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Florentin Smarandache 22

ABSTRACT. In this paper, a solution procedure is proposed to solve neutrosophic
linear fractional programming (NLFP) problem where cost of the objective function
the resources and the technological coefficients are triangular neutrosophic numbers.
Here, the NLFP problem is transformed into an equivalent crisp multi-objective :
linear fractional programming (MOLFP) problem. By using proposed approach, the
transformed MOLFP problem is reduced to a single objective linear programming
problem(LPP) which can be solved easily by suitable LP problem algorithm. The
proposed procedure illustrated through a numerical example.

1 INTRODUCTION

Linear fractional programming (LFP) is a generalization of linear
programming (LP) whereas the objective function in a linear program is a
linear function; the objective function in a linear-fractional program is a
ratio of two linear functions. Linear fractional programming is used to
achieve the highest ratio of profit/cost, inventory /sales, actual cost/standard
cost, output/employee, etc. Decision maker may not be able to specify the
coefficients (some or all) of LFP problem due to incomplete and imprecise
information which tend to be presented in real life situations. Also aspiration
level of objective function and parameters of problem, hesitate decision
maker. These situations can be modeled efficiently through neutrosophic
environment. Neutrosophy is the study of neutralities as an extension of
dialectics. Neutrosophic is the derivative of neutrosophy and it includes
neutrosophic set, neutrosophic probability, neutrosophic statistics and
neutrosophic logic. Neutrosophic theory means neutrosophy applied in many
fields of sciences, in order to solve problems related to indeterminacy.
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Although intuitionistic fuzzy sets can only handle incomplete information
not indeterminate, the neutrosophic set can handle both incomplete and
indeterminate information.[1,6-8] Neutrosophic sets characterized by three
independent degrees namely truth-membership degree (T),
indeterminacy-membership degree(I), and falsity- membership degree (F),
where T,I,F are standard or non-standard subsets of 170,1%[. The decision
makers in neutrosophic set want to increase the degree of truth-membership
and decrease the degree of indeterminacy and falsity membership. The
structure of the paper is as follows: the next section is a preliminary
discussion; the third section describes the LEP problem with Charnes and
cooper’s transformation; the fourth section presents multi-objective linear
fractional programming problem; the fifth section presents neutrosophic
linear fractional programming problem with solution procedure; the sixth
section provides a numerical example to put on view how the approach can
be applied; finally, the seventh section provides the conclusion.

2 PRELIMINARIES

In this section, the basic definitions involving neutrosophic set, single valued
neutrosophic sets, neutrosophic numbers, triangular neutrosophic numbers
and operations on triangular neutrosophic numbers are outlined.

Definition 1. [2] Let X be a space of points (objects) and z € X. A
neutrosophic set A in X is defined by a truth-membership function TA(z),
an indetermminacy-membership function I A (z) and a falsity-membership
function FA (z). TA(z),IA(z) and FA(x) are real standard or real
nonstandard subsets of | 70,1 *[. That is TA (z) : X —]70,1 7],

TA(z): X =]70,1 *[and FA(z) : X =]70,1 *[. There is no restriction on
the sum of T (z), I (x) and Fy (), so

0— <supTa(z) +supla(z)+supFa(zr) <3+.

Definition 2. [2] Let X be a universe of discourse. A singe valued
neutrosophic set A over X is an object having the form
A={(z,Ta(x),Ia(z),Fa(x)): € X}, where Ty (z) : X = [0,1],

Ia(z): X —[0,1] and F4 (z) : X — [0,1] with

0 < Ty (x)+ Ia(z) + Fa(z) <3 for all z € X. The intervals T4 (z), 14 (z)
and Fy4 (z) denote the truth-membership degree, the
indeterminancy-membersjip degree and the falsity membersjip degree of x to
A, respectively. For convenience, a SVN number is denoted by A= (a,b,c),
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where a,b,c € [0,1] and a+b+ ¢ < 3.

