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Abstract
Selective maintenance problem plays an essential role in reliability optimization decision-making problems. Systems are
a configuration of several components, and there are situations the system needs small intervals or break for maintenance
actions, during the intervals expert carried out the maintenance actions to replace or repair the deteriorated components of
the systems. Because of the uncertainty associated with the component’s operational time, failure, and next mission duration
create a new challenge in determining optimal components allocation and evaluating future missions successfully. In this
paper, a multi-objective selective maintenance allocation problem is formulated with fuzzy parameters under neutrosophic
environment. A new defuzzification technique is introduced based on beta distribution to convert fuzzy parameters into crisp
values. The neutrosophic goal programming technique is used to determine the compromise allocation of replaceable and
repairable components based on the system reliability optimization. A numerical illustration is used to validate the model and
ascertain its effectiveness. The result is compared with two other approaches and found to be better. The method is flexible
and straightforward and can be solved using any available commercial packages. The extension of the concept can be useful
to other complex system reliability optimization.

Keywords Reliability optimization · Selective maintenance · Intuitionistic fuzzy programming · Neutrosophic goal
programming · Defuzzification technique

Introduction

Reliability is the probability that an object will continu-
ously perform a specified task or mission satisfactorily under
a certain condition, for at least a given time or interval.
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Therefore, the probability of a successful performance of a
system as designed is termed system reliability. A system
is an integration of different components performing one
or more operational functions [30]. The system reliability
may depend on the system configurations, operational rules,
the state of the failure and the failure process, which can be
describe by certain law of probability. In any system, the reli-
ability of individual components plays an important role in
the proper functioning of the system. All the manufacturing
companies rely on the reliable performance of components
of the system to complete missions successfully. Selective
maintenance problem arise when a firm desire to make an
optimal decision on which component or subsystem to be
maintain first, keeping inmind the scarce resources. An inter-
ested great research problem in reliability engineering is that
of how, when and where to allocate, repair and or replace
components of a system [29,31,33].

The main objective of selective maintenance is to find out
the most important component or subsystem to maintain to
minimize the production lost by avoiding frequent system
failures. A system or component can be maintain selectively
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Fig. 1 Graphical representation
of the proposed model

if and only if it has just finished a task and ready for the
next. This means that, no component or subsystem can be
selected for maintenance during the operation, some com-
ponents are repairable and replaceable while others are not.
The deterioration or failure of a system’s mechanism has a
wide spectrum effect on the entire system. Many numeri-
cal, heuristic and metaheuristic algorithms were employed
in studying this problem as can be seen in the next section.
However,most of the existing algorithms have computational
difficulties, time consuming when dealing with large prob-
lems and at times exact solutions are not easily obtainable. In
light of this, devising an optimization technique that is both
efficient and effective remain a hot topic in this regard [10].

The purpose of this article is to bring to the fore, a new
approach of multi-objective system reliability optimization
for selective maintenance allocation problem under neutro-
sophic environment. Considering the nature of uncertainty in
the failure of a system or its component, this research sought
to incorporate fuzzy programming, Intuitionistic Fuzzy Pro-
gramming and neutrosophic fuzzy goal programming. The
whole system is divided into two groups X and Y each hav-
ing subsystems with independent identical components. In
each subsystem, there are two types of components involved
(replaceable and repairable) (see Fig. 1). The overall objec-
tive is to optimally allocate the deteriorating components in
the subsystems that would maximize its reliability. The sys-
tem performs next mission after a limited time within which,
the selective maintenance on the involved components of
the subsystem is performed. The parameters of the proposed
model are considered to be fuzzy, which are explained by
the triangular fuzzy number. Neutrosophic goal program-
ming technique is used to obtain the compromise allocation
of replaceable and repairable components of the subsystem.
Most of the real-life problematic situation are complex and

have more than a single objective, especially in complex
system reliability; hence, the use of MOSMAP becomes
imperative. Using NFG, the best possible compromise solu-
tion ofMO-SMAPunder the fuzzy environment are obtained.

The significant advantage of this concept is that the
decision-maker has three different degrees of information
at his disposal to consider before making a final decision
regarding the problem at hand. They are the truthhood, inde-
terminacy, and falsity. However, the existing approaches use
only the truthness function as bases to the problem solu-
tion. Unlike in a real-life situation, decision outcome can be
agreed, not sure, and disagreement. Therefore, the proposed
concept of neutrosophic logic washes away this drawback;
hence, all the aspects of decision-making are considered.
Also, the indeterminacy part of the model allows experts to
present their opinions about unclear preferences.

Moreover, the proposedmethodology is very comfortable;
goals can be easily and quickly achievable and useful in
solving anymultiple objective decision-making optimization
problem under crisp and uncertain environment. Most of the
problematic real-life situations are complex and have more
than a single goal, especially in system reliability; hence, the
use of MOSMAP becomes imperative. The NFG gives the
best possible compromise solution of MO-SMAP under the
fuzzy environment.

In the past decade, researches have studied selectivemain-
tenance problem in fuzzy environment. However, none of
them has considered MO-SMAP under neutrosophic envi-
ronment; and this is perceived to be the significant drawback
that we have noticed in all previous research. Motivated by
such research,wehave formulated aMO-SMAPmodel under
neutrosophic environment. The concept aims to present an
algorithmic solution to the MO-SMAP, which should be
relatively simple and efficient in real-world circumstances.
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In light of that, we propose a new MO-SMAP with fuzzy
parameters. To the best of our knowledge, for the first time,
MO-SMAP is studied under a neutrosophic environment.
NGP is an innovative technique for dealing with uncertain,
imprecise incomplete and contradictory information that is
highly common in science and engineering situations. A new
defuzzification technique is also discussed based on beta dis-
tribution to convert fuzzy parameters into crisp values.

