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ABSTRACT The undergraduate teaching audit and evaluation (UTAE) is critically important for university
to promote the establishment of a quality assurance system and improve the quality of teaching. In
considering the case of UTAE, the essential question that arises strong ambiguity and interaction. The
Maclaurin symmetric mean (MSM), as a significant information integration tool, can seize the interrelation
among multiple input values more effectively. A series of weighted MSMs have been developed to dispose
of diverse neutrosophic information aggregation issues by reason that the attribute variables are frequently
disparate. Nevertheless, these weighted form of MSM operators do not possess the idempotency. Moreover,
the weight MSM cannot degrade into the MSM when their weights information are equivalent. In other
words, it signifies without the reducibility. To resolve two issues, we develop the single-valued neutrosophic
reducible weighted MSM (SVNRWMSM) operator and the single-valued neutrosophic reducible weighted
dual MSM (SVNRWDMSM) operator. Meanwhile, certain interesting properties and some special cases
of the SVNRWMSM and SVNRWDMSM operators are explored in detail. Afterwards, we develop two
multiple attribute decision making (MADM) methods based on SVNRWMSM and SVNRWDMSM. The
validity of algorithms are illustrated by a undergraduate teaching evaluation issue, along with the sensitivity
analysis of diverse parameter values on the ranking. Finally, a comparison of the developed with the existing
single-valued neutrosophic decision making algorithms has been executed for displaying their efficiency.

INDEX TERMS Single-valued neutrosophic set; Aggregation operator; Idempotency; reducible weighted
MSM.

I. INTRODUCTION

THE “Five-in-One” undergraduate teaching evaluation
system established in the new period is based on the

self-evaluation of colleges and universities, with normal
monitoring of teaching basic state data, evaluation of colleges
and universities, professional certification and evaluation,
international evaluation as the main content, and government,
schools, specialized agencies and social multi-evaluation as
the combination of teaching evaluation system. The under-
graduate teaching audit and evaluation (UTAE) is a mode
of evaluation in the “Five-in-One” evaluation system. The
guiding ideology of audit evaluation can be summarized as

“one insistence, two highlights and three intensification”. For
best performance, it should adhere to the two-cross policy of
“promoting construction by evaluation, promoting reform by
evaluation, promoting management by evaluation, combining
evaluation with construction, focusing on construction”. It
stresses connotation construction, highlights characteristic
development. And also strengthen the rational orientation of
running a school, the position of talent training center and
the construction of quality assurance system, and constantly
improve the quality of talent training. Nevertheless, the in-
fluential factors of “UTAE” centers on not only the subject
principle and developable principle but also on their diversity
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principle and empirical principle. In addition, other trait, such
as objective principle, is also continually considered. A brief
description of these principles is shown in FIGURE 1.

FIGURE 1: The five principles of UTAE.

Presently, UTAE has already been completely applied to
evaluate the universities or colleges by ministry of education
in China. China’s President Xi Jinping once said: “Education
determines our present and future. Human society demands
for continuously cultivating the talents needed by the society
through education. It is necessary to teach to know, update
old knowledge, discover new knowledge, and explore the
unknown, so that people can better understand the world
and transform the world, and better create a better future
for mankind.” The universities want to seek their own quick
development in the China’s education ranking. Whereas,
if they want have a higher ranking, it is not enough to
depend on themselves alone. Hence, they had better select
some universities to collaborate with. Therefore, the idea that
regards the process to select the some ideal universities to
collaborate with to the dominating multiple attribute decision
making (MADM) problem comes to my mind. However,
the increasingly complex decision-making environments and
willy-nilly decision makers (DMs) have made it difficult in
expressing decision information with simple numbers in the
process of solving the above MADM problems.

Neutrosophic set (NS), examined by Smarandache [1], has
treated as a more preferable means for describing absonant
information in a philosophical perspective compared with the
intuitionistic fuzzy set (IFS) [2]. From scientific point, the
neutrosophic set and set-theoretic operators should be regula-
tion, or it will be hard for employing practical environments.
As a result, Wang et al. [3] put forward the notion of single
valued neutrosophic set (SVNS) as well as some epoch-
making properties of SVNSs. Up to now, SVNS has drawn
much attention and achieved some infusive achievements [4].

One of the best-loved tools to solve MADM issues is
aggregation operators, which integrate all the given individ-
ual parameters into a monolithic parameter. Consequently, it
is always a hot topic in academic research. The presented

research related to aggregation operators can be fallen into
general categories: (1) Assume that the parameters of ag-
gregation operators are independent of each other. The most
frequently-used operators in this category are the weighted
averaging (WA) operator and the weighted geometric (WG)
operator [5]. In the last few decades, diverse generalized
form of the WA operator and the WG operator have been
presented, significantly striding the richness of aggregation
operators, such as ordered WA (OWA) operator [6], or-
dered WG (OWG) operator [7], continuous OWA (COWA)
operator[8], continuous OWG (COWG) operator [9], induced
COWA (ICOWA) operator [10], induced COWG (ICOWG)
operator [11], induced generalized COWA (IGCOWA) op-
erator [12], induced generalized OWA operator [13], power
OWA (POWA) operator [14], power OWG (POWG) operator
[15]. (2) Assume that the parameters of aggregation operators
are interactional and correlative. It is more closely matches
the real decision making environment, on account of having
correlation of decision making process. For example, if a man
would like to buy a car, then there is a definite relationship
between its fuel efficiency and price. Among them, the most
cross-sectional operators are Bonferroni mean (BM) operator
[16], geometric BM (GBM) operator [17], geometric Heroni-
an mean (HM) operator [18], Dombi operator [19], Muirhead
mean (MM) operator [20], Hamy mean (HM) operator [21].
Up to now, there are plentiful extensions of aggregation
operators by applying them in diverse uncertain environment
[22–26].

Nevertheless, it can only seize the pertinence between a
fixed number of parameters by the above-discussed opera-
tors. For example, the HM operator only seizes the pertinence
between two parameters. In order to boost the elasticity
of information aggregation, Maclaurin [27] presented the
Maclaurin symmetric mean (MSM), which can seize the
pertinence between any number of parameters. Qin and Liu
[28] firstly combined the MSM with the intuitionistic fuzzy
environment in uncertain domain and initiated the weighted
IF MSM (WIFMSM) for aggregating the decision evalua-
tion information. Until now, there are abundant extensions
of MSM operators by applying them in diverse uncertain
environment [29–39].