Definition 3. Let J be a neutrosophic number in the set of real numbers R,
then its truth-membersjip function is defined as

J—a
i, m<J<a

T7(J) =4 &, w@<J<as (1)
0, otherwise

Its indeterminancy-membership function is defined as

b by < T < by
by—J

I5(J) = oy b2<J<b3 (2)
0, otherwise

And its falsity-membersjip function is defined as

oo < J<e

ca—cy’
Fp()={ &=L, ¢ <J<c 3)
1, otherwise

Definition 4. [3] A triangular neutrospohic number @ =< (a1,b1,¢1);

oz, 0z, Bz > is a special neutrosophic set on the real number set R and
ag.03, Bz € [0,1]. The truth-membership, indeterminancy-membership and
falsity-membership functions of @ are defined as follows:

fruls it <z <b

(874 if x = b1

T (z) = (ca» Yoy s (4)
(2—1_%%—— fhi<z<c
0 otherwise

((pttaloo)) o <z<h

05 ‘if Xr = b1
@%2-;—‘-9;6—53;%)) if b1 <x S C1
L1 ) otherwise

( (-ztfae-a) ¢ o
%"al— lfa1§$Sb1

Bz ifx=b
o8 =
a () = 4 (w—bljlﬂfb(lcl—”)) ifby <z <e

L1 otherwise
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If a1 > 0 and at least ¢; > 0 then @ =< (a1, b1, ¢1); oy, 05, By > is called a
positive triangular neutrosophic number, denoted by @ > 0. Likewise, if
c1 <0 and at least a; < 0, then g =< (a1,b1,¢1); g, 05, Bz > is called a
negative triangular neutrosophic number, denoted by a < 0.

Definition 5. [3] Let @ =< (ay,b1,¢1); @,05, B7) > and b =< (ag,ba,c9);
g, 05, B;) > be two single valued triangular neutrosophic and v # 0 be any
real number Then,

1.

A4b=< (a1+a2,bl+b2,cl+C2);aa/\ag,95v05,ﬂaVBg>

a—b=<(a;—co,by — by, ¢, ~a2);aa/\(¥‘5,96V9gaﬁaV53>

< (arag,biba, crc) ;o3 A o, 0 V 05, By V By > (c1 > 0,¢9 > 0)
ab= 1 < (ajco,brba, cras); 0z N, 05V 65, Bz V B; > (¢ < 0,c0 > 0)
<(6162,b]b2,a1a2) aa/\a 05 V0” ,3‘\/55>(01<0,CQ<0)

4.
b
B St ) sag Aoy, b Vb, Bz V By > (c1 > 0,c0 > 0)
a
,—[;,: 2;72;72—; jog A 6’0 Vagaﬂavﬂz>(cl<0702>0)
b
;;ab;f%);aﬁ 05;/36\/185>(01<0702<0)

75: { < (7a1a7b17701) ;aa,ea,,ﬂ(i > (’Y > 0)
< (')’Cl)’)’bl, ’Yal);a?ﬁ 057&5 > (’)’ < O)

3. LINEAR FRACTIONAL PROGRAMMING PROBLEM (LFPP)

In this section, the general form of LFP problem is discussed. Also, Charnes
and Cooper’s [ ] linear transformation is summarized.
The linear fractional programming (LFP) problem can be written as:

d>ocixi+p B cT:c—Fp N (z)

MaxZ(x):Zdjxj+q_de+q_D(a:)’ @)
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Subject to

reS={zxeR": Az <bx >0}
Where j =1,2,...,n, A€ R™*", be R™, ¢;,d; € R", and p,q € R. For some

values of z, D (z) may be equal to zero. To avoid such cases, we requires
that either {Ax < b,x > 0= D (z) >0} or {Az < b,z > 0= D (z) < 0}.
For convenience here, we consider the first case,

ie. {Az <b,x>0= D (z) >0} (8)
Using Charnes and Cooper’s linear tranformation the previous LFP problem
is equivalent to the following linear programming (LP) problem:
Moaxc™y + pt,
Subject to

dTy+qt:1’ Ay_bt:C,)tZanZO)yERn?te‘R (9)

Consider the fractional programming problem

Max Z (z) = %%%’ (10)

Subject to

Ar <bz >0,z e A={x: Az < b,z > 0= D(x) > 0}

By the transformation ¢ = D%m) ,y = tx we obtained the following:

Max tN <%) ,
. Subject to

A(%)—bgO,tD(%)=1,t>0,y20 (11)

By replacing the equality constraint tD (%) =1 by an inequality constraint
tD (%) < 1. We obtain the following;

Max tN (%) ,

Subject to
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A(%)—bgo,w(%)ngo,yzo (12)

If in equation (10), N (z) is concave, D (z) is concave and positive on A, and
N (x) is negative for each z € A, then

N (z) —N (z)
D () D (z) —N(z)’

where —N () is convex and positive. Now linear fractional program (10)
transformed to the following LP problem:

Mazx,en < Mingen < Mazyea

y
Max tD (Z) ,
Subject to
) )
Y —p<0,—tN (L) < >
A(t> b <0, tN(t)_l,t>0,y_0 (13)
4 MULTT-OBJECTIVE LINEAR FRACTIONAL PROGRAMMING
PROBLEM

In this section, the general form of MOLFP problem is discussed and the
procedure for converting MOLFP problem into MOLP problem is illustrated.
The MOLFP problem can be written as follows:

Max z; (x) = [z1(z), 22 () , ..., 2 (T)],

Subject to

reA={zx: Ax < b,z >0} (14)

With b€ R™, A€ R™ " and z (z) = Zﬁiﬁ:': gj::(zl,ci,di € R" and

P €ER, 1=1,2,... k.

Let I be the index set such that I = {i: N;(z) > 0 for z € A} and

I¢={i: Nij(z) <0 for z € A}, where TUTI® = {1,2,....K}. Let D (x) be
positive on A where A is non-empty and bounded. For simplicity, let us take
the least value of 1/ (d;z + ¢;) and 1/ [~ (¢;z + p;)] is t for i € I and i € I¢,
respectively i.e.

1 -1
——>tforteland — > tfori e I° 15
(diz +q;) ~ (ciz +pi) ~ (15)

By using the transformation y = tz (¢ > 0), and equation 15, MOLFP
problem (14) may be written as follows:
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Maz z; (y,t) = {tNi (%) , for i € I;tD; (%) , fori e IC}
Subject to

tD; (%) <1, foriel, —tN; (%) <1, for

ieIC,A(%)—bgo,t,yzo (16)

If i € I, then truth-membership function of each objective function can be
written as:

0 if tN;(¥) <0
y LIN .
T (tNi (;)) = fi\:__(i) if 0<tNg (%) <zitag (17)
1 it tN; (4) > 2zi+a

If ¢ € I¢, then truth-membership function of each objective function can be
written as:

0 if tD; (%) <0
T; (tDi (%)) = tfff) if 0<tD;(¥) <z+a (18)
1 if tD; (%) >zt a4

If i € I, then falsity-membership function of each objective function can be
written as:

1 if ¢tN; (%) <0

F, (tNi (%)) == g g (D <ute (19)
if tN; (%) > zi+c

fi € I¢, then falsity-membership function of each objective function can be
written as:

\ 1 if tD; (%) <0
F(toi(4)) = 1-28) i o<ipy (W) <zt (20
’ if tD; (¥) >z +a

If i € I, then indeterminancy-membership function of each objective functiOﬁ
can be written as: \
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0 if tN;(¥) <o
L (th- (%)) = M) g <un (1) <zt g (21)
1 if tN; (%) >z +d;

If 7 € I°, then indeterminancy-membership function of each objective
function can be written as:

0 if tD; (%) <0
L (t0;(2) =9 2 s g <ipy (¥) < it (22)
1 if tD;(¥) >z +4d;

Where a;,d; and ¢; are acceptance tolerance, indeterminancy tolerane and
rejection tolerance. Zmmermann [5] proved that if membership function

pp (y,t) of complete solution set (y,t), has a unique maximum value

up (y*,t*) then (y*,t*) which is an element of complete solution set (y,t) can
be derived by solving linear programming with one variable . Using
Zimmermann’s min operator and membership functions, the model (14)
transformed to the crisp model as:

