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Abstract: In recent years, fuzzy multisets and neutrosophic sets have become a subject of great interest
for researchers and have been widely applied to algebraic structures include groups, rings, fields and
lattices. Neutrosophic multiset is a generalization of multisets and neutrosophic sets. In this paper,
we proposed a algebraic structure on neutrosophic multisets is called neutrosophic multigroups
which allow the truth-membership, indeterminacy-membership and falsity-membership sequence
have a set of real values between zero and one. This new notation of group as a bridge among
neutrosophic multiset theory, set theory and group theory and also shows the effect of neutrosophic
multisets on a group structure. We finally derive the basic properties of neutrosophic multigroups
and give its applications to group theory.

Keywords: neutrosophic sets; neutrosophic multisets; neutrosophic multigroups; neutrosophic
multisubgroups

1. Introduction

In the real world, there are much uncertainty information which cannot be handled by crisp
values. The fuzzy set theory [1] has been an age old and effective tool to tackle uncertainty information
by introduced Zadeh but it can be applied only on random process. Therefore, on the basis of fuzzy
set theory, Sebastian and Ramakrishnan [2] introduced Multi-Fuzzy Sets, Atanassov [3] proposed
intuitionistic fuzzy set theory, Shinoj and John [4] initiated intuitionistic fuzzy multisets. Recently,
the above theories have developed in many directions and found its applications in a wide variety
of fields including algebraic structures. For example, on fuzzy sets [5-7], on fuzzy multi sets [8-10],
on intuitionistic fuzzy sets [11-19], on intuitionistic fuzzy multi sets [20] are some of the selected works.

But these theories cannot manage the all types of uncertainties, such as indeterminate and
inconsistent information some decision-making problems. For instance, “when we ask the opinion
of an expert about certain statement, he or she may that the possibility that the statement is true is
0.5 and the statement is false is 0.6 and the degree that he or she is not sure is 0.2” [21]. In order to
overcome this shortage, Smarandache [22] introduced neutrosophic set theory to makes the theory
of Atanassov [3] very convenient and easily applicable in practice. Then, Wang et al. [21] gave
the some operations and results of single valued neutrosophic set theory. In order to establish the
algebraic structures of neutrosophic sets, some authors gave definition of neutrosophic groups [23-26]
that is actually a example of a group. To develop the neutrosophic set theory, the concept of
neutrosophic multi sets was initiated by Deli et al. [27] and Ye [28,29] for modeling vagueness
and uncertainty. Using their definitions, in this paper, we define a new type of neutrosophic group on
a neutrosophic multi set, which we call neutrosophic multi set group. Since this new concept a brings
the neutrosophic multi set theory, set theory and the group theory together, it is very functional in the
sense of improving the neutrosophic multi set theory with respect to group structure. Rosenfeld [30]
extended the classical group theory to fuzzy set. By using the definitions and results on fuzzy
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sets in [6,30] and on intuitionistic fuzzy multiset in [20], we applied the definitions and results to
neutrosophic multi set theory.The above set theories have been applied to many different areas
including neutrosophic environments have been studied by many researchers in [31-39]. In this paper
the notion of neutrosophic multigroup along with some related properties have been introduced by
follow the results of intuitionistic fuzzy group theory. This concept will bring a new opportunity in
research and development of neutrosophic sets theory.

The paper is organized as follows. In Section 2, we briefly review some preliminary concepts
that will be used in the paper. In Section 3, we introduce the concept of neutrosophic multi group and
give several basic properties and operations. In Section 4, we give some applications to the group
theory with respect to neutrosophic multi groups. In Section 5, we make some concluding remarks
and suggest.

2. Preliminary

In this section, we present basic definitions of fuzzy set theory, multi fuzzy set theory, intuitionistic
fuzzy set theory, intuitionistic fuzzy multi set theory, neutrosophic set theory and neutrosophic
multi set theory. For more detailed explanations related to this section, we refer to the earlier
studies [1,2,4,6,20,22,27,30].

Definition 1 ([1]). Let E be a universe.
Then, a fuzzy set X over E is defined by

X ={(px(x)/x) : x € E}, )

where py is called membership function of X and defined by ux : E — [0,1]. For each x € E, the value px(x)
represents the degree of x belonging to the fuzzy set X.

Definition 2 ([2]). Let X be a non-empty set. A multi-fuzzy set A on X is defined as:

A= {<x,u(x), ua(x), p3(x), ..., pj.. : x € E}, (2)

where p; : X — [0,1] foralli € {1,2,...,p} and x € E.

Definition 3 ([4]). Let X be a nonempty set. An Intuitionistic Fuzzy Multi-set A denoted by IFMS drawn
from X is characterized by two functions: ‘count membership” of A(CMy) and ‘count non membership” of
A(CNy) given respectively by A(CMy) : X — Qand A(CN,) : X — Q where Q is the set of all crisp
multi-sets drawn from the unit interval [0,1] such that, for each x € X, the membership sequence is defined
as a decreasingly ordered sequence of elements in CM4(x), which is denoted by (uY (x), u% (x), ..., ul (x))
where 'y (x) > u3(x) > ... > ul(x) and the corresponding non membership sequence will be denoted by
(WL (x), v (x), .., V3 (x)) such that 0 < ply (x) + vy (x) < 1forevery x € Xandi = (1,2,3,...,p). An IFMS
A is denoted by

A= {{x s (a0, 15 (), g (), (4 (0), V5 (x), - VA (7)) s x € X . ®)

Definition 4 ([4]). Length of an element x in an IFMS. A defined as the Cardinality of CM(x) or CN4(x)
for which 0 < p, (x) + v/, (x) < 1and it is denoted by L(x : A). That is,

L(x: A) = |CMy(x)| = |CNa(x)]- @

Proposition 1 ([20]). Let A, B, A; € IFMS(X); then, the following results hold:

1. [A71)1=A
2. ACB=A1CBL
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ULy Al = Ui (A1),
[
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[Nz 1A] t= LA
(AoB) ' =B 1loA™L
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CMAoB(x) :\/yGX{CMA(y)/\CMB( N )} VxeX
ZVyex{CMA(x )/\CMB )} VxeX.