The paper is arranged as follows: “Literature review” sec-
tion reviews the literature on the system reliability and selec-
tive maintenance. In “Multi-objective selective maintenance
allocation problem” section, a non-linear multi-objective
selective maintenance allocation problem has been consid-
ered in a crisp and fuzzy nature. In “Conversion technique
of fuzzy numbers” section, the defuzzification technique
has been discussed for converting the fuzzy parameters into
crisp form. In “Solution techniques” section, three solution
approaches have been discussed and the stepwise algorithm
for the optimal solution are presented. In “Numerical illustra-
tion” section, a numerical example is considered to illustrate
the effectiveness of the proposed model under neutrosophic
environment. Also, a comparative study with two other tech-
niques are presented. “Conclusion” section summarizes the
conclusion and suggest the future work.

Literature review

Research on selective maintenance and system reliability
allocation has a long tradition. Reliability allocation can be
referred to as the process whereby different values of reli-
ability are assigned to different components of a system.
Many authors proposed various approaches and techniques
for optimal reliability allocation. Some minimize system
cost subject to reliability constraints, others maximize the
system reliability under a limited budget. First work on
selective maintenance has been reported in Rice et al. [39].
They considered a selective maintenance model for max-
imizing the reliability of the system. Cassady et al. [7,8]
extended the work in three different ways, viz., they con-
sidered three different models of selective maintenance, i.e.
maximizing the reliability of the system subject to main-
tenance time and maintenance cost; minimizing the repair
cost of the components of a system subject to minimum
required reliability level and time constrain; and finally, min-
imizing repair time of the components subject to the cost
and reliability constraints. Gupta et al. [22] considered two
cases of reliability optimization problem, a maintenance
and redundancy cases using interval programming. Selec-
tivemaintenance formulti-state system has been investigated
by Liu and Huang [32] where they considered the imper-
fect maintenance quality of the binary state elements. Many
authors work on selective maintenance, we refer to Ali et

al. [3], Ali and Hasan [1,2]; Chern [10], Cheng et al. [9],
Painton and Campbell [34], Pandey et al. [35], Rajagopalan
and Cassady [38], Khatab and Aghezzaf [27], Khatab et al.
[28], Xu et al. [43], Zhao et al. [44], Diallo et al. [13,14],
Wang and Li [42], Galante et al. [15], Jiang and Liu [24]
among others. Intuitionistic fuzzy optimization has been
used intensively in reliability optimization and multi-criteria
decision-making problems under neutrosophic environment.
Recent work includes [16–19] and many others.

Some existing work on selective maintenance problem
according to the types of models, optimizations, approaches
and techniques used by different authors are summarized in
Table 1.

Multi-objective selective maintenance
allocation problem

One of the most important aspects in manufacturing indus-
tries is the system maintenance. It plays a vital role to the
performance and reliability of the system. In this section,
we consider a system containing several subsystems with
replaceable and repairable components. We assume the sys-
tem has to perform several missions in a sequence with a
known break after a limited (fixed) time interval between
missions.Also, repairing and replacement/maintenance tech-
nology is assume to be available before failure. The whole
system is divided into two main groups X and Y each hav-
ing m subsystems with independent identical components
(nr and nq ). The two groups of the system (X and Y), and
all the subsystems in them are configured in series while the
independent identical components are connected in parallel
(see Fig. 1). This types of configurations are known as series-
parallel system, and can be easily found in communication
network, nuclear system, military weapons, heavymachines,
power generation systems, and gas turbine engine of an air-
craft among others.

Assumption for the proposedmodel

1. All the subsystems’ components are independently and
identically distributed (iid)

2. The whole system is divided into two groups X and Y and
is connected in series (see Fig. 1).

3. In group X, the components are connected in parallel in
the subsystems from 1 to r .

4. In group Y, the components are connected in parallel in
the subsystems from r + 1 to q.

5. The system has two different types of components, type I
(replaceable components) and type II (repairable compo-
nents).
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Table 3 Nomenclature

Parameters Definition

R Reliability of the system

C Total cost available for maintenance of a system

ri Reliability of each component available for the subsystem

li Maximum no. of the component in each subsystem

αi Parameters associatedwith the cost of components in sub-
system

ci Cost of each component available for subsystem

gi Total number of failed components in the subsystem

mi The number of components in the subsystem repaired
before the next production runs

6. Type I components are very sensitive and any failure of
such components are immediately replaced by another
new one.

7. Type II components are at low risk and any failure in such
components can be repaired and then put back for use.

8. All components in the subsystems are restricted to be
repaired and replaced before the next mission.

9. The failures of the components in the subsystem are sta-
tistically independent in the time interval.

The diagrammatic representation of the proposed selective
maintenance model is given in Fig. 1 and the notations used
in the reliability models are presented in Table 3.

The total failed components (repairables and replaceables)
in the subsystems can only be selected for maintenance
during the interval or break time and before the starting
next production run. Therefore, the number of components
available for the next mission in the subsystem will be
(li − gi )+mi , i = 1, 2, . . . , q. The reliability of the subsys-
tem X and Y for the next production run can be calculated
as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

RX (mi ) = ∏r
i=1

[
1 − (1 − ri )li−gi+mi

]
,

The reliabili t y o f subsystem X

RY (mi ) = ∏q
i=r+1

[
1 − (1 − ri )li−gi+mi

]
,

The reliabili t y o f subsystem Y

∑q
i=1 ci [mi + exp(αimi )] ≤ C,

The repairing cost o f the system.