Max A
Subject to,
T; (tNi (%)) > A, for i€l
T; (tDi (%)) > A, for i€lI°¢
Fi (tN; (%)) <A, for iel
Fi(tD; (£)) <A, for ieI°
I; (tNZ (%)) <A, for 1€l
I (tD@- (%)) <A for i€I°
tD; (%) <1, for iel
—tN; () <1, for ielI°
A(%)—bgﬂ,t,y,)\zu (23)

5 NEUTROSOPHIC LINEAR FRACTIONAL PROGRAMMING
PROBLEM

In this section, we propose a procedure for solving neutrosophic linear
fractional programming problem where the cost of the objective function, the
resources, and the technological coefficients are triangular neutrosophic
numbers.
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Let us consider the NLFP problem:

Max z (z) = ;i—f—ciz—i
Z djLEj +q
Subject to

S Gmy <biy i=1,2,0m, 7,20, j=1,2,.,n (24)

We assume that ¢;, p, gj, g, ai; and b; are triangular neutrosophic numbers for
each i =1,2,...,m and j = 1,2, ..., n, therefore, the problem (24) can be
written as:

Z (lea Cj2, C43; g, 957 65) €Lj + (p15p27p3; Ay, 6§7 ﬂf)')

Maz 2 (2) =
S (dj1, dja, djs; g, 0, B) @5 + (a1, 42, 35 5 7 Bg)

(25)
Subject to

Z (aij1, aijo, aija; 0, Ox, Ba) < (bir, bia, bis; 05, 05, 55)

i=1,2,..,muz; >20,7=12,...,n

Where «, 0,8 € [0,1] and stand for truth-membership, indeterminancy and
falsity-membership function of each neutrosophic number. ’

Here decision maker want to increase the degree of truth-membership and
decrease the degree of indeterminancy and falsity membership. Using the
concept of component wise optimization, the problem (25) reduces to an
equivalent MOLFP as follows:

Maz 7, (z) = 2218+ PL

Y djzzy+ g3

Mag 7 (z) = 22525 T P2
> djaTj + ga

Maz Zs (z) = 23T +P3
Y. dizi+q

Maz 7y (z) = 222% T

Y B+ By
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0~ . QN

Max Zs(z) =1 — ~29;x]—+—9p, (26)
205 + 05
Maz 7 (z) = 1 — 22D+ 05
2oy +ag

Subject to

aij1Tj < bty ) agow; <big, Y agary < b, Y oy < o,
b

> 0aw; <65, fary < By
zj>0,1=12,..,m;j5j=1,2..n
Let us assume that 21, 29, 23, 24, 25 and zg > 0 for the feasible region. Hence,
the MOLFP problem can be converted into the following MOLP problem:

Maz z (y,t) chly] +pit,
Max 2z (y,t) chgyj + pot,
Mazx 23 (y,t ZC_].?)y] + pst,
Maz z4 (y,t) Zaﬁyj + agt,
Mazx z5 (y,t) =1 — (ZHgyj — %t) ,

Maz 2 (y,t) =1 — (Zﬁa’yj - 5ﬁt> ,
Subject to

Zdj?)yj +a3t <1,
Y djpy; + ot < 1,
Yo dnyi+at <1,

> Bayj + Bt <1,
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D Oay; + 05t < 1,

Zaayj +agt <1,
Z a1y — bint <0,
Z a;joyj — bt <0,
Z a;j3y; — bist <0,
> aay; — ot <0,

Zeiiyj - 95t <0,

Zﬁay]“ﬁ'[;tS(L

ty; > 0,0 =1,2,.,m;5 = 1,2, ... (27)

Solving the transformed MOLP problem for each onjective function, we
obtain 2§, 23, 2%, 25, 25 and z§. Using the membership functions defined in
previous section, the above model reduces to:

Max A
Subject to

Zleyj +pit — 1A > 0,
> cjays +pat — 2A > 0,
Z cjsyj + pat — 232 20,

Zagyj + apt — 232 > 0,
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1= (3 ey + 05t) — 32 <0,
1- (Zﬁa’yj +/Bﬁt) — 262 <0,

D disyj+ast <1,
D djpyj + gt < 1,
D dpyi+ait <1,

> B+ Bt <1,

> Oy + 0zt <1,
> agy+agt <1,
Zaijlyj — byt <0,
Z aij2y; — biot <0,
> aigsy; — bist <0,
> g — ot <0,

>0 — 05t <0,

> B = Bt <0,

tyyj > O,Z = 1721 "'am;j = 1’2’ ey T (28)
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5.1 ALGORITHM

The proposed approach for solving NLFP problem can be summarized as
follows:

Step 1. The NLFP problem is converted into MOLFP problem using
component wise optimization of triangular neutrosophic numbers.

