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a b s t r a c t 

Measuring toxicity is an important step in drug development. However, the current experimental meth- 

ods which are used to estimate the drug toxicity are expensive and need high computational efforts. 

Therefore, these methods are not suitable for large-scale evaluation of drug toxicity. As a consequence, 

there is a high demand to implement computational models that can predict drug toxicity risks. In this 

paper, we used a dataset that consists of 553 drugs that biotransformed in the liver. In this data, there 

are four toxic effects, namely, mutagenic, tumorigenic, irritant and reproductive effects. Each drug is rep- 

resented by 31 chemical descriptors. This paper proposes two models for predicting drug toxicity risks. 

The proposed models consist of three phases. In the first phase, the most discriminative features are 

selected using rough set-based methods to reduce the classification time and improve the classification 

performance. In the second phase, three different sam pling algorithms, namely, Random Under-Sampling, 

Random Over-Sampling, and Synthetic Minority Oversampling Technique (SMOTE) are used to obtain bal- 

anced data. In the third phase, the first proposed model employs the Neutrosophic Rule-based Classifica- 

tion System (NRCS), and the second model uses Genetic NRCS (GNRCS) to classify an unknown drug into 

toxic or non-toxic. The experimental results proved that the proposed models obtained high sensitivity 

(89–93%), specificity (91–97%), and GM (90–94%) for all toxic effects. Overall, the results of the proposed 

models indicate that it could be utilized for the prediction of drug toxicity in the early stages of drug 

development. 

© 2018 Elsevier Ltd. All rights reserved. 
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1. Introduction 

The development of new drugs is an expensive and complex

process, and it has many steps ( Pereira et al., 2009 ). One of the

main steps in this process is the toxicity assessment of drugs’

components. This step is vital as it is utilized for predicting drug

failures before any clinical trials. Therefore, this step could save

100 million dollars per one drug development which reflects the

importance of measuring toxicological effects as early as possible

( Pritchard et al., 2003; Ulrich & Friend, 2002 ). Hence, measuring

toxicity for thousands of compounds becomes a hot topic in the

recent studies ( Huang et al., 2009; von Korff & Sander, 2006 ). 
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Toxicity of a drug refers to the undesirable effects of the drug

n the whole organism (e.g. animal or plant), an organ (e.g. liver),

r substructure of the organism (e.g. a cell). However, reliable

igh-throughput assays are expensive and time-consuming; thus,

here is a high demand for computational models. The computa-

ional models are faster and cheaper alternatives to in-vivo and in-

itro bioassays. Also, they save experimental materials and protect

nimals. Thereby, utilizing the computational models enables the

harmaceutical industry to produce over 10 0,0 0 0 new drugs yearly

nd save animal trials as well ( Cao et al., 2012; Plewczynski, 2008;

harwat, Gaber, Fouad, Snasel, & Hassanien, 2015 ). These computa-

ional models have different goals such as predicting the toxicity of

he chemical compounds, estimating the effect of different concen-

rations of the chemical compounds or predicting the toxicological

ndpoints. 

There are many examples of available computer models pre-

icting toxicity such as OnkoLogic ( Woo, Lai, Argus, & Arcos,

995 ), TOPKAT ( Prival, 2001 ), DEREK ( Woo et al., 1995 ), Case

 Klopman, 1984 ) and Multicase ( Klopman, 1992 ). Tharwat, Gabel,
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nd Hassanien (2017) , Tharwat, Moemen, and Hassanien (2017) in-

roduced two models for predicting the toxicity of drugs, on the

ame dataset used in this paper. They used the Whale Optimiza-

ion and Dragonfly algorithms for finding the optimal parameters

f the Support Vector Machine (SVM) classifier, and their model

btained competitive results. However, they reported that due to

he stochastic nature of the Whale optimization and the Dragon-

y algorithms, there is no guarantee for finding the optimal solu-

ion. Moreover, there are many factors that may affect the qual-

ty of their models such as the representativeness and the diver-

ity of training data. Multiclassification systems (MCSs) (also called

ulticlassifiers or classifier ensembles) are rule-based systems that

ombine a set of different classifiers by assigning weights to each

lassifier individual decision. There have been different strategies

eveloped to ensemble classifiers with accuracy-complexity trade-

ffs. Fuzzy Unordered Rules Induction Algorithm (FURIA), Bagging

URIA-based Fuzzy are two well-known examples of the rule-

ased systems ( Trawi ́nski, Cordón, & Quirin, 2011 ). 