(1)

where exp(αimi ) is the extra cost spent due to the intercon-
nection betweenparallel components. Then themathematical

formulation of the problem is

Maximize

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

RX (mi ) = ∏r
i=1

[
1 − (1 − r

li−gi+mi
i )

]
,

RY (mi ) = ∏q
i=r+1

[
1 − (1 − r

li−gi+mi
i )

]
,

subject to :
∑q

i=1 ci [mi + exp(αimi )] ≤ C,

1 ≤ mi ≤ gi , li ≥ gi ,
i = 1, 2, · · · , q and integer

(2)

Estimating the number of components using
stochastic process

Let the number of components failures X in an interval time t ,
follows a Poisson distribution with meanμt . The probability
of failure at time t equal to n can be given by

Pr{X = n} = (μt)ne−μt/n!, n ≥ 0.

Since we assume the components failure are statistically
independent in the time interval, and that the failure rate is
not constant, then the process is a typical non-homogeneous
Poisson process [11], and the number of failures between
time interval (a,b] will follow a Poisson distribution with
mean (MTBF)∫ b

a v(t)dt , v(t) is the intensity function. Therefore, the
probability of no failure in the time interval (a, b] can be
calculated using the relation:

exp

{

−
∫ b

a
v(t)dt

}

Multi-objective selectivemaintenance allocation
problem under uncertainty

In real-world systems, the components failure nature and
the uncertainty of the mission duration together, result
in the operational time uncertainty of components in the
mission. Several situations such as uncertain judgments,
unpredictable conditions or human error, incomplete knowl-
edge and information, may occur. The uncertainty associated
with a component of a systems at the end of a mission can
be trace from the uncertainty associated with the operational
time originally. The relationship among themission duration,
failure time, andoperational time in termsof uncertainty from
previous to the next mission are presented in Fig. 2

Considering the imprecision and uncertainty in the sys-
tem reliability, we employ fuzzy numbers to address such
type of problems. In light of this, model 2 can be formulated
as a fuzzy nonlinear programming problem by assuming the
parameters to be fuzzy. Since the available cost for repair-
ing and replacing the components varies from time to time,
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Fig. 2 Relationships among
uncertainties in a system

it cannot be fixed and therefore it has been considered as
independent factor that can be estimated. Thus, we have

Maximize

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

RX (mi ) = ∏r
i=1

[
1 − (1 − r̃i )li−g̃i+mi

]
,

RY (mi )=∏q
i=r+1

[
1 − (1−r̃i )li−g̃i+mi

]
,

subject to :
∑q

i=1 c̃i [mi + exp(αimi )] ≤ C̃,

1 ≤ mi ≤ gi , li ≥ gi ,
i = 1, 2, · · · , q and integer ,

(3)

where the parameters C̃, c̃i , r̃i ,and g̃i are assumed to be
fuzzy. The fuzzy numbers are then converted to its crisp
equivalent form in the next section.

Conversion technique of fuzzy numbers

In this section, we consider a statistical beta distribution to
defuzzify the fuzzy numbers into a crisp value based on the
concept of Rahmani et al. [37].

Let there be a continuous random variable Y that follow
a Beta distribution with mean α and standard deviation σ ,
then its follows that the probability density function (pdf) is
defined as

f (y) =
⎧
⎨

⎩

�(μ + σ)

�(μ)�(σ)
yμ−1(1 − y)σ−1, 0 ≤ y ≤ 1

0
(4)

where,μ , σ > 0 are the Beta distribution parameters. There-
fore, the mean value of the distribution is given by:

α = μ

μ + σ
(5)

Ifμ, σ ≥ 1, then the beta functionwill have a unimodal curve,
whereas if μ < σ or μ > σ , the beta curve will exhibit a
negative and positive skewness, respectively. Otherwise the
function will be symmetric.

Let p̃ = (a, b, c) be a triangular fuzzy number (TFN)
and lies in between (0, 1) . This will be in the form of p̃′ ={(

a−b
c−a

)
,
(
b−a
c−a

)
,
(
c−a
c−a

)}
=
{
o,
(
b−a
c−a

)
, 1
}
.

The beta parameters can be defined as

μ = b − a

c − a
+ 1, σ = c − b

c − a
+ 1 (6)

Then, the mean value of the beta distribution according to a
fuzzy number can be calculated as:

α′ = μ

μ + σ
= (b − a)/(c − a) + 1

(b − a)/(c − a) + 1(c − b)/(c − a) + 1

= b + c − 2a

3(c − a)
. (7)

The crisp number of α p̃ corresponding to TFN p̃ =
(a, b, c) is calculated by the following relation:

α p̃ = a + b + c

3
. (8)

Solution techniques

In this section, we reviewed and defined some important
aspects of the methodologies used in this study for solv-
ing the selective maintenance allocation problem in system
reliability. We have considered three types of techniques,
viz., neutrosophic goal programming approach, fuzzy pro-
gramming, and intuitionistic fuzzy programming. With the
help of these approaches, the formulated multi-objective
selective maintenance problem is converted into a single-
objective problem. The complete process is given in the
stepwise procedure below (“Computational algorithm” sec-
tion), this procedure can be generally use for converting any
multi-objective optimization problem to a single-objective in
different domain of study.