CNAoB(x) = /\yeX{CNA(y) \/CNB( )} VxeX
= Ayex{CNa(xy™!) VCNg(y)} Vx € X.

Definition 5 ([20]). Let X be a group. An intuitionistic fuzzy multiset G over X is an intuitionistic fuzzy
multi group (IFMG) over X if the counts(count membership and non membership) of G satisfies the following
four conditions:

1. CMg(xy) > CMg(x) A\CMg(y) V¥V x,y € X.
2. CMg(x 1)>CTG( )VxeX.

3. CNg(xy) < CNg(x) ACIg(y) V x,y € X.

4. CNg(x™') <CNg(x)Vx € X.

Definition 6 ([22]). Let X be a space of points (objects), with a generic element in X denoted by x. A neutrosophic
set(N-set) A in X is characterized by a truth-membership function T 4, a indeterminacy-membership function 14
and a falsity-membership function Fy. Ta(x), I4(x) and Fa(x) are real standard or nonstandard subsets of
[70,17].

It can be written as

A ={<x,(Ta(x),1a(x),Fa(x)) >: x € X, Ta(x),Ia(x), Fa(x) € [0,1]}. @)

There is no restriction on the sum of Ta(x); I4(x) and Fa(x), so ~0 < supTa(x) + supla(x) +
supFa(x) <37,

Here, 1T = 1+¢, where 1 is its standard part and ¢ its non-standard part. Similarly, —0 = 1+e, where 0 is
its standard part and e its non-standard part.

Definition 7 ([27]). Let E be a universe. A neutrosophic multiset set(Nms) A on E can be defined as follows:

A = {<x (Th(x), TR(x), -, TR (%)), (T4 (x),

L5 (x), o, I3 (%)), ©)
(Fj(x), F3(x),.., Fi(x)) >: x € E},

where

T4 (%), T3 (x), ..., T (x) : E = [0,1],

I (x), 15 (x),..., 15 (x) : E—[0,1],
and

Fi(x),F3(x),.., F;(x) : E = [0,1]
such that

0 < supTiy(x) + supl’y(x) + supFi(x) <3
(i=1,2,...,P)and
Th(x) < T5(x) <. < Th(x)

forany x € E.

(Th(x), T4(x), .. Tk (x)),  (I4(x),15(x), ... I5(x)) and (F}(x),F5(x),..,Fi(x)) is the
truth-membership sequence, indeterminacy-membership sequence and falsity-membership sequence of
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the element x, respectively. In addition, P is called the dimension(cardinality) of Nms A, denoted d(A).
We arrange the truth-membership sequence in decreasing order, but the corresponding indeterminacy-membership
and falsity-membership sequence may not be in decreasing or increasing order.

Definition 8 ([27,28]). Let A, B be two Nms. Then,

1. Adissaid to be Nm-subset of B is denoted by ACB if Ti; (x) < Th(x), I}, (x) > I5(x), Fiy (x) > Fi(x),
Vx€ Eandi=1,2,..., P.

2. A s said to be neutrosophic equal of B is denoted by A = B if T),(x) = Ti(x), I'|(x) = I5(x),
Fy(x) = Fg(x),Vx € Eandi=1,2,..., P.

3. The union of A and B is denoted by AUB = C and is defined by

C ={<x(T¢(x), T2(x),.., TE(x)), (1L (x), I2(x), ... IZ(x)), (FL(x), F3(x),.., F(x)) >: x € E},

where T- = T’ (x) V Th(x), Ik = I', (x) A I5(x), Fs = F}y(x) AFj(x),Vx € Eandi =1,2, ..., P.
4. The intersection of A and B is denoted by ANB = D and is defined by

D ={<x (Th(x), TA(x),.., TE(x)), (I} (x), I3 (x), ..., I5(x)), (F} (x), F3(x), ..., F5(x)) >: x € E},
where TE = Ti, (x) ATh(x), Ity = I}, (x) V I5(x), F5 = Fi, (x) V Fi(x),Vx € Eand i = 1,2,..., P.

3. Neutrosophic Multigroups

In this section, we introduce neutrosophic multigroups and investigate their basic properties.
Throughout this section,

1.  Let X be a group with a binary operation and the identity element is e.
2. NMS(X) denotes the set of all neutrosophic multisets over the X.
3.  NMG(X) denotes the set of all neutrosophic multi groups NMG over the group X.

Definition 9. Let X be a group A € NMS(X). Then, A~ is defined as

A7l = (< (T (), T2 (1), o, TR)) L (I () 2 (1), IR (),

(FY ' (x), P27 (%), .., FE ' (x)) >: x € E}, @

where T’;l(x) =Tl (x7 1), Iigl(x) =T a(x71) and Fizl(x) =Fis(x Y foralli=1,2,..,P.