In this paper, two proposed classification models are in-

roduced, namely, Neutrosophic Rule-based Classification System

NRCS) and Genetic NRCS (GNRCS). The proposed models were

onstructed based on the neutrosophic set theory for handling

ncomplete as well as inconsistent information. Hence, our pro-

osed model can solve many real problems such as missed data.

dditionally, in contrast to the models that were proposed in

harwat, Gabel et al. (2017) , Tharwat, Moemen et al. (2017) , the

RCS algorithm is deterministic and there is no need to tune any

arameters. 

One of the main problems of computational toxicity models is

he large amount of data. This makes the analysis of this data more

ifficult because not all the information is relevant. Selecting the

elevant information is an important step in prediction models.

eature selection techniques are used to find a subset of features

hat improves the classification performance and provide a faster

lassification. The dataset in this research has 31 features, and the

rst goal of our model is to select the most discriminative features.

n the proposed model, three different rough set-based algorithms

ere used for feature selection. 

Another important problem in real applications is the imbal-

nced data. This problem results from the biased distribution of

ifferent classes. In other words, one class has more samples

han the other class(es). Hence, the prediction model will not

ave enough minority samples to train the model. As a conse-

uence, minority samples tend to be misclassified. In the proposed

odel, the current dataset is imbalanced (see Section 2 ), and dif-

erent algorithms were introduced for solving the imbalanced data

roblem. Moreover, in our experiments, three sampling algorithms

ere used to obtain balanced classes. 

This paper proposes a novel model to evaluate the toxicity of

epatic drugs. The toxicity risks of the current drugs include mu-

agenic, tumorigenic, irritant and reproductive effects. Each drug is

epresented by 31 features and there are four class labels, one class

abel for each toxic effect. For example, there is a class label which

ndicates if the current drug has the mutagenic effect or not. The

lassification step is an important step in the prediction model. In

his step, a classifier is used for classifying the testing or unseen

ata to toxic or non-toxic. 

There are many traditional classifiers that are used in this area

f research. In the proposed model, NRCS is used for classifying

he testing data. In this step, the NRCS is used for extracting in-

ormation from data and then generating rules for the training and

esting data. Each testing rule is to be matched with all training

ules and the closest class label of the training rule is assigned to

he testing rule. The NRCS model is, then, modified using Genetic

lgorithms (GA), and the proposed model is called GNRCS. In GN-

CS, the GA is used for selecting the most discriminative rules, re-
oving all redundant rules, and generating new rules for exploring

he input space. This step increases the accuracy of the proposed

odel and reduces the number of rules and hence reduces the re-

uired computational time. 

The rest of this paper is organized as follows: Section 2 presents

 brief description of the dataset that is used in our proposed mod-

ls. Theoretical background and the steps of the proposed models

re presented in Section 3 . Experimental scenarios and discussions

re introduced in Section 4 . Finally, conclusions and future work

re presented in Section 5 . 

. Description of the dataset 

In this research, the dataset was extracted from the Drug bank

atabase, which has 6712 drugs. These drugs are classified as fol-

ows: 1448 FDA-approved small molecule drugs, 131 FDA-approved

iotech (protein/peptide) drugs, 85 nutraceuticals, and 5080 exper-

mental drugs ( Sander, Freyss, von Korff, & Rufener, 2015 ). In our

xperiments, 553 drugs that are biotransformed in the liver are

sed; all these drugs are approved by the FDA (Food and Drug Ad-

inistration). Table 1 shows details about the dataset. As shown,

ach drug is represented by 31 features, and these features were

alculated using DataWarrior package ( Sander et al., 2015 ). The

ataset has four toxic effects as indicated in Table 2 . The table

hows the number of samples in each class, positive and negative

amples. As shown, the data is not balanced and the imbalance ra-

io (the ratio of the number of samples of the majority class to

he number of samples of the minority class) is different for the

our classes. Moreover, the mutagenic, irritant and tumorigenic ef-

ects have a high imbalance ratio compared with the reproductive

ffect which has a low imbalance ratio. In the data, the positive

lass represents the minor class. This may have a negative influ-

nce on the sensitivity measure of the proposed models. Addition-

lly, the reproductive effect has the top risk effect (33.82%); and

he risk effect of the mutagenic and tumorigenic effects are equal

16.28%), and finally the irritant effect has (12.16%) for the current

DA drugs, which reflects the burden on the liver and such drugs

hould be replaced with safer medications. It is worth mentioning

ere, in this research, we have four class labels; one class label for

ach toxic effect. 