By researching the current WMSM operators in diverse
uncertain environment, we discover some counter-intuitive
issues: (1) When weight information in whole attributes are
equal, the related environment of WMSM operators [29–
39] cannot degenerate into the homologous MSM operators,
which is an essential trait of the classical weighted operators.
(2) These form of weighted MSM operators [29–39] do not
possess the properties of idempotency. In other words, it
is unconscionable that the weighted average value of some
identical integrated parameters depends on the weight values.
Inspired by reducible weighted MSM operator and reducible
weighted dual MSM (RWDMSM) operator [40], we combine
the above operators with SVNS to integrate single-valued
neutrosophic information and handle single-valued neutro-
sophic MADM issues by considering the merits of both.
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These considerations have guided us to consider the main
targets as follows:

1) To develop two novel kinds of aggregation opera-
tors (single-valued neutrosophic RWMSM (SVNR-
WMSM) and single-valued neutrosophic RWDMSM
(SVNRWDMSM)) for fusing the preferences of ex-
perts or decision makers;

2) To propose some algorithms for dealing the MADM
issues by proposed aggregate operators for solving the
antilogarithm by zero issue [41] and the division by
zero issue [42];

3) To explore the sensitivity analysis of diverse parameter
values on the final ordering;

4) To build a synthesize appraise system for UTAE;
5) To explicitly explore some examples for showing the

superiority of proposed algorithms.

The rest of the paper is organized as follows: In Section
II, we briefly review basic concepts of SVNSs, the MSM,
DMSM, RWMSM and RWDMSM operator. In Section III,
we propose the single-valued neutrosophic Maclaurin sym-
metric means operators, including SVNRWMSM operator
and SVNRWDMSM operator. In Section IV, we propose two
MADM methods based on the conceived SVNRWMSM op-
erator and SVNRWDMSM operator with SVNNs. Moreover,
we employ an example to illustrate the effectiveness of the
presented MADM methods by discussing the effect of the
different parameter values on the ordering of the objects.
In Section V, a comparison with some existing algorithms
is examined. Also, the characteristic comparisons of diverse
single-valued neutrosophic aggregation operators and diverse
uncertain environment are carried out. Finally, Section VI
gives the concluding remarks.

II. PRELIMINARIES
A. SINGLE-VALUED NEUTROSOPHIC SET (SVNS)
Neutrosophic set is a part of neutrosophy, which explores
the origin, and field of neutralities, as well as its interactions
with different conceptual view [1]. It is a compellent common
framework, which expands the IFS [2] from philosophical
viewpoint. Smarandache [1] presented the definition of NS
as follows:

Definition 1: [1] LetX be universe of discourse, with a crowd
of elements in X denoted by x. A NS B in X is summarized
by a truth membership function TB(x), an indeterminacy
membership function IB(x), and a falsity membership func-
tion FB(x). The functions TB(x), IB(x), and FB(x) are
real standard or non-standard subsets of ]0−, 1+[ . That is
TB(x) : X →]0−, 1+[ , IB(x) : X →]0−, 1+[ , and
FB(x) : X →]0−, 1+[.

There is restriction on the sum of TB(x), IB(x), and
FB(x), so 0− ≤ sup TB(x)+ sup IB(x)+ sup FB(x) ≤ 3+.

As discussed above, it is hard to employ the NS in solving
some practical problems. Hence, Wang et al. [3] presented

SVNS, which is a subclass of the NS and mentioned the
definition in the following.

Definition 2: [3] Let X be universe of discourse, with a
crowd of elements in X presented by x. A SVNS N in
X is summarized by a truth-membership function TN (x),
an indeterminacy-membership function IN (x), and a falsity-
membership function FN (x). Then a SVNS N can be denot-
ed as follows:

N = {< x, TN (x), IN (x), FN (x) >| x ∈ X}, (1)

where TN (x), IN (x), FN (x) ∈ [0, 1] for ∀x ∈ X . Mean-
while, the sum of TN (x), IN (x), and FN (x) fulfills the
condition 0 ≤ TN (x) + IN (x) + FN (x) ≤ 3. For a SVNS
N in X , the triplet (TN (x), IN (x), FN (x)) is called single-
valued neutrosophic number (SVNN). For convenience, we
can simply use x = (Tx, Ix, Fx) to represent a SVNN as an
element in the SVNS N .

Definition 3: [3, 41] Let x = (Tx, Ix, Fx) and y =
(Ty, Iy, Fy) be two SVNNs, then operations can be defined
as follows:

(1) xc = (Fx, 1− Ix, Tx);
(2) x

⋃
y = (max{Tx, Ty},min{Ix, Iy},min{Fx, Fy});

(3) x
⋂
y = (min{Tx, Ty},max{Ix, Iy},max{Fx, Fy});

(4) x⊕ y = (Tx + Ty − Tx ∗ Ty, Ix ∗ Iy, Fx ∗ Fy);
(5) x⊗y = (Tx ∗Ty, Ix+Iy−Ix ∗Iy, Fx+Fy−Fx ∗Fy);
(6) λx = (1− (1− Tx)λ, (Ix)λ, (Fx)λ), λ > 0;
(7) xλ = ((Tx)λ, 1− (1− Ix)λ, 1− (1− Fx)λ), λ > 0.

Definition 4: [43] Let x = (Tx, Ix, Fx) be a SVNN, then
the score function s(x), accuracy function a(x) and certainty
function c(x) is defined as follows:

(1) s(x) = 2
3 + Tx

3 −
Ix
3 −

Fx

3 ;
(2) a(x) = Tx − Fx;
(3) c(x) = Tx.

For any two SVNNs x, y,
(1) if s(x) > s(y), then x � y;
(2) if s(x) = s(y) and a(x) > a(y), then x � y;
(3) if s(x) = s(y), a(x) = a(y) and c(x) > c(y), then

x � y;
(4) if s(x) = s(y), a(x) = a(y) and c(x) = c(y), then

x ∼ y.

B. REDUCIBLE WEIGHTED MACLAURIN SYMMETRIC
MEANS
The Maclaurin symmetric mean (MSM), originally initiated
by Maclaurin [27], can seize the interrelation among multiple
input values more effectively. Now, over the last decade
years, the MSM is employed in aggregating uncertain infor-
mation in decision making process.

Definition 5: [27] Let xi(i = 1, 2, · · · , n) be a series of
nonnegative real numbers, and k = 1, 2, · · · , n, then the
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Maclaurin symmetric mean (MSM) operator is defined as
follows:

MSM(k)(x1, x2, · · · , xn) =


∑

1≤i1<···<ik≤n
k∏

j=1

xij

Ckn


1/k

,

(2)
where (i1, i2, · · · , ik) traverses all the k−permutations of
(1, 2, · · · , n), and the Ckn is the binomial coefficient satis-
fying following formula: Ckn = n!

k!(n−k)! .

Definition 6: [29] Let xi(i = 1, 2, · · · , n) be a series of
nonnegative real numbers, and k = 1, 2, · · · , n, then the dual
Maclaurin symmetric mean (DMSM) operator is defined as
follows:

DMSM(k)(x1, x2, · · · , xn) =


∑

1≤i1<···<ik≤n
k∏

j=1

xij

Ckn


1/k

,

(3)
where (i1, i2, · · · , ik) traverses all the k−permutations of
(1, 2, · · · , n), and the Ckn is the binomial coefficient satis-
fying following formula: Ckn = n!

k!(n−k)! .
In order to solve the issues of idempotency and reducibil-

ity, Shi and Xiao [40] developed the reducible weighted
MSM (RWMSM) and the reducible weighted dual MSM
(RWDMSM) in the following.