Definition 10. Let X be a classical group A € NMS(X). Then, A is called a neutrosophic multi groupoid over
X if
1. Tig(xy) > Tig(x)AT(y),
2. Tg(xy) < I'c(x) VI's(y),
3. Fg(xy) < F'g(x)VFgly),
forallx,y € Xandi=1,2,..., P.
A'is called a neutrosophic multi group(NM-group) over X if the neutrosophic multi groupoid satisfies

1. Tie(x™t) > Tig(x),

- Te(x ) < To(x),
3. Fig(x™!) < Fig(x),

forallx € Xandi=1,2,..,P.
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Example 1. Assume that (Z3,+) is a classical group. Then,

A= {(0;(0.8,0.7,0.6,0.4),(0.1,0.1,0.2,0.3), (0.2,0.3,0.4,0.5)), (1; (0.7,0.6,0.4,0.3),
(0.2,0.3,0.2,0.3), (0.3,0.4,0.5,0.6)), (2; (0.8,0.6,0.6,0.4), (0.1,0.2,0.2,0.3), (0.2,0.4,0.4,0.5)) }

is a NM-group. However,

B= {(0;(0.8,0.7,0.6,0.4),(0.1,0.1,0.2,0.3), (0.2,0.3,0.4,0.5)), (1; (0.9,0.5,0.4,0.3), (0.2,0.1,0.2,0.3),
(0.3,0.3,0.5,0.4)), (2; (0.8,0.7,0.6,0.4), (0.1,0.3,0.2,0.3), (0.2,0.4,0.4,0.6)) }

is not a NM-group because T'g(171) is not greater than or equal to T'z(1).

From the Definition 10 and Example 1, it is clear that a NM-group is a generalized case of fuzzy
group and intuitionistic fuzzy multi group.

Proposition 2. Let X be a classical group and A € NMS(X). If A € NMG(X); then,

1. Tiale) >Tis(x)VxeX,
2. Tale) <Ta(x)VxeX,
3. Figle) <Fip(x)VxeX,

forallx € Xandi=1,2,...,P.

Proof. Since A an NM — group over X, then

1.
Tis(e) =Tia(xxl)
> T A(x) AT a(x7h)
> T/ (x) A T A(%)
=T'a(x)
forallx €e Xandi=1,2,...,P.
2.
I'a(e) = I’:A(x.x’l)
STa(x)VIa(xt)
< I4(x) VI a(x)
=I'z(x)
forallx e Xandi=1,2,...,P.
3.
Flale) =Fa(xxh)
S Fa(x) VFa(x™)
< Fla(x) VFa(x)
= F4(x)
forallx e Xandi=1,2,..., P.
O

Proposition 3. Let X be a classical group and A € NMS(X). If A € NMG(X), then

1. Tia(x")>Tia(x)VxeEX,
. TaA(x™) < Tia(x)Vx€X,
3. Fiu(x") < Fia(x)VxeX,

forallx € Xandi=1,2,..,P.
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Proof. Since A an NM — group over X, then

1.
Ta(x") 2T a(x) AT A"
> TlA(x) A TZA<X) TARTAN T'A(x)
=T a(x)
forallx e Xandi=1,2,...,P.
2.
IlA(x”) < IIA(X)\/IIIA(xn_l) .
STA(x) VI A(X) V.o VI 4(x)
=1'a(x)
forallx €e Xandi=1,2,..., P.
3.
Fla(x") < Fu(x)VFa( )
< F'p(x) VF o(x) V..V F4(x)
= F'4(x)
forallx € Xandi=1,2,..., P.
]

Definition 11. Let Y be a subgroup of X, B € NMG(Y), BCA and A € NMG(X). If B € NMG(Y),
then B is called a neutrosophic multi subgroup of A over X and denoted by B A.

Example 2. Assume that (Z3,+) is a classical group. We define A and B neutrosophic multi group over
(Z3,+) by

A = {(0;(0.4,0.3,0.3,0.2),(0.1,0.1,0.2,0.3), (0.2,0.3,0.4,0.6)),
(1;(0.6,0.5,0.3,0.2), (0.2,0.4,0.2,0.3), (0.3,0.2,0.5,0.6)),
(2;(0.8,0.7,0.5,0.4), (0.1,0.3,0.2,0.3), (0.2,0.1,0.4,0.5)) }.

B = {(0;(0.4,0.3,0.3,0.2),(0.1,0.1,0.2,0.3), (0.2,0.3,0.4,0.6)),
(1;(0.6,0.5,0.3,0.2),(0.2,0.4,0.2,0.3), (0.3,0.2,0.5,0.6) }.

Then, B is a neutrosophic multi subgroup of A over (Z3,+) and denoted by B A.

Theorem 1. Let X be a group A € NMS(X). Then, A is an NM — group if and only if T' 4 (xy~') >
Tia(X) AT A(y), Fa(xy™) < Tia(x) V Ig(y) and Fi g (xy™1) < Fig(x) V Fig(y) forall x,y € X.

Proof. Assume that A is an NM — group over X. Then,

Tia(xy™) > TZ:A(X) N Tl:A(y_l)
> T'a(x) AT a(y)

forallx,y € Xandi=1,2,..., P.

forallx,y € Xandi=1,2,..,P.

forallx,y € Xandi=1,2,.., P.
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Conversely, the given condition be satisfied. Firstly,

Secondly,
Fa(x1) =Tylex)
< Ia(e) VIa(x)
=T'a(x)
Fa(xy) <Ta(x)VIay™)
<Ta(x)VIA(y)
Thirdly,
Fa(x™) =Fylex)
< Fiale) VF a(x)
= Fax)
Fla(xy) <Fa(x)VFa(y™)
< Fa(x)VFay)

so the proof is complete. [

Definition 12. Let A, B € NMS(X). Then, their “AND” operation is denoted by AAB and is defined by
ARB = {(x,y), T' arp(%,¥), I'ans(%,y), Farp(x,y) : (x,y) € X x X}, ®)

where T' axp(x,y) = T'a(x) AT'g(y), I ang(x,y) = I'a(x) V I'p(y), Fazp(x,y) = F'a(x) V F'p(y).

Theorem 2. Let A,B € NMG(X). Then, AAB is a neutrosophic multi group over X.