. Theoretical background 

.1. Neutrosophic set and neutrosophic logic 

Neutrosophy was introduced by Smarandache in 1995, it deals

ith the origin, nature, and scope of neutralities, as well as their

nteractions with different mental visions ( Wang, Smarandache,

underraman, & Zhang, 2005 ). This theory considers three con-

epts; (1) the idea < A > , (2) its opposite < Anti–A > , and (3)

 spectrum of “neutralities” < Neut–A > . The < Neut–A > and

 Anti–A > together are referred to as < Non–A > ( Wang et al.,

005 ). Both < Anti–A > and < Non–A > are used to neutralize and

alance the idea < A > ( Basha, Abdalla, & Hassanien, 2016a; Wang

t al., 2005 ). 

The fuzzy set (FS) theory was introduced by A. L. Zadeh in 1965

o handle vague and fuzzy information. The FS is represented by

 membership degree say μA ( x ) for each element x in a set A ,

here μA ( x ) ∈ [0, 1] ( Zadeh, 1996 ). Hence, instead of having a class

abel for each sample, in the fuzzy rule-based system, a mem-

ership function maps each sample to a membership value be-

ween zero and one to represent its degree of belongingness to

 class. Mathematically, given C classes, any sample x has a de-

ree μc ( x ) that determines its membership value or score for each

lass ( c ) ( Amo, Montero, Biging, & Cutello, 2004; Ansari, Biswas,

 Aggarwal, 2013 ). For example, let C = 3 , i.e. three classes, and
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Table 1 

Dataset description. 

Feature no. Name Feature no. Name 

1 Total molecular weight 17 Electron negative atoms 

2 Molecular weight 18 Stereo centers 

3 Absolute weight 19 Rotatable bonds 

4 cLogP (Octanol/Water, partition coefficient) 20 Rings 

5 cLogS (Aqueous solubility) 21 Aromatic rings 

6 H-Acceptors (Hydrogen bond Acceptor) 22 Aromatic atoms 

7 H-Donors (Hydrogen bond donor) 23 sp3-Atoms 

8 Total surface area 24 Symmetric atoms 

9 Polar surface area 25 Amides (acid amide) 

10 Druglikeness 26 Amines 

11 Molecular shape index 27 AlkylAmines 

12 Molecular flexibility 28 Aromatic amines 

13 Molecular complexity 29 Aromatic nitrogen 

14 Non hydrogen atoms 30 Basic nitrogen 

15 Non-Carbon/Hydrogen atoms 31 Acidic oxygen 

16 Metal atoms 

Table 2 

The number of positive and negative samples and the imbalance ratio for each toxic effect in our dataset. 

Toxic effect # Samples in positive class # Samples in negative class Imbalance ratio 

Mutagenic effect 90 = 16.28% 463 = 83.73% 5.14 

Tumorigenic effect 90 = 16.28% 463 = 83.73% 5.14 

Reproductive effect 187 = 33.82% 366 = 66.18% 1.96 

Irritant effect 67 = 12.16% 486 = 87.88% 7.25 
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μ(x ) = { 0 . 2 , 0 . 5 , 0 . 3 } . This means that the membership value of

the second class is larger than the other two classes for x . 

The fuzzy set theory was generalized by many theories such

as interval-valued fuzzy sets ( Turksen, 1986 ), intuitionistic fuzzy

sets ( Atanassov, 1989 ), and interval-valued intuitionistic fuzzy set

( Atanassov, 1989 ). Each of these theories can handle only one as-

pect of imprecision. The FS theory cannot deal with incomplete

and inconsistent information. For this reason, the neutrosophic set

was constructed to handle incomplete as well as inconsistent in-

formation. Moreover, the neutrosophic set is a huge formal struc-

ture which generalizes the concept of all sets such as, the clas-

sic set, fuzzy set, interval-valued fuzzy set, intuitionistic fuzzy set,

and interval-valued intuitionistic fuzzy set ( Arora, Biswas, & Pandy,

2011 ). 

3.1.1. Neutrosophic set 

The fundamental concepts of neutrosophic sets were introduced

by Smarandache (2003) and Alblowi, Salama, and Eisa (2013) . They

provided a natural foundation for treating mathematically the neu-

trosophic phenomena for building new branches in neutrosophic

mathematics. 