123



Complex & Intelligent Systems

Neutrosophic goal programming approach (NGPA)

Recently, the expanded fuzzy and intuitionistic fuzzy set has
been considered as a neutrosophic set (NS) with additional
membership function known as indeterminacy. In many
real-life decision-making problems, it has been observed
that, many situations exist where decision-makers have
indeterminacy or unbiased thoughts on making a decision.
Indeterminacy values always lie between the truthhood and
falsehood values. The term neutrosophic means ”knowledge
of indeterminacy or natural thoughts” and is coiled from a
French word ”neuter” meaning natural and a Greek word
”Sophia” meaning skill. It is enough evidence to consider a
NS differently from the fuzzy and intuitionistic sets. The for-
mer considers three different types of membership functions.
Viz; the truthhood, indeterminacy, and falsehood. While the
later, considers maximizing the degree of membership and
non-membership function in case of fuzzy and intuitionistic
sets respectively.

Alternatively, NS maximizes the degree of truthhood and
indeterminacy, and minimizes the degree of falsehood mem-
bership functions respectively. A significant touchstone in
the judgment-making process reflect the NS, where by a
decision -maker may completely satisfied (truth), somehow
satisfied (indeterminacy) and completely dissatisfied (false-
hood). These types of consideration in any decision-making
problems provide more strength to make the best decision or
obtained an optimal solution.

In real-life decision-making problems involving multi-
ple objectives, the job of obtaining the optimal solution is a
challenging task. However, neutrosophic goal programming
(NGP) can be use in obtaining the best compromise (satisfy-
ing) solution of multi-objective problem having conflicting
goals. The NGP is generally a reflective on the three condi-
tions: the degree of truth; indeterminacy; and falsity present
in any decision-making optimization problems.
Below are some basic definitions and terms:

Definition 1 Fuzzy Set : A fuzzy set Ã is defined by

Ã = {(
x, μ Ã(x)

) : x ∈ A, μ Ã(x) ∈ [0, 1]} . (9)

In the pair of (9), the first element x belongs to the classical
set A; the second element μ Ã(x), belongs to the interval
[0, 1], called membership function or grade of membership.
The membership function is also a degree of compatibility or
a degree of truth of x in A. The elements with a zero degree
of membership are normally not listed.

Definition 2 Intuitionistic fuzzy set : Let X be a universe of
discourse. Then an intuitionistic fuzzy set ÃI in X is defined
by a set of ordered triples given by

ÃI = {
< x, μ ÃI (x), γ ÃI (x) > : x ∈ X

}
. (10)

where μ ÃI , γ ÃI : X → [0, 1] are functions such that 0 ≤
μ ÃI (x)+γ ÃI (x) ≤ 1,∀x ∈ X . The valueμ ÃI (x) represents
the degree of membership and γ ÃI (x) represents the degree
of non-membership of the element x ∈ X being in ÃI ·h(x) =
1−μ ÃI −γ ÃI is the degree of hesitation of the element x ∈ X
being in ÃI .

Definition 3 Neutrosophic Set (NS) : Let Z be a universe
of discourse and z ∈ Z , then a neutrosophic set P ∈ Z
with three different types of membership functions defined
as; Truth TP (z), Indeterminacy IP (z) and False FP (z) and
presented by:

P = [{z, Tp(z), TP (z), FP (z)
}
z :∈ Z ] (11)

Where TP (z), IP (z), and FP (z) are real non-standard or
real standard with range ]0−, 1+[. That is , TP (z) : Z −→
]0−, 1+[, IP (z) : Z −→ ]0−, 1+[, FP (z) : Z −→
]0−, 1+[ and no restrictions on the sum of the memberships,
hence

0− ≤ supTp(z) + Tp(z) + supFp(z) ≤ 3+. (12)

Definition 4 Single-valuedneutrosophic set (SVNS) : Asin-
gle value neutrosophic set (SVNS) P over the universe of
discourse Z is presented as

P = {< z, Tp(z), TP (z), FP (z) >}z ∈ Z ], (13)

where TP (z), IP (z), and FP (z) ∈ (0, 1) sum 0 ≤
Tp(z) + Tp(z) + supFp(z) ≤ 3 for every z ∈ Z .

Definition 5 Union of neutrosophic set : Let P and Q be the
two NS, then R = P

⋃
Q with truth TR(z), indeterminacy

IR(z) and false FR(z) membership functions are defined as

⋃

R

=

⎧
⎪⎪⎨

⎪⎪⎩

TR(z) = max(TP (z), TQ(z)
IR(z) = min(IP (z), IQ(z)
FR(z) = min(FP (z), FQ(z)
∀z ∈ Z

(14)

Definition 6 Intersection of neutrosophic set : Let P and Q
be the two NS, then R = P

⋂
Q with truth TR(z), inde-

terminacy IR(z) and false FR(z) membership functions are
defined as

R⋂
=

⎧
⎪⎪⎨

⎪⎪⎩

TR(z) = min(TP (z), TQ(z)
IR(z) = max(IP (z), IQ(z)
FR(z) = max(FP (z), FQ(z)
∀z ∈ Z

(15)

The first concept of the fuzzy decision (D), fuzzy goal
(G) and fuzzy constraints (C) are proposed by Bellman and
Zadeh [6]. The concept proved to efficient for solving real-life
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decision making optimization problems under uncertainty.
Thus, a fuzzy decision set may be described as D = G ∩C .

Therefore, a neutrosophic decision set DN with neutro-
sophic goal set and neutrosophic constraints set can be stated
as

DN ={(∩J
j=1G j )∩(∩K

k=1Ck) = (z, TD(z), ID(z), FD(z))},
where

TD(z) = min

[
TG1(z), TG2(z), . . . , TG j (z)
TC1(z), TC2(z), . . . , TCk (z)

]

∀z ∈ Z (16)

ID(z) = max

[
IG1(z), IG2(z), . . . , IG j (z)
IC1(z), IC2(z), . . . , ICk (z)

]

∀z ∈ Z (17)

FD(z) = min

[
FG1(z), FG2(z), . . . , FG j (z)
FC1(z), FC2(z), . . . , FCk (z)

]

∀z ∈ Z (18)

and DN is the neutrosophic decision set with truth TD(z),
indeterminacy ID(z) and false FD(z)membership functions,
respectively.