Proof. Let (x1,y1), (x2,12) € X x X. Then,

A/\B(xlxz 1Yy 1

(i ) ATy, ') ,

T'a(x1) AT a(x2)) A (T'5(y1) A T'p(y2))

(1) AT (y1)) A (T a(x2) A T'g(y2))
xB(x1,¥1) AT anp(x2,y2)

T prp((x1,71), (x2,12) 1)

vl

T!
T!
(T
(T
Tiy

I arp((x1,11), (x2,2)71) IAAB(xlxz s )
= Ia(xixy )V Iy, ') ‘
< (Fax) VIa(x2)) v (IfB(y1) V I'p(y2))
= (I'a(x1) V I'g(y1)) V (I'a(x2) V I'5(12))

=I'axp(x1,y1) V I' arp(x2,2)

and
FIA/\B((xllyl)/(leyz)*l) FA/\B(xlxz /yll/z )
= (x1x2 )V F'g (yﬂ/z*l)‘ .
< (F'a(x1) VF a(x2)) V (F'p(y1) V F'p(y2))
= (F'a(x1) VFp(y1)) V (F a(x2) V F'p(12))
= Flanp(x1,v1) V F anp(x2,42)
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for all (x1,y1), (x2,y2) € Xand i = 1,2,..., P. Therefore, AAB is a neutrosophic multi group over X,
hence the proof.
O

Example 3. Let us take into consideration the classical group (Zs, +). Define the neutrosophic multiset A, B
on (Z3,+) as follows:

A = {(0;(05,0.3,0.2,0.1),(0.1,0.1,0.2,0.3), (0.2,0.3,0.4,0.5)),
(1;(0.6,0.4,0.3,0.2),(0.1,0.3,0.3,0.4), (0.1,0.2,0.4,0.6)),
(2;(0.7,0.5,0.3,0.2),(0.2,0.2,0.3,0.4), (0.3,0.3,0.4,0.6)),

B = {(0;(0.6,0.5,0.4,0.2),(0.2,0.2,0.3,0.4), (0.3,0.3,0.4,0.6)),
(1;(0.8,0.6,0.4,0.3), (0.1,0.1,0.2,0.3), (0.2,0.2,0.3,0.4)) }

are NM — groups.
AAB = {((0,0);(0.5,0.3,0.2,0.1),(0.2,0.2,0.2,0.4), (0.2,0.3,0.4,0.6)),
((0,1);(0.5,0.3,0.2,0.1),(0.1,0.1,0.2,0.3), (0.2,0.2,0.3,0.5)),
((1,0);(0.6,0.4,0.3,0.2),(0.2,0.2,0.3,0.4), (0.3,0.3,0.4,0.6)
((1,1);(0.6,0.4,0.3,0.2),(0.1,0.3,0.3,0.4), (0.2,0.2,0.4,0.6)
((2,0);( ) ( ) ( )
(2,1);( ) ( ) ( )

;(0.6,0.5,0.3,0.2), (0.2,0.2,0.3,0.4), (0.3,0.3,04,0.6)),
;(0.7,0.5,0.3,0.2),(0.2,0.2,0.3,0.4),(0.3,0.3,0.4,0.6)) }.

)
)
, )
)

7

Then, AAB € NMG(X).

Definition 13. Let X be a classical group and A,B € NMS(X). Then, their “OR” operation is denoted by
AV B and is defined by

AVB = {(x,¥), T' avs(x,¥), I avp(%,y), F avp(x,y) : (x,y) € X x X} 9
where T' ayp(x,y) = T'a(x) V T'g(y), I avp(x,y) = I'a(x) A's(y), F avp(x,y) = F'a(x) AF'p(y).

Proposition 4. Let A,B € NMG(X). Then, T yop(x) < T'agp(x71), I'agp(x)
Flagp(x) = F agp(x~1).

v

I'pggp(xh),

Proof. Let (x1,11), (x2,42) € X x X. Then,

T 495 ((x1,11), (x2,2) 1) :TAVB(xlxz 1Yy )

=T alax, )V Ty, ')
(T'a(x1) V T 4(x2)) V (T'8(y1) V T'B(y2))
(T a(x1) V T'p(y1)) V (T'ax2) V T'p(y2))
T agp(x1,v1) V T Ay (X2, v2)

I IA

I a98((x1,1), (x2,2) 1) IA\/B(xlxz 1Yy )

= Ia(xx, ) Ay, 1) ,
(Fa(x) AT a(x2)) A (I'p(y1) AT'B(y2))
(Fa(x) AT'p(y1)) A (I a(x2) AT'B(y2))
I pgp(x1,y1) AT 495(x2, 12)

| IAVA

and
Faop((x1, 1), (x2,12) 1) FAVB(xle 13 )
:FA(x1x2 )/\Pl (ylyZ ) ‘
(F'a(x1) AF 4(x2)) A (F'p(y1) A Fip(y2))
(F'a(x1) AF'p(y1)) A (Fla(x2) AF'p(y2))
= F pop(x1,y1) AF p9p(x2,2)

v
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for all (x1,y1), (x2,y2) € Xand i = 1,2, ..., P—hence the proof.
From this, it is clear that, if A, B € NMG(X), then AVB € NMG(X) iff T! y95(x,y) > T 495(x) A
T avp(W), I avp(x,y) < T avp(x) VI a9p(y), F' avp(x,y) < Flagp(x) V Fagp(y). O

Corollary 1. Let A,B € NMG(X). Then, AV B need not be an element of NMG(X).

Example 4. Let us take into consideration the classical group (Zy, +). Define the neutrosophic multiset A, B
on (Zy, +) as follows:

A ={(0;(05,0.3,0.2,0.1),(0.1,0.1,0.2,0.3), (0.2,0.3,0.4,0.5) ),
(1;(0.6,0.4,0.3,0.2),(0.1,0.3,0.3,0.4), (0.1,0.2,0.4,0.6)),
(2;(0.7,0.5,0.3,0.2),(0.2,0.2,0.3,0.4), (0.3,0.3,0.4,0.6)),
(3;(0.7,0.6,0.4,0.3),(0.2,0.1,0.2,0.3),(0.3,0.2,0.1,0.3)) }

= {(0;(0.6,0.5,0.4,0.2),(0.2,0.2,0.3,0.4), (0.2,0.3,0.4,0.6)),

(1; (0.8, 0.6,0.4,0.3),(0.1,0.1,0.2,0.3),(0.2,0.2,0.3,0.4)) }

are NM — groups.