Definition 7: [40] Let xi(i = 1, 2, · · · , n) be a series of
nonnegative real numbers, k = 1, 2, · · · , n, and W =
(w1, w2, · · · , wn)T with wi ∈ [0, 1] and

∑n
i=1 wi = 1, then

the reducible weighted MSM (RWMSM) operator is defined
as follows:

RWMSM(k)(x1, x2, · · · , xn)

=


∑

1≤i1<···<ik≤n
(
k∏
j=1

wij )(
k∏
j=1

xij )

∑
1≤i1<···<ik≤n

k∏
j=1

wij


1/k

.
(4)

Definition 8: [40] Let xi(i = 1, 2, · · · , n) be a series of
nonnegative real numbers, k = 1, 2, · · · , n, and W =
(w1, w2, · · · , wn)T with wi ∈ [0, 1] and

∑n
i=1 wi = 1,

then the reducible weighted DMSM (RWDMSM) operator
is defined as follows:

RWDMSM(k)(x1, x2, · · · , xn)

=

∏
1≤i1<···<ik≤n

(
k∑
j=1

xij

) k∑
j=1

wij

∑
1≤i1<···<ik≤n

k∑
j=1

wij

k
.

(5)

III. SINGLE-VALUED NEUTROSOPHIC REDUCIBLE
WEIGHTED MACLAURIN SYMMETRIC MEANS

In this section, based on the operational rules of SVNNs with
the RWMSM and RWDMSM operators, we develop single-
valued neutrosophic RWMSM (SVNRWMSM) and single-
valued neutrosophic RWDMSM (SVNRWDMSM). Mean-
while, we will prove some interesting properties and discuss
some special cases of proposed aggregation operators.

A. SINGLE-VALUED NEUTROSOPHIC REDUCIBLE
WEIGHTED MSM OPERATOR

Definition 9: Let xi = (Txi
, Ixi

, Fxi
)(i = 1, 2, · · · , n) be

a series of SVNNs, and let W = (w1, w2, · · · , wn)T be
a weight vector with wi ∈ [0, 1] and

∑n
i=1 wi = 1. The

SVNRWMSM: Ωm → Ω, a SVNRWMSM operator is given
as follows:

SVNRWMSM(k)(x1, x2, · · · , xn) =
∑

1≤i1<···<ik≤n
(
k∏
j=1

wij )(
k∏
j=1

xij )

∑
1≤i1<···<ik≤n

k∏
j=1

wij


1/k

(6)

where Ω is the set of all SVNNs, then SVNRWMSM is called
the single-valued neutrosophic reducible weighted MSM op-
erator.

According to the operational laws of the SVNNs described
in Definition 3, from Eq. (6), we can achieve the integrated
result presented in Theorem 1.

Theorem 1: Let xi = (Txi
, Ixi

, Fxi
)(i = 1, 2, · · · , n) be

a series of SVNNs, and let W = (w1, w2, · · · , wn)T be a
weight vector with wi ∈ [0, 1] and

∑n
i=1 wi = 1, then the

result of SVNRWMSM operator is still a SVNN.

Theorem 2: (Monotonicity) Let xi(i = 1, 2, · · · , n) and
x′i(i = 1, 2, · · · , n) be two series of SVNNs, if x′i =
(Tx′i , Ix′i , Fx′i), xi = (Txi

, Ixi
, Fxi

), Txi
≥ Tx′i , Ixi

≤
Ix′i , Fxi

≤ Fx′i for all i = 1, 2, · · · , n, then

SV NRWMSM (k)(x1, x2, · · · , xn) ≥
SV NRWMSM (k)(x′1, x

′
2, · · · , x′n).

(8)

Theorem 3: (Commutativity) Let (x′1, x
′
2, · · · , x′n) be any

permutation of (x1, x2, · · · , xn), then

SV NRWMSM (k)(x1, x2, · · · , xn) =

SV NRWMSM (k)(x′1, x
′
2, · · · , x′n).

(9)
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SVNRWMSM(k)(x1, x2, · · · , xn) =
1−

 ∏
1≤i1<···<ik≤n

1−
k∏
j=1

Txij


k∏

j=1

wij


1∑

1≤i1<···<ik≤n

k∏
j=1

wij


1/k

,

1−

1−

 ∏
1≤i1<···<ik≤n

1−
k∏
j=1

(1− Ixij
)


k∏

j=1

wij


1∑

1≤i1<···<ik≤n

k∏
j=1

wij


1/k

,

1−

1−

 ∏
1≤i1<···<ik≤n

1−
k∏
j=1

(1− Fxij
)


k∏

j=1
wij


1∑

1≤i1<···<ik≤n

k∏
j=1

wij


1/k


(7)

Proof:

SVNRWMSM(k)(x1, x2, · · · , xn)

=


∑

1≤i1<···<ik≤n
(
k∏
j=1

wij )(
k∏
j=1

xij )

∑
1≤i1<···<ik≤n

k∏
j=1

wij


1/k

=


∑

1≤i1<···<ik≤n
(
k∏
j=1

w′ij )(
k∏
j=1

x′ij )

∑
1≤i1<···<ik≤n

k∏
j=1

w′ij


1/k

= SVNRWMSM(k)(x′1, x
′
2, · · · , x′n).

Theorem 4: (Idempotency) Let xi(i = 1, 2, · · · , n) be a
series of SVNNs, if xi = x = (T, I, F ) for ∀i, then

SV NRWMSM (k)(x1, x2, · · · , xn) = x. (10)

Proof:
SVNRWMSM(k)(x1, x2, · · · , xn)

=


∑

1≤i1<···<ik≤n
(
k∏
j=1

wij )(
k∏
j=1

xij )

∑
1≤i1<···<ik≤n

k∏
j=1

wij


1/k

=


∑

1≤i1<···<ik≤n
(
k∏
j=1

wij )(
k∏
j=1

x)

∑
1≤i1<···<ik≤n

k∏
j=1

wij


1/k

=


xk

∑
1≤i1<···<ik≤n

k∏
j=1

wij

∑
1≤i1<···<ik≤n

k∏
j=1

wij


1/k

= x.

Theorem 5: (Boundedness) Let xi(i = 1, 2, · · · , n) be a

series of SVNNs, and x+ =

(
n

max
i=1

Ti,
n

min
i=1

Ii,
n

min
i=1

Fi

)
,

x− =

(
n

min
i=1

Ti,
n

max
i=1

Ii,
n

max
i=1

Fi

)
, then

x− ≤ SV NRWMSM (k)(x1, x2, · · · , xn) ≤ x+. (11)

Proof: According to the above monotonicity and idempo-
tency, we can achieve
SV NRWMSM (k)(x1, x2, · · · , xn) ≤
SV NRWMSM (k)(x+, x+, · · · , x+)
and
SV NRWMSM (k)(x1, x2, · · · , xn) ≥
SV NRWMSM (k)(x−, x−, · · · , x−).
Consequently, we can obtain
x− ≤ SV NRWMSM (k)(x1, x2, · · · , xn) ≤ x+.
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The Proof of Theorem 1:

According to the Definition 3, we can have
k∏
j=1

xij =

(
k∏
j=1

Txij
, 1−

k∏
j=1

(1− Ixij
), 1−

k∏
j=1

(1− Fxij
)

)
and(

k∏
j=1

wij

)(
k∏
j=1

xij

)
=

1−

(
1−

k∏
j=1

Txij

) k∏
j=1

wij

,

(
1−

k∏
j=1

(1− Ixij
)

) k∏
j=1

wij

,

(
1−

k∏
j=1

(1− Fxij
)

) k∏
j=1

wij

.