Compromise solution for multi-objective
optimization under NGPA

To obtain the compromise solutions for multi-objective
decision making optimization problems, we formulate the
membership functions for each objective and calculate the
lower and upper bounds by solving it individually under the
defined constraints of the problem.

Let Uj and L j denotes the upper and lower bound for
every objective function of the problem, and define by
Uj = {max(Mj (X))} and L j = {min(Mj (X))} ∀ j =
1, 2, . . . J .
Under neutrosophic domain, the bounds for j th objective
functions can be calculated as:

Bounds =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

UT
j = Uj , LT

j = L j

for truth membership function,
U I

j = L j + a j , LT
j = L j

for indeterminacy membership function
U F

j = UT
j , LF

j = LT
j + b j

for falsity membership function

(19)

UT
j = Uj , LT

j = L j for truth membership function,

U I
j = L j + a j , LT

j = L j for indeterminacy membership
function,
UF

j = UT
j , LF

j = LT
j + b j for false membership

function,
where the values of a j and b j are real numbers between
(0, 1) assigned by the DM. The linear membership functions
for each objective under the neutrosophic domain is then

constructed as follows:

μT
j (Mj (x)) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0, Mj (x) ≤ LTj
M j (x) − LTj

UT
j − LTj

, LTj ≤ Mj (x) ≤ UT
j

1, Mj (x) ≥ UT
j
(20)

μI
j (Mj (x)) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0, Mj (x) ≤ L I
j

M j (x) − L I
j

U I
j − L I

j

, L I
j ≤ Mj (x) ≤ U I

j

1, Mj (x) ≥ U I
j
(21)

μF
j (Mj (x)) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0, Mj (x) ≤ LF
j

U F
j − Mj (x)

UF
j − LF

j

, LF
j ≤ Mj (x) ≤ UF

j

1, Mj (x) ≥ UF
j
(22)

In all cases, Uj 	= L j ,∀ j = 1, 2, . . . , J for all objective
functions. If in any situations Uj = L j ,∀ j = 1, 2, . . . , J
then membership value will assume the value 1. The graphi-
cal presentation of the different membership functions in the
neutrosophic environment is defined in Fig. 3.

Therefore, the membership functions Eqs. (20–22) are
converted into goals in Eq. 23. DMmay set a target of achiev-
ing the highest possible degree of satisfaction (truthhood = 1)
and that of indifference threshold (indeterminacy = 0.5), and
may wish to minimize the degree of falsehood (0) as much as
possible in the decision-making process. The mathematical
expression of the conversion is given in Eq. 23

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

μT
j (Mj (x)) + D−

jT + D+
jT = 1,

μI
j (Mj (x)) + D−

j I + D+
j I = 0.5,

μF
j (Mj (x)) + D−

j F + D+
j F = 0

where
D−

jT , D+
jT ,

Deviations related to truth membership function
D−

j I , D
+
j I ,

Deviations related to indeterminacy membership function
D−

j F , D+
j F ,

Deviations related to false membership function
and
D−

jT · D+
jT = 0, D−

j I · D+
j I = 0, D−

j F · D+
j F = 0,

(23)

Consequently, theDM’s target may be under achieve, over
achieve or perfectly satisfied. Due to this inherent features
in the process, the deviations from both the under and over
achievements are minimized, and the general mathematical
model of the NGP for multi-objective decision-making prob-
lem is givenin Eq. (24)
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Fig. 3 Graphical presentation of the degree of truth, indeterminacy and
false membership functions for the objective functions

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Minimize M = ∑J
j=1 WjT · D−

jT

+∑J
j=1 Wj I · D−

j I +∑J
j=1 WjF · D+

j F
subject to :
μT

j (Mj (x)) + D−
jT + D+

jT ≥ 1,
μI

j (Mj (x)) + D−
j I + D+

j I ≥ 0.5,
μF

j (Mj (x)) + D−
j F + D+

j F ≤ 0
μT

j (Mj (x)) ≥ μI
j (Mj (x))

μT
j (Mj (x)) ≥ μF

j (Mj (x))
μF

j (Mj (x)) ≥ 0
μT

j (Mj (x)) + μI
j (Mj (x)) + μF

j (Mj (x)) ≤ 3
D−

jT · D+
jT = 0, D−

j I · D+
j I = 0, D−

j F · D+
j F = 0,

fk(x) ≤,=,≥ gk, k = 1, 2. · · · , K
xi ≥ 0, i = 1, 2, · · · ,m, xi ∈ X
D−

jT , D+
jT , D−

j I , D
+
j I , D−

j F , D+
j F ≥ 0, ∀ j

,

(24)

where WjT ,Wj I , and WjF are the weights associated
with the deviations of the membership goals and are defined
as:

WjT = 1

UT
j − LT

j

, Wj I = 1

U I
j − L I

j

, and

WjF = 1

UF
j − LF

j

.

