {a|a ∈ NT ∧ neut(a) = c}, we have:
(1) Vc ∩Vd = ∅ if c 6= d.
(2) NT = ∪c∈NSVc. So ∪c∈NSVc is a partition of NT, where NS is a set, which contains all the neutral

elements of (NT, ∗).

Theorem 13. For the algebra system (NT, ?), for every element a ∈ NT, there exists the neutral element
neut(a) and opposite element anti(a).

For an algebra system (NT, ?), Table 5 gives all the subset, which has the same neutral element,
and the corresponding neutral element and opposite elements.

Table 5. The corresponding neutral element and opposite elements for (NT, ?).

The Subset Neutral Elements Opposite Element (c1, c2T , c3 I)

{(0, 0, 0)} (0, 0, 0) ci ∈ R

{(0, a2T, 0)|a2 6= 0} (0, T, 0) c1 + c2 + c3 = 1
a2

{(0, a3T,−a3 I)|a3 6= 0, a2 + a3 = 0} (0,−T, I) c1 + c3 = 1
a3

, c2 ∈ R

{(0, a2T, a3 I)|a3 6= 0, a2 + a3 6= 0} (0, 0, I) c1 + c3 = 1
a3

, c2 = − a2
a3(a2+a3)

{(a1, 0,−a1 I)|a1 6= 0} (1, 0,−I)} c1 = 1
a1

, c2, c3 ∈ R

{(a1, a2T,−a1 I)|a1 6= 0, a2 6= 0} (1, T,−I) c1 = 1
a1

, c2 + c3 = 1
a2
− 1

a1

{(a1, a2T, a3 I)|a1 6= 0, a1 + a3 6= 0, a1 +
a2 + a3 = 0}

(1,−T, 0) c1 = 1
a1

, c3 = − a3
a1(a1+a3)

, c2 ∈ R

{(a1, a2T, a3 I)|a1 6= 0, a1 + a3 6= 0, a1 +
a2 + a3 6= 0}

(1, 0, 0) c1 = 1
a1

, c3 = − a3
a1(a1+a3)

,

c2 = − a2
(a1+a3)(a1+a2+a3)

Theorem 14. For algebra system (NT, ?), let Vc = {a|a ∈ NT ∧ neut(a) = c}, Vc?d = {a ? b|a, b ∈
NT ∧ neut(a) = c, neut(b) = d}, we have:

(1) Vc is a neutrosophic triplet subgroup of NT.
(2) Vc?d is a neutrosophic triplet subgroup of NT.

Theorem 15. For an algebra system (NT, ?), let Vc = {a|a ∈ NT ∧ neut(a) = c}, we have:
(1) Vc ∩Vd = ∅ if c 6= d.
(2) NT = ∪c∈NSVc. So ∪c∈NSVc is a partition of NT, where NS is a set, which contains all the neutral

elements of (NT, ?).

5. Conclusions

In the paper, we prove that (NQ, ∗)(or NQ, ?) is a neutrosophic extended triplet group, and
provide new examples of a neutrosophic extended triplet group. We also explore the algebra structure
properties of neutrosophic quadruple numbers. Moreover, we discuss two kinds of degenerate systems
of neutrosophic quadruple numbers. For neutrosophic quadruple numbers, the results in the paper
can be extended to general fields. In the following, we will explore the relation of neutrosophic
quadruple numbers and other algebra systems [24–26]. Moreover, on the one hand, we will discuss
the neutrosophic quadruple numbers based on some particular ring which can form a neutrosophic
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extended triplet group, on the other hand, we will introduce a new operation ◦ in order to guarantee
(NQ, ∗, ◦) is a neutrosophic triplet ring.
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