Further,

∑
1≤i1<···<ik≤n

(
k∏
j=1

wij

)(
k∏
j=1

xij

)
=

1−
∏

1≤i1<···<ik≤n

(
1−

k∏
j=1

Txij

) k∏
j=1

wij

,

∏
1≤i1<···<ik≤n

(
1−

k∏
j=1

(1− Ixij
)

) k∏
j=1

wij

,
∏

1≤i1<···<ik≤n

(
1−

k∏
j=1

(1− Fxij
)

) k∏
j=1

wij

.

Consequently,
∑

1≤i1<···<ik≤n
(

k∏
j=1

wij
)(

k∏
j=1

xij
)

∑
1≤i1<···<ik≤n

k∏
j=1

wij

=


1 −

 ∏
1≤i1<···<ik≤n

1 −
k∏

j=1
Txij


k∏

j=1
wij



1∑
1≤i1<···<ik≤n

k∏
j=1

wij
,

 ∏
1≤i1<···<ik≤n

1 −
k∏

j=1
(1 − Ixij

)


k∏

j=1
wij



1∑
1≤i1<···<ik≤n

k∏
j=1

wij
,

 ∏
1≤i1<···<ik≤n

1 −
k∏

j=1
(1 − Fxij

)


k∏

j=1
wij



1∑
1≤i1<···<ik≤n

k∏
j=1

wij


.

Finally, we can have

SVNRWMSM(k)(x1, x2, · · · , xn) =


∑

1≤i1<···<ik≤n
(

k∏
j=1

wij
)(

k∏
j=1

xij
)

∑
1≤i1<···<ik≤n

k∏
j=1

wij


1/k

=




1 −

 ∏
1≤i1<···<ik≤n

1 −
k∏

j=1
Txij


k∏

j=1
wij



1∑
1≤i1<···<ik≤n

k∏
j=1

wij



1/k

,

1 −


1 −

 ∏
1≤i1<···<ik≤n

1 −
k∏

j=1
(1 − Ixij

)


k∏

j=1
wij



1∑
1≤i1<···<ik≤n

k∏
j=1

wij



1/k

,

1 −


1 −

 ∏
1≤i1<···<ik≤n

1 −
k∏

j=1
(1 − Fxij

)


k∏

j=1
wij



1∑
1≤i1<···<ik≤n

k∏
j=1

wij



1/k


, then we can know that Eq. (7) is correct.

It is easily known that 0 ≤


1 −

 ∏
1≤i1<···<ik≤n

1 −
k∏

j=1
Txij


k∏

j=1
wij



1∑
1≤i1<···<ik≤n

k∏
j=1

wij



1/k

≤ 1,

0 ≤ 1 −


1 −

 ∏
1≤i1<···<ik≤n

1 −
k∏

j=1
(1 − Ixij

)


k∏

j=1
wij



1∑
1≤i1<···<ik≤n

k∏
j=1

wij



1/k

≤ 1,

0 ≤ 1 −


1 −

 ∏
1≤i1<···<ik≤n

1 −
k∏

j=1
(1 − Fxij

)


k∏

j=1
wij



1∑
1≤i1<···<ik≤n

k∏
j=1

wij



1/k

≤ 1.

Hence, we can conclude that the integrated result from Eq. (7) is a SVNN. The theorem is proved.
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The Proof of Theorem 2:
Suppose that SV NRWMSM (k)(x1, x2, · · · , xn) = (T, I, F ), SV NRWMSM (k) (x′1, x

′
2, · · · , x′n) = (T ′, I ′, F ′).

Since Txi ≥ T ′xi
, then we can easily obtain 1−

k∏
j=1

Txij
≤ 1−

k∏
j=1

Tx′ij
.

Further, we can achieve1−

 ∏
1≤i1<···<ik≤n

(
1−

k∏
j=1

Txij

) k∏
j=1

wij


1∑

1≤i1<···<ik≤n

k∏
j=1

wij


1/k

≥

1−

 ∏
1≤i1<···<ik≤n

(
1−

k∏
j=1

Tx′ij

) k∏
j=1

wij


1∑

1≤i1<···<ik≤n

k∏
j=1

wij


1/k

.

Consequently, T ≥ T ′.
Similar to above, we can also prove that I ≤ I ′, F ≤ F ′.
Finally, we have (T, I, F ) ≥ (T ′, I ′, F ′).
In other words, SV NRWMSM (k)(x1, x2, · · · , xn) ≥ SV NRWMSM (k)(x′1, x

′
2, · · · , x′n).

Next, we discuss some peculiar cases of the SVNRWMSM
by changing the value of the parameter k.

Case 1: If k = 1, the SVNRWMSM reduces to a single-
valued neutrosophic weighted averaging (SVNWA) operator
(Peng et al. [43] and Liu [44]).

SVNRWMSM(1)(x1, x2, · · · , xn) =
1−

 ∏
1≤i1≤n

(
1− Txi1

)wi1

 1∑
1≤i1≤n

wi1


1/1

,

1−

1−

 ∏
1≤i1≤n

I
wi1
xi1

 1∑
1≤i1≤n

wi1


1/1

,

1−

1−

 ∏
1≤i1≤n

F
wi1
xi1

 1∑
1≤i1≤n

wi1


1/1


=

1−
∏

1≤i1≤n

(
1− Txi1

)wi1 ,
∏

1≤i1≤n

I
wi1
xi1

,
∏

1≤i1≤n

F
wi1
xi1


= SVNWA(x1, x2, · · · , xn)

Case 2: If k = n, the SVNRWMSM reduces to a single-
valued neutrosophic geometric (SVNG) operator (Peng et al.
[43] and Liu [44]).

SVNRWMSM(n)(x1, x2, · · · , xn) =

=


1−


1−

n∏
j=1

Txij


n∏

j=1

wij


1

n∏
j=1

wij


1/n

,

1−

1−


1−

n∏
j=1

(1− Ixij
)


n∏

j=1

wij


1

n∏
j=1

wij


1/n

,

1−

1−


1−

n∏
j=1

(1− Fxij
)


n∏

j=1
wij


1

n∏
j=1

wij


1/n

=

1−
∏

1≤i1≤n

(
1− Txi1

) 1
n ,

∏
1≤i1≤n

I
1
n
xi1
,
∏

1≤i1≤n

F
1
n
xi1


= SVNG(x1, x2, · · · , xn)

B. SINGLE-VALUED NEUTROSOPHIC REDUCIBLE
WEIGHTED DUAL MSM OPERATOR

Definition 10: Let xi = (Txi , Ixi , Fxi)(i = 1, 2, · · · , n) be
a series of SVNNs, and let W = (w1, w2, · · · , wn)T be
a weight vector with wi ∈ [0, 1] and

∑n
i=1 wi = 1. The

SVNRWDMSM: Ωm → Ω, a SVNRWDMSM operator is
given as follows:
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SVNRWDMSM(k)(x1, x2, · · · , xn) =

∏
1≤i1<···<ik≤n

(
k∑
j=1

xij

) k∑
j=1

wij

∑
1≤i1<···<ik≤n

k∑
j=1

wij

k

(12)

where Ω is the set of all SVNNs, then SVNRWDMSM
is called the single-valued neutrosophic reducible weighted
dual MSM operator.