Mathematically, an element x ( t, i, f ) belongs to a neutrosophic

set A , in the following way: t true degree in A, i indeterminate de-

gree in A and f false degree in A , where t, i , and f are real numbers

taken from the sets T, I , and F , respectively, with no restriction on

t, i, f , nor on their sum n = t + i + f ( Smarandache, 2003 ). For ex-

ample, assume x (0.5, 0.2, 0.4) belongs to A . This means that x is in

A with 0.5 °, not in A with 0.4 ° and 0.2 indeterminacy degree. In

another example, y (0, 0, 1) belongs to B means y is 100% not in B . 

Let X be a space of points (objects) with a generic element in X

denoted by x . A neutrosophic set A in X is characterized by a truth-

membership function ( T A ), an indeterminacy-membership function

( I A ), and a falsity membership function ( F A ). The three functions T A ,

I , and F are real standard or non-standard subsets of ] −0 , 1 + [ 2 
A A 

2 The notation ] −0 , 1 + [ represents the non-standard interval where −0 = 0 − ε

and 1 + = 1 + ε, where ε is an infinitesimal number which is a number that is larger 

than each negative real number and is smaller than each positive real number, i.e. 

ε is an infinitesimal if | ε| < 

1 
n 

for all n ∈ N ( Robinson, 2003 ). 

 

 

hat is, T A : X → ] −0 , 1 + [ , I A : X → ] −0 , 1 + [ , and F A : X → ] −0 , 1 + [ .
here is no restriction on the sum of T A ( x ), I A ( x ) and F A ( x ), so,

0 ≤ supT A (x ) + supI A (x ) + supF A (x ) ≤ 3 + , where supT A , supI A and

upF A represent the supremum of the T A , I A and F A , respectively,

 Ansari et al., 2013 ). 

There are different ways to construct neutrosophic set operators

 Smarandache, 2003 ). 

• Complement : The complement of a neutrosophic set A denoted

by Ā and defined by Smarandache (2003) , Wang et al. (2005) ,

Arora et al. (2011) : 

T Ā (x ) = { 1 

+ } − T A (x ) , 

I Ā (x ) = { 1 

+ } − I A (x ) , 

F Ā (x ) = { 1 

+ } − F A (x ) . 

for all x in X . 
• Union : The union of two neutrosophic sets A and B de-

noted by C = A ∪ B and defined as follows Smarandache (2003) ,

Wang et al. (2005) , Arora et al. (2011) : 

T C (x ) = T A (x ) + T B (x ) − T A (x ) × T B (x ) , 

I C (x ) = I A (x ) + I B (x ) − I A (x ) × I B (x ) , 

F C (x ) = F A (x ) + F B (x ) − F A (x ) × F B (x ) . 

for all x in X . 
• Intersection : The intersection of two neutrosophic sets A and

B denoted by C = A ∩ B and defined by Smarandache (2003) ,

Wang et al. (2005) , Arora et al. (2011) : 

T C (x ) = T A (x ) × T B (x ) , 

I C (x ) = I A (x ) × I B (x ) , 

F C (x ) = F A (x ) × F B (x ) . 

for all x in X . 
• Containment : A neutrosophic set A is contained in another

neutrosophic set B ( A ⊆B ) if and only if ( Smarandache, 2003;

Wang et al., 2005 ) 

in f T A (x ) ≤ in f T B (x ) ; supT A (x ) ≤ supT B (x ) , 

in f I A (x ) ≤ in f I B (x ) ; supI A (x ) ≤ supI B (x ) , 
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in f F A (x ) ≤ in f F B (x ) ; supF A (x ) ≤ supF B (x ) . 

where supT A , supI A and supF A represent the supremum for the

T A , I A and F A , respectively, and infT A , infI A and infF A are the in-

fimum of the T A , I A and F A , respectively, and x ∈ X . 

.1.2. Neutrosophic logic 

Neutrosophic logic was developed to represent the mathemati-

al models that contains uncertainty, vagueness, ambiguity, impre-

ision, incompleteness, inconsistency, redundancy as well as con-

radiction ( Hassanien, Basha, & Abdalla, 2018; Smarandache, 2003 ).

eutrosophic logic is a logic in which each proposition is esti-

ated to have a percentage of truth in a subset T , a percentage

f indeterminacy in a subset I , and a percentage of falsity in a

ubset F , where T, I, F are standard or non-standard real subsets

f ] −0 , 1 + [ where ] −0 , 1 + [ is a non-standard unit interval ( Ansari

t al., 2013; Robinson, 2003 ). T, I , and F are called neutrosophic

omponents, and these components represent the truth, indeter-

inacy, and falsehood values respectively in studying neutrosophy,

eutrosophic logic, neutrosophic set, neutrosophic probability, neu-

rosophic statistics ( Ashbacher, 2002 ). In real world applications, it

s easier to use standard real interval [0,1] for T, I , and F instead of

he non-standard unit interval ] −0 , 1 + [ ( Ansari et al., 2013; Basha,

ahlol, El Baz, & Hassanien, 2017 ). 