Step 2. The MOLFP problem is transformed into MOLP problem using the
method proposed by Charnes and Cooper.

Step 3. Solve each objective function subject to the given set of constraints.
Step 4. Define membership functions for each objective function as in
section four.

Step 5. Use Zimmermann’s operator and membership functions to obtain
crisp model.

Step 6. Solve crisp model by using suitabe algorithm.

6 NUMERICAL EXAMPLE

A company manufactures 3 kinds of products i, IT and IIT with profit around
8,7 and 9 dollars per unit, respectively. However, the cost for each one unit
of the products is around 8, 9 and 6 dollars, respectively. Also it is assumed
that a fixed cost of around 1.5 dollars is added to the cost function due to
expected duration through the process of production. Suppose the materials
needed for manufacturing the products I, II and III are about 4, 3 and 5
units per pound, respectively. The supply for this raw material is restricted
to about 28 pounds. Man-hours availability for product I is about 5 hours,
for product II is about 3 hours, and that for III is about 3 hours in
manufacturing per units. Total man-hours availability is around 20 hours
daily. Determine how many products of I, I and III should be manufactured
in order to maximize the total profit. Also during the whole process, the
manager hesitates in prediction of parametric values due to some
uncontrollable factors.

Let w1, 29 and 3 unis be the amount of I, IT and III, respectively to be
produced. After prediction of estimated parameters, the above problem can
be formulated as the following NLFPP:

. 8z1 + Taa + 9
Max Z (Z) = = x1N+ 7$2~+ o
8x1 + 9x9 4+ 63 + 1.5
Subject to

Z:cl + :');:Bg + gxg < 2%,
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By + 3wy + 3wz < 20, 21, 29,23 > 0 (29)

 with 8= (7,8,9;0.5,0.8,0.3), 7 = (6,7,8;0.2,0.6,0.5)

- 9=(8,9,10;0.8,0.1,0.4), 6 = (4,6,8;0.75,0.25, 0.1),
15=(1,1.5,2;0.75,0.5,0.25) , 4 = (3,4,5;0.4,0.6,0.5) ,
=(2,3,4;1,0.25,0.3), 5=1(4,5,6;0.3,0.4,0.8)

98 = (25, 28,30;0.4,0.25,0.6) , 20 = (18, 20,22;0.9,0.2,0.6) .
This problem is equivalent to the following MOLFPP:

QO

?

Tx| + 6xo + 813

M =
ar A (33) 9c1 + 10x2 + 8x3 + 2’
8x1 + Txo + 9x3
M =
o 2 () = G Sy + 60 4 15
921 + 8x9 + 10x3
M o
ax 23 (¥) Txy + 8x9 + 4z + 1’
5] 0.2 0.8
Maz 2 (z) 0.5z1 + 0.229 4 0.823

= 0371 + 0.429 + 0123 + 0.25°

B 0.8z1 + 0.629 + 0.1x3
0.8z; + 0.1z + 0.2523 + 0.5’

Max z5(z) =1

0.321 + 0.5z + 0.4x3

30
0.5z1 + 0.8z + 0.75x3 + 0.75 (30)

Maz 26 (z) =1 —
Subject to

3x1 + 229 + 4z < 25,

4x1 + 32 + x5 < 28,

51 + dxe 4 63 < 30,

4xq1 + 229 + 223 < 18,

51 + 3x9 + 3x3 < 20,

6x) + 4xo + 4z < 22,
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0.4z1 + 22 + 0.323 < 0.4,

0.6z1 + 0.2529 + 0.4423 < 0.25,

0.5z + 0.3x2 + 0.8z3 < 0.5,

0.3z1 + zo + x3 < 0.9,

0.4z1 + 0.2529 + 0.2523 < 0.2,

0.8x1 + 0.3z9 + 0.3x3 < 0.6,

Using the transformation the problem is equivalent to the following MOLPP:

Maz z (y,t) = Ty1 + 6y2 + 8ys,

Maz 2z (y,t) = 8yi + Ty2 + Yys,

Mazx 23 (y,t) = 9y1 + 8yo + 10ys3,
Mazx z4 (y,t) = 0.5y; + 0.2y2 + 0.8ys3,
Maz z5 (y,t) = 0.5y; + 0.15y2 + 0.5,

Maz 26 (y,t) = 0.2y; + 0.3y2 + 0.35y3 + 0.75, (31)
Subject to ' '

9y, + 10y2 +8yz +2t < 1,

8y1 + 9y2 + 6ys + 1.5¢ < 1,

Tyr + 8ya +4ys +t < 1,
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0.3y; + 0.4y2 + 0.1y3 + 0.25¢ < 1,

0.8y1 + 0.1y + 0.25y3 + 0.5t < 1,

0.5y1 + 0.8y2 + 0.75y3 + 0.75¢ < 1,

3y1 + 2y2 + 4yz — 25t <0,

4y1 + 3y2 + dys — 28t <0,

Sy1 + 4ys + by — 30t <0,

4y1 + 2y2 + 2y3 — 18t < 0,

5y1 + 3ya + 3y — 20t < 0,

6y1 + 4ye + 4ys — 22t <0,

0.4y1 + y2 + 0.3ys — 0.4¢ < 0,

0.6y1 + 0.25y5 + 0.4ys — 0.25¢ < 0,

0.5y; + 0.3y2 + 0.8y3 — 0.5t < 0,

0.3y1 + 2 + y3 — 0.9t <0,

Y1,Y2,Y3,t =0

Solving each objective at a time we get:

z1 = 0.7143, 22 = 0.8036, z3 = 0.8929, 24 = 0.0714, 5 = 0.833, z5 = 0.7813

Now the previous problem reduced to the following LPP:
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Max A\

Subject to

Ty + 6y2 + 8yz — z1A > 0,

8y1 + Ty2 + Yy3z — 22A > 0,
9y1 + 8y2 + 10ys — 23A > 0,
0.5y1 + 0.2y2 + 0.8y3 — 24X > 0,
0.5y2 + 0.15y3 + 0.5 — 25 A < 0,
0.2y1 + 0.3y2 + 0.3ys + 0.75 — 26\ < 0
9y1 + 10y2 + 8ys + 2t < 1,
8y1 + Yy + 6ys + 1.5t < 1,‘
Tyr + 8ys +4ys +t < 1,
0.3y1 + 0.4y + 0.1y + 0.25¢ < 1,
0.8y + 0.1ys + 0.25y3 + 0.5t < 1,
0.5y1 + 0.8y + 0.75ys + 0.75¢ < 1,
3y1 + 2yo + 4y — 25t <0,

4y1 + 3ya + byz — 28t < 0,
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dy1 + 4y + 6ys — 30t < 0,
Ay + 2y + 2y3 — 18 < 0,
5y1 + 3y2 + 3yz — 20t < 0,
6y + dys + 4y — 22t <0,
0.4y1 + y2 + 0.3ys — 0.4¢ <0,
0.6y1 + 0.25y3 + 0.4y3 — 0.25¢ < 0,
0.5y1 + 0.3y2 + 0.8y3 — 0.5¢ < 0,
0.3y1 +y2 +y3 — 0.9t <0,
Y1,92,Y3,t > 0, A€ [0,1] (32)

Solving by LINGO we have y; = 0,52 = 0,3 = 0,0893, A = 1, t = 0.1429.
The optimal of original problem as 1 = 0, z9 = 0, z3 = 0.6249.

7 CONCLUSION

In this paper, a method for solving the NLFP problem where the cost of the
objective function, the resources and the technological coefficients are
triangular neutrosophic numbers is proposed. In the proposed method,
NLFP problem is transfomed to a MOLFP problem and the resultant
problem is converted to a LP problem. In future, the proposed approach can
be extended for solving multi-objective neutrospohic linear fractional
programming problems (MONLFPPs).
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