According to the operational laws of the SVNNs described
in Definition 3, from Eq. (12), we can achieve the integrated
result presented in Theorem 6.

Theorem 6: Let xi = (Txi , Ixi , Fxi)(i = 1, 2, · · · , n) be
a series of SVNNs, and let W = (w1, w2, · · · , wn)T be a
weight vector with wi ∈ [0, 1] and

∑n
i=1 wi = 1, then the

result of SVNRWDMSM operator is still a SVNN.

Remark 1: The SVNRWDMSM operator also has the prop-
erties of commutativity, idempotency, monotonicity and
boundedness.

Next, we discuss some special cases of the SVNR-
WDMSM by changing the value of the parameter k.

Case 1: If k = 1, the SVNRWDMSM reduces to a single-
valued neutrosophic weighted geometric (SVNWG) operator
(Peng et al. [43] and Liu [44]).

SVNRWDMSM(1)
(x1, x2, · · · , xn)

=


1 −


1 −


∏

1≤i1≤n

1 −
1∏

j=1

(1 − Txij
)


1∑

j=1
wij


1∑

1≤i1≤n

1∑
j=1

wij



1/1

,


1 −


∏

1≤i1≤n

1 −
1∏

j=1

Ixij


1∑

j=1
wij


1∑

1≤i1≤n

1∑
j=1

wij



1/1

,


1 −


∏

1≤i1<≤n

1 −
1∏

j=1

Fxij


1∑

j=1
wij


1∑

1≤i1≤n

1∑
j=1

wij



1/1

=

 ∏
1≤i1≤n

T
wij
xij

,
∏

1≤i1≤n

1 − (1 − Ixij
)
wij ,

∏
1≤i1≤n

1 − (1 − Fxij
)
wij


= SVNWG(x1, x2, · · · , xn)

Case 2: If k = n, the SVNRWDMSM reduces to a single-
valued neutrosophic averaging (SVNA) operator (Peng et al.
[43] and Liu [44]).

SVNRWMSM(n)(x1, x2, · · · , xn) =1−

1−


1−

n∏
j=1

(1− Txij
)


n∑

j=1
wij


1

n∑
j=1

wij


1/n

,

1−


1−

n∏
j=1

Ixij


n∑

j=1
wij


1

n∑
j=1

wij


1/n

,

1−


1−

n∏
j=1

Fxij


n∑

j=1
wij


1

n∑
j=1

wij


1/n

=

1−
∏

1≤i1≤n

(
1− Txi1

) 1
n ,

∏
1≤i1≤n

I
1
n
xi1
,
∏

1≤i1≤n

F
1
n
xi1


= SVNA(x1, x2, · · · , xn)

Remark 2: Notably, it is important that SVNRWMSM or
SVNRWDMSM operator cannot seize the interrelation a-
mong many given arguments when k = 1 or k = n. In other
words, both of them reduce to the independent operators such
as SVNA, SVNG, SVNWA and SVNWG (Peng et al. [43]
and Liu [44]).

IV. THE MADM METHODS BASED ON SVNRWMSM AND
SVNRWDMSM OPERATORS
A. DESCRIPTION OF THE MADM PROBLEMS
Let A = {A1, A2, · · · , Am} be a discrete set of alternatives,
C = {C1, C2, · · · , Cn} be a collection of n attributes, and
W = {w1, w2, · · · , wn} be a weight vector assigned to
the attributes by the experts with the standard constraints
wj ∈ [0, 1],

∑n
j=1 wj = 1. We assume that the global

evaluation of the alternatives with respect to attributes is
represented by a single-valued neutrosophic matrix P =
(pij)m×n = (Tij , Iij , Fij)m×n. By this we mean that the
values associated with the alternatives for the modelization
of MADM problems can be shown as in Table 1.

B. THE MADM METHOD BASED ON SVNRWMSM OR
SVNRWDMSM OPERATOR
In order to make decisions in our setting, the framework for
using the proposed method is shown in FIGURE 2.

Meanwhile, the following algorithm is self-explanatory:

C. A CASE OF UTAE
The report of the 18th National Congress of the Communist
Party of China clearly stated that “trying to do a good job
of the people’s satisfaction with education”, “focusing on
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SVNRWDMSM(k)(x1, x2, · · · , xn) =1−

1−

 ∏
1≤i1<···<ik≤n

1−
k∏
j=1

(1− Txij
)


k∑

j=1

wij


1∑

1≤i1<···<ik≤n

k∑
j=1

wij


1/k

,

1−

 ∏
1≤i1<···<ik≤n

1−
k∏
j=1

Ixij


k∑

j=1

wij


1∑

1≤i1<···<ik≤n

k∑
j=1

wij


1/k

,

1−

 ∏
1≤i1<···<ik≤n

1−
k∏
j=1

Fxij


k∑

j=1

wij


1∑

1≤i1<···<ik≤n

k∑
j=1

wij


1/k


(13)

TABLE 1: The single-valued neutrosophic MADM matrix.

C1 C2 · · · Cn

A1 (T11, I11, F11) (T12, I12, F12) · · · (T1n, I1n, F1n)
A2 (T21, I21, F21) (T22, I22, F22) · · · (T2n, I2n, F2n)

...
...

...
. . .

...
Am (Tm1, Im1, Fm1) (Tm2, Im2, Fm2) · · · (Tmn, Imn, Fmn)

FIGURE 2: The framework for using the proposed method.

improving the quality of education” and “promoting the
intensive development of higher education”. It is a system-
atic project to promote colleges and universities to enter
the connotative development road with improving quality as
the core. The undergraduate teaching audit and evaluation
(UTAE) is a mode of evaluation in the “Five-in-One” eval-
uation system. Audit evaluation is different from conformity
assessment and level assessment. The conformity assessment
is an assessment of the certification model and is passed

when the criteria are met. The level assessment belongs to the
evaluation of the selection model, mainly to see what level
the participating schools are at, and the focus is on select-
ing “excellent”. The evaluation mainly depends on whether
the assessed object has achieved its own setting goals. The
country does not have a unified evaluation standard. It uses
its own ruler to measure itself, and the audit conclusion is
not graded, forming a realistic audit report. The audit assess-
ment aims to guide the school to establish a self-regulatory
mechanism, strengthen self-improvement, and improve the
school-running level and quality of education.