In light of Eq. (24), the proposed multi-objective non-
linear selective maintenance model can be stated in model
(25) asfollows:

Minimize

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

M = (W1T · D−
1T + W2T · D−

2T )

+(W1I · D−
1I + W2I · D−

2I )

+(W1F · D−
1F + W2F · D−

2F )

subject to :{∏r
i=1

[
1 − (1 − ri )li−gi+mi

]}− LT
j

UT
j − LT

j

+ D−
1T − D+

1T ≥ 1
{∏r

i=1

[
1 − (1 − ri )li−gi+mi

]}− L I
j

U I
j − L I

j

+ D−
1I − D+

1I ≥ 0.5

UF
j − {∏r

i=1

[
1 − (1 − ri )li−gi+mi

]}

UF
j − LF

j

+ D−
1F − D+

1F ≤ 0
{∏r

i=1

[
1 − (1 − r̃i )li−g̃i+mi

]}− LT
j

UT
j − LT

j

+ D−
1T − D+

1T ≥ 1
{∏r

i=1

[
1 − (1 − r̃i )li−g̃i+mi

]}− L I
j

U I
j − L I

j

+ D−
1I − D+

1I ≥ 0.5

UF
j − {∏r

i=1

[
1 − (1 − r̃i )li−g̃i+mi

]}

UF
j − LF

j

+ D−
1F − D+

1F ≤ 0

μT
j (Mj (x)) ≥ μI

j (Mj (x))
μT

j (Mj (x)) ≥ μF
j (Mj (x))

μT
j (Mj (x)) + μI

j (Mj (x)) + μF
j (Mj (x)) ≤ 3

D−
jT · D+

jT = 0, D−
j I · D+

j I = 0, D−
j F · D+

j F = 0,
∑q

i=1 c̃i [mi + exp(αimi )] ≤ C̃,

1 ≤ mi ≤ gi , li ≥ gi , i = 1, 2, · · · , q and integer
D−

jT , D+
jT , D−

j I , D
+
j I , D−

j F , D+
j F ≥ 0, ∀ j

(25)

Computational algorithm

For any mathematical model, there exist a computational
procedures to guide the formulation of the real-life situation
into optimization model. The proposed work is not an excep-
tional, hence, the following steps are followed in solving the
proposed non-linear multi-objective selective maintenance
model using NGP.

Step 1 Let a non-linear multiobjective programming prob-
lem (MO-NLPP)with j objectives functions be given
as:

Optimize
(
f1(X), f2(X), . . . f j (X)

)

subject to;
gi (x) ≤ bi , i = 1, 2, . . . ,m; x ≥ 0.

Step 2 Using Step 1, formulate the real-life MO-SMAP
incorporating the fuzzy parameters in light of model
(3).

Step 3 Transform each fuzzy parameter defined in Step 2
into crisp by applying the defuzzification technique
discussed in section 4.

Step 4 Solve the MO-SMAP in Step 2, taking one objective
function under the set of constraints at a time and
ignored the others. After computing the ideal solu-
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tions, construct a pay-off matrix given as

⎡

⎢
⎢
⎢
⎣

f ∗
1 (x1) f2(x1) · · · f j (x1)
f1(x2) f ∗

2 (x2) · · · f j (x2)
...

...
. . .

...

f1(x j ) f2(x j ) · · · f ∗
j (x

j )

⎤

⎥
⎥
⎥
⎦

Step 5 Obtained the lower (L j ) and upper (Uj ) bounds for
each objective functions in light of model (19) and
construct the truth, indeterminacy and false linear
membership functions in light of Eqs. (20)–(22).

Step 6 Convert the membership functions constructed in
Step 5 into goals and develop a NGPmodel in light of
Eq. (23), Minimize the decision-makers’ deviational
goals (under and over achievement) in light of Eq.
(24.) and convert it into a crisp equivalent using the
propose NGP technique given in model (25).

Step 7 Solve the proposed non-linear multi-objective selec-
tive maintenance problem to obtain the optimal
allocation (compromise solution).

Step 8. Solve the resultingmodel in Step 6with any available
commercial packages such asGAMS,LINDO/LINGO,
etc. to obtain the compromise solution (Pareto solu-
tion).

Fuzzy programming (FP)

Fuzzy programming (FG) is one of the several models for
optimization under uncertainty. It is well suited for multi-
objective modelling problems. The general mathematical
model of a multi-objective optimization problem with j
objectives and k constraints for the m decision variables can
be defined as

Optimize

⎧
⎪⎪⎨

⎪⎪⎩

M = (M1, M2, · · · , Mj )

subject to :
gk ≤ 0, k = i, 2, . . . , K
xi ≥ 0, i = 1, 2, . . . ,m.

(26)

The technique was employed by Zimmermann [45] to
solve a multi-objective optimization problem. The general
formulation of fuzzy programming can be defined as

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Maximize α

subject to :
μ j (x) ≥ α ∀ j
gk ≤ 0, k = i, 2, . . . , K
xi ≥ 0, i = 1, 2, . . . ,m.

, (27)

where μ j (x) is the membership function of the objective
function.

Intuitionistic fuzzy programming (IFP)

A new concept for optimization under uncertainty known
as IFP was proposed by Angelov [5] as an extension of the
traditional fuzzy optimization. The concept incorporate the
degrees of rejections of the objective(s), the constraints and
the satisfaction all together based on intuition. The general
mathematical formulation of the IFP technique for solving
the multi-objective optimization problem can be stated as:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Maximize (α − β)

subject to :
μ j (x) ≥ α, γ j (x) ≤ β ∀ j
α + β ≤ 1, α ≥ β, β ≥ 0,
gk ≤ 0, k = i, 2, · · · , K
xi ≥ 0, i = 1, 2, . . . ,m.

(28)

Where, μ j (x), γ j (x) is the membership function of the
objective function.