The sets T, I , and F are not necessarily intervals, but may

e any real sub-unitary subsets: discrete or continuous; single-

lement, finite, or (countable or uncountable) infinite; union or in-

ersection of various subsets ( Basha, Abdalla, & Hassanien, 2016b;

marandache, 2003 ). Statically, T, I , and F are subsets, but dy-

amically the components T, I , and F are set-valued vector func-

ions/operators depending on many parameters, such as: time,

pace, etc. ( Smarandache, 2003 ). 

.2. Neutrosophic rule-based classification system 

In 2013 Ansari et al. (2013) presented a neutrosophic classifier

s an extension to fuzzy classifier using the Matlab software. The

RCS first appeared in 2016, by Basha et al. (2016b) . An application

f this system was presented in Basha et al. (2017) to predict the

ollution status of the Burullus lagoon, in Egypt, according to the

oncentrations of trace metals. In 2018, another application intro-

uced also by Basha, Tharwat, Ahmed, and Hassanien (2018) , for

uilding a predictive model to estimate the sperm quality based

n personal lifestyle and environmental factors using NRCS. And In

hese applications, the NRCS always had better results compared to

ther models. This is because the NRCS model gives a good solu-

ion for the overlapped classes by generating three different com-

onents, and two of these components deal with the falsity and

ndeterminacy in the data. 

The proposed Neutrosophic Rule-based Classification System

NRCS) uses Neutrosophic Logic (NL) for generalizing the fuzzy

ule-based classification system. The antecedents and consequents

f the “IF-THEN” rules in the NRCS are neutrosophic logic state-

ents, instead of fuzzy logic ones. The NRCS has three stages: 

1. Neutrosophication: construction of the neutrosophic 

knowledge-base by converting crisp inputs using the neu-

trosophic three membership functions: truth-membership, 

falsity-membership, and indeterminacy-membership. 

2. Inference Engine: The KB and neutrosophic “IF-THEN” rules

are applied to get a neutrosophic output, 

3. Deneutrosophication: Converts the neutrosophic output of

the previous step back to a crisp value using three functions

analogous to the ones used by the neutrosophication. 

The used knowledge base (KB) stores the available knowledge

n the form of neutrosophic “IF-THEN” rules, and then the KB
aptures the neutrosophic rule semantics using neutrosophic sets.

ig. 1 shows the NRCS consisting of four phases: information ex-

raction phase, neutrosophication phase, rules generation phase,

nd the classification phase. More details about each phase in the

ollowing subsections. 

.2.1. Information extraction phase 

In this phase, important information are extracted by reading

ata files and extracting (1) the number of attributes, (2) the min-

mum and the maximum value of each attribute, (3) the number

f classes and their names, and (4) the class labels or decisions. 

.2.2. Neutrosophication phase 

In this phase, the three membership functions, namely, truth,

alsity, and indeterminacy are extracted from the fuzzy-Trapezoidal

embership function. Then, these three membership functions are

pplied on each value for every attribute in the dataset to obtain

he neutrosophic components < T ; I ; F > that are used to represent

ach of every feature. 

.2.3. Rules generation phase 

The goal of this phase is to generate rules which will be used in

he next phase (classification phase). Assume the data is denoted

y X = { x 1 , x 2 , . . . , x n } , where x i is the i th sample and n is the total

umber of samples. Each sample has one class label which is de-

oted by c i ∈ { 1 , 2 , . . . , C} , where C is the total number of classes.

irst, the dataset is divided into training data ( X training ) and test-

ng data ( X testing ). In this phase, neutrosophic rules are generated

rom the training and testing data. The training rules are denoted

y R training = { r 1 tr , r 
2 
tr , . . . , r 

n tr 
tr } , where r i tr is the rule for the i th train-

ng sample and n tr is the number of training samples. Similarly, the

esting rules are denoted by R testing = { r 1 ts , r 
2 
ts , . . . , r 

n ts 
ts } , where r i ts is

he rule for the i th testing sample and n ts is the number of testing

amples. In NRCS, the attribute in each neutrosophic rule has three

omponents < T, I, F > . 