The audit assessment covers all aspects of the talent train-
ing process in colleges and universities. It mainly depends on
the realization of the training objectives and training effects
of the school personnel, and finally forms a realistic report
regardless of the grade. The focus of the study is on the
following five aspects, which are referred to as “five degrees”.

(1) The achievement degree of school talent training
effect and training goal

The goal of talent training is the starting point of a
series of educational activities. In the absence of training
objectives or unclear training objectives, education teaching
activities are lack of pertinence, aimless and difficult to
achieve results. Starting from the training goal, a training
process was completed after a number of education teaching
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Algorithm 1 :SVNRWMSM or SVNRWDMSM operators

1: Sort the given alternatives and attributes, and achieve the
single-valued neutrosophic matrix P = (pij)m×n which
is shown in the format of Table 1.

2: Transform the matrix P = (pij)m×n into a normalized
single-valued neutrosophic matrix P ′ = (p′ij)n×m by
Eq. (14).

p′ij =

{
(Tij , Iij , Fij), Cj is benefit attribute
(Fij , 1− Iij , Tij), Cj is cost attribute

(14)

3: Employ the SVNRWMSM operator

R(Ai) = (Ti, Ii, Fi) =

SV NRWMSM (k)(p′i1, p
′
i2, · · · , p′in)

(15)

or
Employ the SVNRWDMSM operator

R(Ai) = (Ti, Ii, Fi) =

SV NRWDMSM (k)(p′i1, p
′
i2, · · · , p′in)

(16)

to determine the aggregated preference value.
4: Determine the score function s(R(Ai)) of the whole

values R(Ai)(i = 1, 2, · · · ,m).
5: Select the optimal alternative(s) by maximization of their

scores, i.e., any alternative whose score R(Ai) is at least
as great as any other alternative’s can be chosen.

activities to achieve the expected talent training goal. The
result and the cultivation target overlap greatly, indicating
the result and the goal attainment degree is high. If the
overlapping surface is small or cannot be overlapped, the
training objective is not practical, or if education teaching
activities are not in place, the achievement degree is very low.
The achievement of the training effect is not only reflected
in the graduation rate and employment rate of the students,
but also mainly reflected in the process of talent training,
including classroom examination, graduation thesis (design),
experimental internship, second classroom, social practice
and other activities. It is necessary to attach great importance
to these teaching links in order to ensure the quality of
training.

(2) The adaptability degree of school orientation, talent
training objectives and national and regional economic and
social development needs

Colleges and universities are important bases for culti-
vating and transporting talents for the society. The talent
training goals determined by higher education institutions
must be reflected in economic construction services to meet
the needs of social development for talents. National and
regional economic and social development has diverse needs
for talents, such as research talents, applied talents, skilled
talents, and compound talents. Institutions of higher learning

must rationally position themselves from the actual situation
and formulate corresponding talent training goals. Develop
training programs based on the training objectives and form
a curriculum system that is compatible with them.

(3) The guarantee degree of teachers and teaching re-
source condition

Teaching resources refer to all the materialized, explicit
or implicit teaching elements that can help students achieve
learning goals and serve students’ learning. Teachers and
teaching resources usually include teaching infrastructure,
teaching funds, teaching materials, teaching instruments and
equipment, etc. Teachers and teaching resources are the
basic conditions for running a university. The state has basic
requirements for this, such as the ratio of students to teachers,
the value of teaching and research equipment, the book per
student, the administrative room for teaching per student,
and the structure of teacher education. These indicators
are the basic conditions for colleges and universities to
guarantee the quality of talent cultivation. In addition, the
talent cultivation goal set by the school according to its own
situation should also provide people, financial and material
conditions to support it, so as to promote the realization of the
training goal. Teacher’s morality, teaching level and scientific
research ability are the embodiment of teacher’s quality. High
quality talent team and teaching resources are the guarantee
to improve the quality of talent training.

(4) The effective degree of the teaching and quality assur-
ance system

Internal quality assurance system is the key to guar-
antee the smooth development of teaching. The teaching
quality assurance system is composed of quality standards,
quality evaluation, quality control, information collection
and feedback improvement. The school should establish
its own professional standards, curriculum standards and
quality standards of all major teaching links in accordance
with the national higher education quality standards and
relevant industry standards. Schools should teach according
to these quality standards. The school should establish a
self-assessment system to carry out department evaluation,
professional evaluation and course evaluation on teaching
conditions, teaching process and teaching effect. The school
should establish the basic teaching status database, give
full play to the normal monitoring effect of the teaching
status data on the teaching work, and combine with the self-
evaluation work to form and release the teaching quality
report annually. The school shall collect relevant teaching
information through self-assessment, supervision and inspec-
tion, and regular monitoring of teaching status data, and
timely feed back to all links of teaching work, adjust and
improve the work, and constantly improve the quality of
talent cultivation.

(5) The satisfied degree of student and social employer
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The satisfaction of students and social employers is the
fundamental measure of talent training quality. The school
should establish a tracking investigation mechanism for
social employers and graduates, understand the needs of
social employers and graduates’ reflection regularly, and
adjust and improve the professional setting, training objec-
tives, training specifications, training programs and teaching
methods according to the feedback information. Students are
the subject of learning and one of the evaluators of education
teaching quality. The quality of education teaching activities
and the service work of the school is reflected in whether the
quality of students can be improved and whether the learning
needs can be met. Student evaluation and satisfaction are
the internal standards of school work quality. The school
should insist on student-oriented, strengthen the guidance
and service to students, and establish a scientific and effective
evaluation system, regularly understand students’ opinions
and suggestions on teaching, management and service, and
constantly improve teaching work to improve students’ satis-
faction.

The “five degrees” constitutes the assessment of students
as the main line and student development as the center, cover-
ing the whole process of inputting and outputting talents from
the entrance to the graduation of students. By examining
whether the school’s teaching design, resource allocation and
teacher security can meet the needs of students’ learning and
growth in the process of training, and whether the students
who train output can meet the needs of economic and social
development, they can evaluate the quality of school person-
nel training.

Assessment experts make a comprehensive judgment on
the school’s talent cultivation and education quality through
auditing these aspects.

Example 1: Suppose that there are five universitiesA = {A1,
A2, A3, A4, A5} to be considered for the assessment in U-
TAE. The expert elects the highly representative attribute set
C = {C1(Achievement degree), C2(Adaptability degree),
C3(Guarantee degree), C4(Effective degree), C5(Satisfied
degree)}. According to the general evolving principle and
the features of the UTAE, we can ascertain that whole at-
tributes are benefit attributes. Assume that the expert has
given the weight information as w = (w1, w2, w3, w4, w5) =
(0.2, 0.3, 0.15, 0.15, 0.2). The evaluations for UTAE of u-
niversities arising from questionnaire investigation by the
veteran expert group and generating the final single-valued
neutrosophic matrix with its tabular form given in Table 2.

Next, we employ the algorithm proposed above in se-
lecting optimal university to collaborate under single-valued
neutrosophic text.

Step 1: Sort the alternatives and attributes, and obtain the
single-valued neutrosophic matrix P = (pij)5×5 which is
shown in the format of Table 2.