Numerical illustration

We considered a system divided into two groups X and
Y having seven subsystems altogether. Group X contained
three and group Y contain four subsystems, and in each sub-
system, some components are replaceable while others are
repairable. Let assume the performance of the system in the
next mission depends on its previous mission. We use the
non-homogeneous stochastic Poisson process discussed in
section 3.1 to estimate the average number of components
failing before the next run given the maintenance cost. In the
first run, 3 components were estimated to failed, 2 compo-
nents in the second run, 4 components in the third and fourth
run, and 6 components in the fifth production run. The failed
components are presented as triangular fuzzy numbers. Also,
the total maintenance cost for repairing and replacing of the
available components for the next run is considered to be a
triangular fuzzy number with values (2500, 3000, and 3500)
units. The available cost for the repairing and replacing, sev-
eral failed components, reliability of each component and the
total number of components in the subsystems for group X
and Y are shown in Table 4 and 5 .

The defuzzification technique discussed in section 4, is
used to obtain the crisp value of Tables 4 and 5 as shown in
Table 6, also the crips equivalent of model (2) is presented
in Eq. (30) using same defuzzification.

Numerical presentationTable 6 data are input intomodel
(3) which is shownin Eq. (29).
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Table 4 The data for group X
sub-systems

Subsystem 1 2 3

l̃i 8 6 10

r̃i (0.62, 0.65, 0.69) (0.51, 0.55, 0.58) (0.64, 0.70, 0.76)

g̃i (3, 4, 5) (3, 4, 5) (6, 7, 8)

c̃i (135, 140, 145) (105, 110, 115) (145, 150, 155)

Table 5 The data for group Y
sub-systems

Subsystem 4 5 6 7

l̃i 8 10 12 10

r̃i (0.64,0.70,0.76) (0.51,0.55,0.58) (0.56,0.60,0.66) (0.62,0.65,0.69)

g̃i (4,5,6) (7,8,9) (9,10,11) (6,7,8)

c̃i (65,70,75) (25,30,35) (40,45,50) (60,65,70)

Maximize

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

RX = [
1 − (1 − (0.62, 0.65, 0.69))8−(3,4,5)+m1

]×
[
1 − (1 − (0.51, 0.55, 0.58))6−(3,4,5)+m2

]× [
1 − (1 − (0.64, 0.70, 0.76))10−(6,7,8)+m3

]

RY = [
1 − (1 − (0.64, 0.70, 0.76))8−(4,5,6)+m4

]× [
1 − (1 − (0.51, 0.55, 0.58))10−(7,8,9)+m5

]×
[
1 − (1 − (0.56, 0.60, 0.66))12−(9,10,11)+m6

]× [
1 − (1 − (0.62, 0.65, 0.69))10−(6,7,8)+m7

]

subject to : (145, 140, 145) × [m1 + exp(0.25 ∗ m1)] + (105, 110, 115) × [m2 + exp(0.25 ∗ m2)]+
(145, 150, 155) × [m3 + exp(0.25 ∗ m3)] + (65, 70, 75) × [m4 + exp(0.25 ∗ m4)]+
(25, 30, 35) × [m5 + exp(0.25 ∗ m5) + (40, 45, 50)] × [m6 + exp(0.25 ∗ m6)]+
(60, 65, 70) × [m7 + exp(0.25 ∗ m7)] ≤ (2500, 3000, 3500),
1 ≤ m1 ≤ (3, 4, 5), 1 ≤ m2 ≤ (3, 4, 5), 1 ≤ m3 ≤ (3, 7, 8), 1 ≤ m4 ≤ (4, 5, 6),
1 ≤ m5 ≤ (37, 8, 9), 1 ≤ m6 ≤ (9, 10, 11), 1 ≤ m7 ≤ (6, 7, 8)

(29)

Maximize

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

RX = [
1 − (1 − (0.65))8−4+m1

]× [
1 − (1 − (0.54))6−4+m2

]× [
1 − (1 − (0.70))10−7+m3

]

RY = [
1 − (1 − (0.70))8−5+m4

]× [
1 − (1 − (0.54))10−8+m5

]× [
1 − (1 − (0.60))12−10+m6

]×[
1 − (1 − (0.65))6−4+m7

]

subject to :
140 × [m1 + exp(0.25 ∗ m1)] + 110 × [m2 + exp(0.25 ∗ m2)]+
150 × [m3 + exp(0.25 ∗ m3)] + 70 × [m4 + exp(0.25 ∗ m4)]+
30 × [m5 + exp(0.25 ∗ m5) + 45] × [m6 + exp(0.25 ∗ m6)]+
65 × [m7 + exp(0.25 ∗ m7)] ≤ 3000
1 ≤ m1 ≤ 4, 1 ≤ m2 ≤ 4, 1 ≤ m3 ≤ 7, 1 ≤ m4 ≤ 5,
1 ≤ m5 ≤ 8, 1 ≤ m6 ≤ 10, 1 ≤ m7 ≤ 7

(30)

The abovemulti-objective non-linear programmingmodel
Eq. (30) is solved by the Lingo version 16.0 optimization

Table 6 Values of the crisp parameters

Subsystem 1 2 3 4 5 6 7

li 8 6 10 8 10 12 10

ri 0.65 0.54 0.70 0.70 0.54 0.60 0.65

gi 4 4 7 5 8 10 7

ci 140 110 150 70 30 45 65

software. The resulting pay-offmatrix of the problem is given
in Eq. (31).