AVB = {((0,0);(0.6,0.5,0.4,0.2),(0.1,0.1,0.2,0.3), (0.2,0.3,0.4,0.5)),
((0,1);(0.8,0.6,0.4,0.3),(0.1,0.1,0.2,0.3), (0.2,0.2,0.3,04)),
((1,0);(0.6,0.5,0.4,0.2),(0.1,0.2,0.3,0.4), (0.1,0.2,0.4,0.6)
((1,1);(0.8,0.6,0.4,0.3),(0.1,0.1,0.2,0.3), (0.1,0.2,0.3,0.4)
((2,0);(0.7,0.5,0.4,0.2),(0.1,0.2,0.3,0.4), (0.2,0.3,0.4,0.6)
(2,1);( ) ( ) ( )
((3,0);( ) ( ) ( )
(3, 1);( ) ( ) ( )

7
7 4
7
7

)
)
)
),
)
)}

;(0.8,0.6,04,0.3),(0.1,0.1,0.2,0.3),(0.2,0.2,0.3,0.4
;(0.7,0.6,0.4,0.3), (0.2,0.1,0.2,0.3), (0.2,0.2,0.1,0.3
;(0.8,0.6,04,0.3),(0.1,0.1,0.2,0.3),(0.2,0.2,0.1,0.3

7
4

However, T' y55(3,0) > T 495(1,0). Then, AVB ¢ NMG(X).

Theorem 3. Let X be a classical group and A € NMG(X). Then, the followings are equivalent:

Tl (yx) = Tiy (xy), I}, (yx) = I}, (xy) and F (yx) = Fi (xy) for all x,y € X.

‘ I’ (xyx~t) = I, (y) and F}, (xyx~Y) = Fi, (y) forall x,y € X.
I', (xyx~1) < Iy (y) and Fiy (xyx~1) < Fi(y) forall x,y € X.
I (xyxY) > I (y) and F) (xyx~1) > Fi (y) forall x,y € X.

A Lo N M
>’ﬂv~n
=
<
=
AN
IN IV I

4. (4) = (1): Letx,y € X. Then,

< T (xy),
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I (xy) =TI (xyxx1)
< Iy (yx)

= L (yxyy ™)
< Tu(xy),

Fi, (xy) :Fil(x‘.yx.x’l)
< Fy(yx)

= F, (y-xy.y ")
< B, (xy)

Hence, T' (yx) = T (xy), I (yx) = Iy (xy), Fy (yx) = Fi (xy).
O

Definition 14. Let X be a group, A € NMS(X) and B is a nonempty neutrosophic multi subset of A
over X. Then, B is called an abelian neutrosophic multi subset of A if Ty (yx) = T (xy), I',(yx) =
I', (xy) and F (yx) = Fi) (xy) forall x,y € X.

Example 5. 1x and 1, are normal neutrosophic multi subgroup of X. If X is a commutative group,
every neutrosophic multi subgroup of X is normal.

Definition 15. Let X be a group, A € NMG(X) and B is a neutrosophic multi subgroup of A over X. Then,
B is called an a normal neutrosophic multi subgroup of A, denoted by B/ A if it is an abelian neutrosophic multi
subset of A over X.

Example 6. Assume that (Z3,+) is a classiccal group. Define the neutrosophic multisets A and B on (Z3,+)
as follows:
A ={(0;(0.6,0.5,04,0.2),(0.1,0.1,0.2,0.3),(0.2,0.3,0.4,0.6)),
(1;(0.5,0.4,0.4,0.3),(0.2,0.1,0.2,0.3),(0.3,0.4,0.5,0.6)),
(2;(0.9,0.7,0.6,0.5),(0.1,0.1,0.2,0.3),(0.2,0.2,0.3,0.5)) }

is a NM-group. If

B = {(0;(0.6,0.5,0.4,0.2),(0.1,0.1,0.2,0.3),(0.2,0.3,0.4,0.6)),
(1;(0.5,0.4,0.4,0.3), (0.2,0.1,0.2,0.3), (0.3,0.3,0.5,0.4)) },

then B is a neutrosophic multi subgroup of A over (Z3,+) and denoted by B< A. Therefore, B3/ A.

Corollary 2. Let A € NMG(X) and B be a neutrosophic multi subgroup of A over X. If X is an abelian group,
then B is a normal neutrosophic multi subgroup of A over X.

4. Applications of Neutrosophic Multi Groups

In this section, we give some applications to the group theory with respect to neutrosophic
multi groups.

Definition 16. Let A be a neutrosophic multiset on X and a € [0,1]. Define the a-level sets of A as follows:

(T'a)e = {x € X: Tx(x) > a},

(I'a)*={xeX:I'a(x) <a},
(Fa)*={x€eX:Fa(x) <a}.
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It is easy to verify that

(1) IfACB and & € [0,1], then
(Tia)a € (Tig)as (') 2 (Ip)® and (Fia)* 2 (Fig)t. |
(2) a< B implies (T'a)a 2 (Tia)g, (Ia)* € (I')P and (Fig)* C (Fig)P.

Proposition 5. A is a neutrosophic multi group of a classical group X if and only if for all « € [0, 1], a-level
sets of A, (T' a)u, (I' ) and (F' 4)* are classical subgroups of X.