Step 2: No conversion is required, on account of all
attributes are beneficial attributes.

Step 3: Employ the SV NRWMSM (1) operator to ag-
gregate the preference value as follows:
R(A1) = (0.843083, 0.110957, 0.123114),
R(A2) = (0.769505, 0.174110, 0.185028),
R(A3) = (0.687798, 0.174110, 0.216330),
R(A4) = (0.581126, 0.174110, 0.208961),
R(A5) = (0.479877, 0.174110, 0.208961).
or
Employ the SV NRWDMSM (1) operator to aggregate

the preference value as follows:
R(A1) = (0.833668, 0.115761, 0.131246),
R(A2) = (0.763471, 0.180931, 0.197174),
R(A3) = (0.676652, 0.180931, 0.233228),
R(A4) = (0.570848, 0.180931, 0.228699),
R(A5) = (0.469984, 0.180931, 0.228699).

Step 4: Compute the score function s(R(Ai)) of the whole
values R(Ai)(i = 1, 2, 3, 4, 5) as follows:

SVNRWMSM:
s(R(A1)) = 0.869671, s(R(A2)) = 0.803456,
s(R(A3)) = 0.765786, s(R(A4)) = 0.732685,
s(R(A5)) = 0.698935.
SVNRWDMSM:
s(R(A1)) = 0.862220, s(R(A2)) = 0.795122,
s(R(A3)) = 0.754164, s(R(A4)) = 0.720406,
s(R(A5)) = 0.686785.

Step 5: Based on above score function s(R(Ai))(i =
1, 2, 3, 4, 5), we can obtain the ordering of the alternatives
{A1, A2, A3, A4, A5} as follows: A1 � A2 � A3 � A4 �
A5.

D. SENSITIVITY ANALYSIS OF THE PARAMETER K ON
THE ORDERING IN DEVELOPED ALGORITHMS
For analyzing the sensitivity of the parameters k on the score
values, an experiment (Example 1) was executed by adopting
diverse values of k(k = 1, 2, 3, 4, 5).

Based on the SVNRWMSM and SVNRWDMSM opera-
tors, the final score values of five universities are summarized
in Fig. 3 and Fig. 4. From two figures, some significant points
have been come to a conclusion in the following.

(1) For SVNRWMSM algorithm, the score values of all
five universities are firstly monotonically increases when
k ∈ [1, 4], and later monotonically decreases when k ∈ [4, 5].
Moreover, it is not very clear to see the final ordering on
account of achieving the similar values which vary from
0.943918 to 0.999968 with difference value of 0.05 when
k = 4. The final results all keep as A1 � A2 � A3 � A4 �
A5.

(2) For SVNRWDMSM algorithm, the score values of
all five universities are firstly monotonically decreases when
k ∈ [1, 4], and later monotonically increases when k ∈ [4, 5].
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TABLE 2: The single-valued neutrosophic matrix in Example 1.

C1 C2 C3 C4 C5

A1 (0.9, 0.1, 0.1) (0.8, 0.1, 0.2) (0.8, 0.2, 0.1) (0.9, 0.1, 0.1) (0.8, 0.1, 0.1)
A2 (0.8, 0.1, 0.2) (0.8, 0.2, 0.2) (0.7, 0.2, 0.3) (0.8, 0.2, 0.2) (0.7, 0.2, 0.1)
A3 (0.7, 0.1, 0.2) (0.7, 0.2, 0.3) (0.6, 0.2, 0.1) (0.8, 0.2, 0.3) (0.6, 0.2, 0.2)
A4 (0.5, 0.1, 0.2) (0.6, 0.2, 0.3) (0.6, 0.2, 0.2) (0.7, 0.2, 0.3) (0.5, 0.2, 0.1)
A5 (0.4, 0.1, 0.2) (0.5, 0.2, 0.3) (0.5, 0.2, 0.2) (0.6, 0.2, 0.3) (0.4, 0.2, 0.1)

FIGURE 3: The total changing trend of parameter k in
SVNRWMSM algorithm.

FIGURE 4: The total changing trend of parameter k in
SVNRWDMSM algorithm.

Moreover, it is very clear to see the final ordering compared
with the SVNRWMSM algorithm. The final results also all
keep as A1 � A2 � A3 � A4 � A5.

(3) The reason for the inflection point is that k = 1 is
the form of averaging operator at the beginning and k = 5
is the form of geometric operator at the end for SVNR-
WMSM algorithm. Similarly, for SVNRWDMSM algorithm,
it experiences the transformation from geometric operator to

averaging operator.
(4) The values at both ends (k = 1 and k = 5) have

an interesting phenomenon. For SVNRWMSM algorithm,
the score values of all five universities are the minimum
compared with k = 1, 2, 3, 4 when k = 5 (geometric form).
For SVNRWDMSM algorithm, the score values of all five
universities are the maximal compared with k = 1, 2, 3, 4
when k = 5 (averaging form).

V. COMPARATIVE ANALYSIS AND DISCUSSION
In the following, some existing decision making methods
[41–51] with their limitations and characteristics are dis-
cussed in detail. An example is given to show the advantages
of our proposed algorithms.

Example 2: Continue to Example 1. Suppose that the assess-
ments for universities arising from another group of experts
are given which is shown in Table 3.

Remark 3: According to Table 4, we can find that the red
background color indicates the illogical result on account
of the division by zero problem which is probed in Peng
and Dai [42]. That is to say, if the assessed value of one
alternative in corresponding attribute is the largest in whole
alternatives for proprietary attributes, then we can’t give a
decision. For Cross-entropy [41], it is easily lead to the
antilogarithm by zero issue. In addition, we will see that our
optimal alternative and the ranking are same as the existing
aggregation methods [43–51].

In aggregation functions, only just the aggregation meth-
ods [46, 47, 50] take the interrelationship of the attributes
into consideration. For better differentiate the characteristics
of existing SVN aggregation operators, we make a summary
of them presented in Table 5. From Table 5, we can find the
presented aggregation operators are based on RWMSM op-
erators with a parameter k. Hence, the initiated aggregation
operators (SVNRWMSM and SVNRWDMSM) are more all-
purpose than some existing aggregation operators. In the
meantime, they can take the interrelation of the multiple
attributes into consideration for handling MADM issues.

For a better comparison with some MSM operators in
diverse uncertain environment [28–39], we make a summary
of them presented in Table 6.

From Table 6, some existing weighted forms of MSM op-
erators do not possess the idempotency. Moreover, the weight
MSM cannot degrade into the MSM when their weights in-
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TABLE 3: The single-valued neutrosophic matrix in Example 2.