⎧
⎨

⎩

Z1 Z2
0.9908414 0.8311538
0.8967782 0.9989539

⎫
⎬

⎭
(31)

Therefore, the best and worst values for every objective
can be defined as: 0.8967782 ≤ Z1 ≤ 0.9908414, and
0.8311538 ≤ Z2 ≤ 0.9989539.
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In light of the equivalent crisp model Eq. (25), the Lingo
optimization software version 16.0 is employed to obtain
the compromise solution of the proposed model.The com-
promise solutions of all the three discussed techniques in
section 5 are given in Table 7. The result indicated that the
reliability of group x systems is RX = 0.9903905 and that
of group Y is RY = 0.9924332 with various repaired com-
ponents in the subsystems before the next production run
as m1 = 1, m2 = 4, m3 = 2, m4 = 2, m5 = 6, m6 =
5, m7 = 3. It implies from Table 7 that components 1, 4 and
2 in subsystem 1, 2 and 3 have to be replaced, respectively.
Likewise, components 2,6,5 and 3 in subsystem 4, 5, 6 and
7 have to be repaired, respectively.

Comparison with the existingmethods

The selective maintenance allocation problem of the reliabil-
ity optimization problem is a fundamental decision making
problem which occurs in real-life situations. From this view-
point of the problem, our main objective is to find the
compromise allocation of replaceable and repairable com-
ponents while maximizing the reliability of the system. In
this section, our main objective it shows the advantages of
the proposed model and approach concerning some exist-
ing methods and related models. For instance, Cassady et al.
[7,8]; Rajagopalan and Cassady [38]; Liu and Huang [32];
Pandey et al. [35]; Khatab and Aghezzaf [27]; Galante et al.
[15], solved a single objective selective maintenance prob-
lem. Still, we established and solve our model under the
multiobjective case, which is more realistic for real-life relia-
bility optimization problems. Khan et al. [26]; Ali and Hasan
[1], Ali et al. [4]; Gupta et al. [22], have considered MO-
SMAP under certainty environment. However, this research
evaluated the proposedmodel under uncertainty environment
because, in decision-making issues, the available data (i.e.
the possible values of the system parameters) cannot always
be precisely determined and known. In real-world situations,
several different problems arise, such as uncertain judgments,
unpredictable conditions or human error, partial or incom-
plete information in which decision-makers make decisions
with available accurate data on the parameters of the problem.
To overcome this drawback, the proposed model considered
under uncertainty environment. From this perspective, our
is more superior to tackle real-life reliability optimization
problems.

Furthermore,the non-linearmulti-objective selectivemain-
tenance optimization in the fuzzy environment has been
formulated and solved by the proposed NGP. The problem
are aslo solved by two other techniques discussed in section
5.4 and 5.5 . The results are presented in Table 7. The com-
promise solutions are compared with the proposed technique
and are shown in Fig. 4. It can be observed that, the FP and
IFP techniques have the same values while the propose NGP

Fig. 4 Comparison among FP, IFP and NGP approaches

have different and better values of the compromise solution.
Thus, we conclude that the NGP gives better results over the
existing FP and IFP techniques.

Additionally, Ali and Hasan [1], Gupta et al. [21], Has-
sen et al. [23], Quddoos et al. [36], Diallo et al. [13], have
considered different types of selective maintenance models
and solved it using fuzzy programing and some other exist-
ing techniques. The fuzzy set concept, and the intuitionistic
fuzzy set, can only handle incomplete or imprecise infor-
mation. However, information related to indeterminacy or
inconsistency cannot be address by those methods. The con-
cept of the neutrosophic set is introduced to overcome this
kind of information in the decision-making process. Neutro-
sophic logic is a non-standard research technique that reflects
a mathematical model of complexity, vagueness, ambiguity,
incompleteness and inconsistency. In Neutrosophic, indeter-
minacy is quantified directly, while truth, indeterminacy, and
falsehood membership are independent. In some instances,
this plays a crucial role in coping with inconsistent and
incomplete information. Hence this research builds a new
MO-SMAP model and solved using a new technique NGP
and compared it with FG and IFG. From Table 7, it can
quickly be seeing that NGP gives a better result.

Also, Ali et al. [4] considered a MO-SMAP under a
stochastic environment to find the optimum number of
replaceable and repairable components while maximizing
the system reliability. After comparing the results, we can
conclude that the proposed NGP technique for solving MO-
SMAP is better. Application of NS concept is scorching and
attractive research area nowadays, see [20].

Conclusion

In this paper, we have proposed a model under a non-
deterministic environment. Themainobjective of themanuscript
is to consider situations where the decision-makers have
some neutral thoughts about whether the deteriorating com-
ponents have to be replaced or repaired. The problem is
modelled as a MO-SMAP, a new defuzzification technique
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Table 7 Compromise allocation
for the repairable and
replaceable components

Approaches m∗
1 m∗

2 m∗
3 m∗

4 m∗
5 m∗

6 m∗
7 RX RY

Fuzzy programming (FP) 2 4 2 2 6 5 2 0.9874 0.9890

Intuitionistic fuzzy programming (IFP) 2 4 2 2 6 5 2 0.9874 0.9890

Neutrosophic goal programming (NGP) 1 4 2 2 6 5 3 0.9903 0.9924

based on beta distribution is introduced and used to con-
vert the MO-SMAP fuzzy parameters into crips form. We
then used the NGP technique to obtain the compromise allo-
cation while maximizing the reliability of the system. The
solution of the NGP is compared with that of FG and IFG
techniques. Table 7 shows the solution comparison of the pro-
posed method and the two other approach. It can be observed
that the reliability values for the considered systems resulting
from our model are better than the two different techniques;
and hence, proofs to be more efficient. The proposed model
is computational simple, and any available commercial opti-
mization package can be easily used to solve the problem.
The degree of satisfaction can be maximized and dissatis-
faction is minimized using this concept. In future, we can
consider the stochastic model for the selective maintenance
allocation problems and used some other approaches. Also,
A more extensive system can be used to explore more appli-
cability of the model in system reliability.
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