Proof. Let A be a neutrosophic multi subgroup of X, « € [0,1] and x.y € (T4)s (similarly
xy € (I'n)a, (F 4)%). By the assumption, T 4 (xy~1) > T s (x) ATi4(y) > a A = & (and similarly,
I's(xy™') <wand Fis(xy~!) < a). Hence, xy~! € (T?4)a (and similarly xy=! € (I'4)%, (F'4)*) for
each & € [0,1]. This means that (T 4), (and similarly (I 4 )%, (F' 4)*) is a classical subgroup of X for
eacha € [0,1].

Conversely, let (T’ 4 ), be a classical subgroup of X, for each a € [0,1]. Let x,y € X, = Ti 4(x) A
Ti4(y) and B = T'4(x). Since (T'4), and (TiA)I; are classical subgroups of X, x.y € (T4), and
x7b € (T'a)p. Thus, T'p(xy™1) > & = T'4(x) AT 4(y) and T'4(x71) > B = T'4(x). Similarly,
Fa(xy™) < Ta(x)VIA(y)and Fig(xy™!) < Fig(x) VFA(y). O

Theorem 4. Let Xy, Xy be the classical groups and g : X1 — Xp be a group homomorphism. If A is a
neutrosophic multi subgroup of Xy, then the image of A, ¢(A) is a neutrosophic multi subgroup of Xp.

Proof. Let A € NMS(Xq) and y1,y2 € Xp. If g1 (y1) = @ or g1 (y2) = @, then it is clear that
g(A) € NMS(X5). Let us assume that there exists x1, xp € Xj such that g(x1) = y; and g(x2) = y».
Since g is a group homomorphism,

g(T'A) 1y, ) = Vil =g(x )Ti (x) > Tia(xix, 1),
(I Ay, ') = A IA( ) S Ta(ax, '),
8(F1A)(y1yz )= /\ylyz —e(x) Fia(x) < Fla(xixyh).

By using the above inequalities, let us prove that g(A)(y1y5 ') > g(A)(y1) Ag(A)(y2) :

gA) ") =8(Ta) vy ) e(I'a) vy, ') g (FZA)( vy ) ,
= Vg1t T A0 Ay 1o a0 Ay 1y Fla )
> (T'a(x1xy ), Falxixg '), Fla(xaxg ') A
> (T'a(x1) AT a(x2), I'a(x1) V I'a(x2), F'a(x1) V Fa(x2)
= (T'a(x1), 'a(x1), F'a(31)) A (T'a(x2), I' A (x2), F' 4 (x2))-

This is satisfied for each x1, x; € Xj with ¢(x1) = y; and g(x2) = yp, then it is obvious that

gAY W1y2 ") = (Vyymg(e) T A1), Ayy=g(a) I'a(31), Ay =g(r) Fa(31))
(Vyz gxz)TA(xZ) /\]/2 gxz)IA(xZ) /\y2 gxz FA(xZ)) )
= (8(T'4)(y1), 8(I'a) (y1), 8 (F'4) (y1)) A (8(T"4) (y2), 8(I'a) (y2), 8 (F ) (2))
=g(A)(y1) N g(A)(y2).

Hence, the image of a neutrosophic multi subgroup is also a neutrosophic multi subgroup. O

Theorem 5. Let Xy, Xy be the classical groups and g : X1 — X be a group homomorphism. If B is a
neutrosophic multi subgroup of X,, then the preimage g~ 1(B) is a neutrosophic multi subgroup of Xy.
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Proof. Let B € NMS(X;) and x1, x2 € Xj. Since g is a group homomorphism, the following inequality
is obtained:

2 ) I - 1X
= (TfB(g(xl)g( 2) ), I (8( 1)8(x2) 1), F'p(g(x1)g(x2) 1)) ‘
> (T'p(g(x1)) A T'p(g(x2)), I'p(g(x1)) V I'p(g(x2)), F'p(g(x1)) V F'p(g(x2)))
= (T'p(g(x1)), IZB(g(xl)) Fi(g(x1))) A (T'(g(x2)), I'p(8(x2)), F'p(g(x2)))
=g 1(B)(x1) Ag71(B)(x2).

Therefore, ¢~ !(B) € NMS(X;). O

Definition 17. Let X be a classical group. A € NMG(X); then, the compound function of A and A is
defined as

ABA(z) ={z, TiAaA(Z),IiAaA(Z),FiAaA(Z) :Vz € X}, (10)

where TiAaA(z) = (Vay=T a(W) AT a(zy™)), Fasa(z) = (Aay=zI"a(y) V I a(zy™1)) and Fi g5 4(z) =
(Axy==F'a(y) V F a(zy™)).

Theorem 6. Let A € NMS(X). Then, A € NMG(X) iff ASACA and ACA™L.
Proof. Let A € NMS(X) and x,y,z € X.
= Ta(xy) = T4 (x) AT Ay)

Xy
= T'a(z) > V{T'A(x) AT A(y); xy = 2z}
=T as4(2)

= () < T'4(x) VI a(9)

= I'a(z) < MI'a(x) VI'a(y);xy = z}
=TI ps4(z)

= Fis(xy) < Fa(x)VTia(y)

(xy
= Fla(z) < MFA(x) VF A(y);xy = z}
A(z)

_FAO

= ABACA.
Now, by Proposition 2, we get the conditions. Conversely, suppose ASACA and ACA~!