C1 C2 C3 C4 C5

A1 (0.9, 0.1, 0) (0.8, 0.1, 0.2) (0.8, 0.2, 0.1) (0.9, 0.1, 0.1) (0.7, 0.1, 0.1)
A2 (0.8, 0.1, 0.2) (0.8, 0.2, 0.3) (0.7, 0.2, 0.3) (0.8, 0.2, 0.2) (0.7, 0.2, 0.1)
A3 (0.7, 0.1, 0.2) (0.7, 0.2, 0.3) (0.6, 0.2, 0.1) (0.8, 0.2, 0.3) (0.6, 0.2, 0.2)
A4 (0.5, 0.1, 0.2) (0.6, 0.2, 0.3) (0.6, 0.2, 0.2) (0.7, 0.2, 0.3) (0.5, 0.2, 0.1)
A5 (0.4, 0.1, 0.2) (0.4, 0.2, 0.3) (0.5, 0.2, 0.2) (0.6, 0.2, 0.3) (0.4, 0.2, 0.1)

TABLE 4: A comparison study with some existing methods in Example 2.

Algorithms Ranking Optimal alternative

Algorithm 1: SVNRWMSM A1 � A2 � A3 � A4 � A5 A1

Algorithm 1: SVNRWDMSM A1 � A2 � A3 � A4 � A5 A1

Cross-entropy [41] LOG *
TOPSIS [42] N/A *

ASVNNWA [43, 44] A1 � A2 � A3 � A4 � A5 A1

ASVNNWG [43, 44] A1 � A2 � A3 � A4 � A5 A1

ESVNNWA [43, 44] A1 � A2 � A3 � A4 � A5 A1

ESVNNWG [43, 44] A1 � A2 � A3 � A4 � A5 A1

HSVNNWA [44] A1 � A2 � A3 � A4 � A5 A1

HSVNNWG [44] A1 � A2 � A3 � A4 � A5 A1

SVNFWA [45] A1 � A2 � A3 � A4 � A5 A1

SVNFWG [45] A1 � A2 � A3 � A4 � A5 A1

SVNNWBMp,q [46] A1 � A2 � A3 � A4 � A5 A1

NNIGWHMp,q [47] A1 � A2 � A3 � A4 � A5 A1

NNIGWGHMp,q [47] A1 � A2 � A3 � A4 � A5 A1

SVNDWAA [48] A1 � A2 � A3 � A4 � A5 A1

SVNDWGA [48] A1 � A2 � A3 � A4 � A5 A1

SVNDPWA [49] A1 � A2 � A3 � A4 � A5 A1

SVNDPWG [49] A1 � A2 � A3 � A4 � A5 A1

SVNWBPMp,q [50] A1 � A2 � A3 � A4 � A5 A1

SVNWGBPMp,q [50] A1 � A2 � A3 � A4 � A5 A1

GNNHWA [51] A1 � A2 � A3 � A4 � A5 A1

k = 2 in SVNRWMSM and SVNRWDMSM;
γ = 2 in HSVNNWA, HSVNNWG and GNNHWA, ρ = 2 in SVNDWAA and SVNDWGA;
p = 2, q = 2 in SVNNWBM, NNIGWHM, NNIGWGHM, SVNWBPM and SVNWGBPM;

LOG denotes it cannot calculate because the antilogarithm by zero problem (Gray background), and ∗ presents no result;
N/A denotes it cannot calculate because the division by zero problem (Red background), and ∗ presents no result.

TABLE 5: Characteristic comparisons of diverse single-valued neutrosophic aggregation operators.

Whether consider Whether make the information Whether consider
Aggregation operators interrelationships between aggregation process more interrelationships between

aggregating two attributes flexible by a parameter aggregating multiple attributes

ASVNNWA [43, 44] No No No
ASVNNWG [43, 44] No No No
ESVNNWA [43, 44] No No No
ESVNNWG [43, 44] No No No

HSVNNWA [44] No No No
HSVNNWG [44] No No No
GNNHWA [51] No No No
SVNFWA [45] No No No
SVNFWG [45] No No No

SVNDWAA [48] No Yes No
SVNDWGA [48] No Yes No
SVNDPWA [49] No Yes No
SVNDPWG [49] No Yes No

SVNNWBMp,q [46] Yes No No
NNIGWHMp,q [47] Yes No No

NNIGWGHMp,q [47] Yes No No
SVNWBPMp,q [50] Yes No No

SVNWGBPMp,q [50] Yes No No
SVNRWMSM Yes Yes Yes

SVNRWDMSM Yes Yes Yes
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TABLE 6: Characteristic comparisons of diverse uncertain environment of MSM.

Sets Aggregation operators Whether possess the Whether possess the
property of idempotency property of reducibility

SVNS SVNRWMSM Yes Yes
SVNS SVNRWDMSM Yes Yes

IFS WIFMSM [28] No No
ULS ULWDMSM [29] No No
ILS WILMSM [30] No No

IULS WIULMSM [30] No No
LIFS WLIFMSM [31] No No
LIFS WLIFDMSM [31] No No
PFS PFIWMSM [32] No No

HFLS HFLWMSM [33] No No
PFS PFWMSM [34] No No
HFS WHFMSM [35] No No

SVTNS SVTNWMSM [36] No No
INLS SVTNWMSM [37] No No

SVNI2TLS SVNITLWMSM [38] No No
2TLS 2TLWMSM [39] No No

SVNS: Single-valued neutrosophic set, IFS: Intuitionistic fuzzy set, ULS: Uncertain linguistic set, ILS: Intuitionistic linguistic set, IULS: Intuitionistic
uncertain linguistic set, LIFS: Linguistic intuitionistic fuzzy set, PFS: Pythagorean Fuzzy set, HFLS: Hesitant fuzzy linguistic set, HFS: Hesitant fuzzy set,

SVTNS: Single-valued trapezoidal neutrosophic set, INLS: Interval neutrosophic linguistic set, SVNI2TLS: Single-valued neutrosophic interval 2-tuple
linguistic set, 2TLS: 2-tuple linguistic set.

formation are equivalent. In other words, it signifies without
the reducibility.

VI. CONCLUSION

The main contributions can be illustrated and reviewed as
follows:

(1) Two fire-new SVN aggregation operators are developed
such as SVNRWMSM operator and SVNRWDMSM opera-
tor.

(2) Some interesting properties such as monotonicity, com-
mutativity, idempotency, boundedness and reducibility are
discussed in detail under single-valued neutrosophic envi-
ronment. Some existing MSM operators in diverse uncertain
environment [28–39] are out of idempotency and reducibility.

(3) Two algorithms for solving single-valued neutrosoph-
ic decision making issue by SVNRWMSM and SVNR-
WDMSM are presented. The sensitivity analysis of diverse
parameter value k on the ranking is explored in detailed
(Figs. 3, 4). Compared with the existing single-valued neu-
trosophic decision making algorithms (Table 4), are (i) it has
no division by zero issue [42]; (ii) it has no antilogarithm by
zero problem [41].

(4) Utilize the modern statistics methods to build a synthe-
size appraise system of UTAE in five degrees (Achievement
degree, Adaptability degree, Guarantee degree, Effective de-
gree, Satisfied degree), and employ it in estimating the ideal
cooperative universities.

In the future, we will take the SVNRWMSM and SVNR-
WDMSM operator in other ways such as gene selection [52].
Furthermore, we will also take RWMSM and RWDMSM into
diverse fuzzy environment [53–61].
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