= T3 () 2 Ta(x) but T, (x) = TPa(x 1) = Tia(x ) = Tia(x)
= I (x) < Tig(x)but I} (x) = Fa(x~1) = Iig(x~1) < T a(x)
= Fi ' (x) < Fia(x)but Fiy (x) = Fia(x~1) = Fia(x~1) < Fla(x)

since A € NMS(X); then, to prove A € NMG(X), it enough to prove that T? 4 (xy~1) > T 4(x) A
Tia(y), Falxy™) < Tpa(x)VIia(y)and Fip(xy™) < Fia(x) VFia(y) Vx,y € X.
Now, ' '
T'a(xy™) > T asalxy™)
= Vaex{T'a(2) AT a(z T2y~ 1)}
>{TA() AT Ay ")z = x}
> T'a(x) AT a(y)

Falxy™) <Tasalxy™)
— eex(1a(2) ¥ I3y )
< {(x)V Faly Dz = x}
<T'a(x)VIa(y)
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Fa(y™) <Fasalxy™)
= Azgx{F’A(z) VFA(z ey 1)}
< {FA(0) v Flay 1)z = 1)
< Fa(x)VFa(y),

hence the proof. [
Corollary 3. Let A € NMS(X). Then, A € NMG(X) iff ASA = Aand ACA~L.
Proof. Let A € NMG(X). Then,

Tiasa(x) =V{T'A(y) AT A(z);y,z € X and yz = x}
> {T'a(e) AT a(e™"x)}
=T'a(x)

Fpasa(x) =MIaA(y)VIA(z);y,2z € Xandyz = x}
<{I'a(e) VIa(e x)}
=I'p(x)
Fiasa(x) = AN{Fis(y)VFa(z);y,z € Xandyz = x}
<{Fa(e) V Fa(e'x)}
= Fy(x).
Therefore, AC A3 A.
Hence, by the above theorem, the proof is complete. [

Theorem 7. Let X be a classical group and A,B € NMS(X).If A,B € NMG(X), then ANB € NMG(X).

Proof. Let x,y € X be arbitrary:
=S Talxy™) =T A(x) AT A(y 1), T'p(xy™") = T'p(x) AT'p(y )

Fa(xy™) < Ta(x)VIa(y™h), Ip(xy™) < I'(x) v T'p(y )
Fia(xy™ ) S Fa(x) VF Ay ™), Fip(xy™ ) < Fip(x) V Fig(y ).

Now,

T! pmp(xy™1) (X)) AT amp(y™1) by definition intersection

A AT Al D] [Tha(3) A Taly )

YJATE(X)] A[TPa(y™) A T'g(y~ )] by commutative property of minimum
) AT'5(x)] A [T'aly) A T'5(y)] since A, B € NMG(X)

~(X) AT amp(y ) y definition intersection

(xy™1) = T anp(x) AT 4mp(y) (1)

fa(x
falx
NB

>>::>:>:>“°>

TR A= = = |
B
s~}

IRV TR

3.
S

Juy
~—

U A A

I ymp (xy~ Ap(x) VI AﬂB(y 1) by definition intersection

)V Ea(y )V T(x) v n(y )

x)V I'p(x )] VI A(y~Y) v I'g(y~1)] by commutative property of maximum
x)VIg(x)] VI a(y) V I'g(y)] since A, B € NMG(X)

~5(x) V I' 45 (y) by definition intersection

Ap(xy ™) < T anp(x) AN 4np(y) (2)

=
ST

—_ e
>> S
mwmf\
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Fipmp(xy™) Fiymp(x) Vv FZAmB(y 1 by definition intersection

< [Fa() V Fia(y~ V)]V [Fia(x) v Fig(y )]
= [FI'A(x) V Fp(x ()] V [Fia(y~1) v Fig(y~1)] by commutative property of maximum
< [Fla(x) VFp(x )V [Fia(y) V Fip(y)] since A, B € NMG(X)

=F AﬁB( x) V F' 4~5(y) by definition intersection
= Famp(xy™") < Fanp(x) A F anp(y) (3)
From (1), (2) and (3), ANB € NMG(X), hence the proof. [

Remark 1. Let X be a classical group and {A;;i € I} be neutrosophic multiset on X. If {A;;i € I} is a family
of NMG(X) over X, then their intersection (\;cA; is also a NMG(X) over X.

Proposition 6. Let A,B € NMG(X). Then, T aqp(x) < Tigop(x™1),Iaqp(x) >
I agp(x71), Flagp(x) > Fygp(x ).

Proof. Let x,y € X. Now,

T acp(x™") = V{Talx ) B(x1)}
> V{Tis(x), T'g(x)} since A, B € NMG(X)
= T pop(%)

Faop(x™h) = AMIa(x7h), Ip(x™)}
< M A(x), I'(x)} since A, B€ NMG(X)
=I'p0p(x)
Flagp(x™) =MFa(x), Fig(x™)}
< N{Fi4(x),Fig(x)} since A, B€ NMG(X)
= F'40p(x),
hence the proof.
From this, it is clear that, if A, B € NMG(X), then AUB € NMG(X) iff T! yo5(xy) > T! go5(x) A
T acg (W), I acg(xy) < T acp(x) V I'acp(y), F acs(xy) < F'agp(x) V F'acp(y). O

Corollary 4. Let A,B € NMG(X). Then, AUB need not be an element of NMG(X).
Example 7. Assume that X = {1, —1,i, —i} is a classical group. Then,

A {(1;(0.5,0.3,0.2,0.1),(0.1,0.1,0.2,0.3), (0.2,0.3,0.4,0.5) ),
1;(0.7,0.6,0.4,0.3),(0.1,0.2,0.2,0.4), (0.2,0.5,0.4,0.3)) },
(0.6,0.4,0.3,0.2),(0.1,0.3,0.3,0.4), (0.1,0.2,0.4,0.6)),
i;(0.6,0.4,0.3,0.2),(0.1,0.3,0.3,0.4), (0.1,0.2,0.4,0.6)) },
{(1;(0.5,0.6,0.6,0.4),(0.1,0.2,0.2,0.3), (0.2,0.4,0.4,0.5)),
1;(0.7,0.6,0.4,0.3),(0.2,0.1,0.2,0.3), (0.3,0.4,0.5,0.3)) }
are NM — groups.

= {(1,(0.5,0.6,0.6,0.4),(0.1,0.1,0.2,0.3), (0.2,0.3,0.4,0.5)),
(—1;(0.7,0.6,0.4,0.3),(0.1,0.2,0.2,0.3), (0.2,0.4,0.4,0.3)),
(i; (0 6,0.4,0.3,0.2),(0.1,0.3,0.3,0.4), (0.1,0.2,0.4,0.6)),
(—1;(0.6,0.4,0.3,0.2),(0.1,0.3,0.3,0.4), (0.1,0.2,0.4,0.6)) }.

=
(i
-
-
AUB

However, T gq5(1) > T aqp(i) A T gcp(—i) as i.(—i) = 1. Then, AUB ¢ NMG(X).

Proposition 7. If A € NMG(X) and X is a subgroup of X, then Al (i.e., A restricted to X1) € NM —
group(Xy) and is a neutrosophic multi subgroup of A.
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Proof. Let x,y € Xj. Then, xy’l € Xi. Now,

T'a, () =Taly™) 2 TA) AT Aly) = T'a () AT (),
1 1 1

IiA|X1 (xy ) =Lalxy™!) < Falx)VIay) = IiA‘Xl (x) v IiA‘Xl (v),
FiA‘X1 (xy™) = Falxy™") S Fa(x) VFA(y) = FiA\xl (x) v 1Ei/4b(l ®)
The second part is trivial. O

Definition 18. Let A € NMG(X) and B € NMG(Y') be two neutrosophic multi groups over the groups X
and Y, respectively. Then, the Cartesian product of A and B is defined as (AXB)(x,y) = A(x) X B(y) where

AXB = {(x,9), T' asp(%,y), I azp(x,9), F azp(x,y) : (x,y) € Xx Y}, (11)
where T' p55(x,y) = T' a(x) V T'8(y), I azp(x,y) = 'a(x) AT'g(Y), F axp(x,y) = F a(x) AF'p(y).

Example 8. Assume that (Zy,+) and (Z3,+) are classiccal groups. Define the neutrosophic multi group A
on (Zy,+) and B on (Z3, +) as follows:

A = {(0;(0.6,0.5,0.4,0.2),(0.2,0.2,0.3,0.4), (0.2,0.3,0.4,0.6)),
(1;(0.6,0.5,0.4,0.3), (0.2,0.1,0.2,0.3), (0.1,0.2,0.3,0.4)) }

B = {(0;(0.7,0.6,0.5,0.4), (0.2,0.2,0.3,0.4),(0.3,0.4,0.5,0.5)),
(1;(0.7,0.6,0.5,0.3), (0.3,0.4,0.3,0.4), (0.3,0.2,0.5,0.5)),
(2;(0.8,0.7,0.5,0.4),(0.1,0.3,0.2,0.3), (0.2,0.1,0.3,0.5)) }.

A%B = {{(0,0); (0.6,0.5,0.4,0.2),(0.2,0.2,0.3,0.4), (0.2,0.3,0.4,0.6)),
;(0.6,0.5,0.4,0.2), (0.3,0.4,0.3,0.4), (0.3,0.3,0.5,0.6)),
;(0.6,0.5,0.4,0.2), (0.2,0.3,0.3,0.4), (0.2,0.3,0.4,0.6)),
;(0.6,0.5,0.4,0.3), (0.2,0.2,0.3,0.4), (0.3,0.4,0.5,0.5)),
,1); (0.6,0.5,0.4,0.3), (0.3,0.4,0.3,0.4), (0.3,0.2,0.5,0.5)),
(1,2); (0.6,0.5,0.4,0.3), (0.2,0.3,0.2,0.3), (0.2,0.2,0.3,0.5)) }.

(0,1)
(0,2)
(1,0)
(1,1)

7

(

(

(

(

(
Then, AX B is a neutrosophic multi group.

Theorem 8. Let A,B € NMG(X). The cartesian product of A and B is denoted by AXB € NMG(X).

Proof. From the Theorem 1, it is clear that a NMG(X) is a neutrosophic multi group:

T azp((x1,01), (x2,92)71) TAxB(xlxz ;)

=T alax, ) ATy, ") ‘
(T'a(x1) AT a(x2)) A (T'p(y1) A T'B(y2))
(T'a(x1) AT'5(y1)) A (T a(x2) A T'5(y2))
T az5(x1,91) A T azp(¥2,42)

v

I psp((x1, 1), (x2,52) 1) IAXB(xlxz v, )

:IA(xlxz )V I'p(yiy; ! ' ,
(Fa(x1) VI a(x2)) vV (I's(y1) V I'p(y2))
(I'a(x1) V I'p(y1)) V (I'a(x2) V I'p(y2))
= I azp(x1,1) V I azp(x2,12)

IN
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and ‘ ‘
Fiasp((x1,11), (x2,92) 1) = Fazp(ain, Lyiys ')
= Fy(a1x, ") V Fg(yiy; ') |
< (Fa(x1) VF A(x2)) V (F'a(y1) V F'p(y2))
= (F'a(x1) VF'g(y1)) V (F'a(x2) V F'a(y2))
= F azp(x1,51) V F axp(x2,2)

forallx,y € Xand i =1,2,..., P—hence the proof. O

5. Conclusions

The concept of a group is of fundamental importance in the study of algebra. In this
paper, the algebraic structure of neutrosophic multiset is introduced as a neutrosophic multigroup.
The neutrosophic multigroup is a generalized case of intuitionistic fuzzy multigroup and fuzzy
multigroup. The various basic operations, definitions and theorems related to neutrosophic multigroup
have been discussed. The foundations which we made through this paper can be used to get an insight
into the higher order structures of group theory.
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The following abbreviations are used in this manuscript:
NMG Neutrosophic Multigroup

NMS  Neutrosophic Multiset
IFMS  Intuitionistic Fuzzy Multiset
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