.2.4. Classification phase 

In this phase, for each testing rule ( r i ts ∈ R testing ), the Euclidean

istance between a testing rule and all training rules ( R training ) is

alculated. As shown in Fig. 1 , a vector of distance scores is calcu-

ated. The class label of the training rule which has the minimum

istance is assigned to the testing rule. 

Finally, we use the confusion matrix in Fig. 2 to evaluate the

roposed model. From the confusion matrix, different measures

an be calculated such as True Positive (TP), True Negative (TN),

alse Positive (FP), and False Negative (FN). 

Fig. 3 shows an example for comparing the fuzzy classifier and

he neutrosophic classifier. There are two classes (class I and class

I), each class has many samples. As shown in Fig. 3 (a), there are

wo different types of outputs. The first type when the output

learly lies in one of the two classes. This is clear in Fig. 3 (b),

here the output of the fuzzy classifier is (1) 100% belongs to class

 in the range between 0 and a, and (2) 100% belongs to class II

n the range between b and c. The overlapping zone in gray color

as the second type of outputs. In this region, as shown, there is

 certain degree of indeterminacy, and this region has three pos-

ible outputs, (1) high membership values of class I in the range

etween a and (a + b) / 2 , (2) high membership values of class II in

he range between (a + b) / 2 and b , (3) equal membership values

or the two classes at the point (a + b) / 2 . Moreover, in the over-

apping region between class I and class II, the fuzzy membership

unction decreases till it reaches the point (a + b) / 2 where the two

lasses have the same membership function values. Fig. 3 (c) shows

he truth component of the neutrosophic class indicating 100% be-

ongingness to class I in the range between 0 and a , and 100%



146 S.H. Basha, A. Tharwat and A. Abdalla et al. / Expert Systems With Applications 121 (2019) 142–157 

Fig. 1. Block diagram of the proposed NRCS model. 

Fig. 2. An illustrative example of the 2 × 2 confusion matrix. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3 

The data for our illustrative example. 

f 1 f 2 Class label ( c ) 

0.2 5 A 

2.5 6 A 

3.2 3 A 

0.5 2 A 

1 3 A 

3.3 4 B 

3.5 5 B 

4.5 5 B 

6 2 B 

6.2 6 B 
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u  

l  

a  

f  
belongingness to class II in the range between b and c , same re-

sult obtained by the fuzzy classifier. Additionally, in Fig. 3 (c), the

truth membership function/component has non overlapping zone,

and the overlapping region in the neutrosophic classifier is cap-

tured by the falsity and indeterminacy components as shown in

Fig. 3 (d) and (e), respectively. 

Hence, the fuzzy classifier depends only on the membership of

a particular sample to a particular class, and it does not deal with

the indeterminate nature of the data. On the other hand, the neu-

trosophic classifier has two components which deal with the falsity

and indeterminacy components to handle the overlapping region

between any two classes. 

3.2.5. Illustrative example 

The goal of this example is to explain the steps of the NRCS

model. Table 3 illustrates the data which is used in this example.

As mentioned before, the first phase of the NRCS model is the in-

formation extraction phase. This phase extracts the following infor-

mation: 

• The number of attributes is two ( f and f ). 
1 2 
• The minimum of the first and second attributes are 0.2 and 2,

respectively. 
• The maximum of the first and second attribute are 6.2 and 6,

respectively. 
• There are two classes: class A and class B. 

We divided the data into two parts: training data (in black color

n Table 3 ) and testing data (in red color). The training and the

esting sets have the same number of samples (five samples). 

In the second phase of the NRCS model (i.e., Neutrosophication

hase), all values in the dataset are mapped to the neutrosophic

pace. This means that each value will be represented by three val-

es/components ( t, i, f ) using the neutrosophic membership func-

ions T, I , and F . Table 4 shows samples of the neutrosophic val-

es of the example. The table shows only four values due to the

ength of the paper constraints. As shown, each value is converted

s follows: < t low 

, t Medium 

, t High > , < i Low 

, i Medium 

> , < f Low 

, f Medium 

,

 High > . For example, 0.2, the first value of the first attribute in
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Table 4 

Samples of the data of the illustrative example mapped to the neutrosophic space. 

Value t Low t Medium t High i LowMedium i MediumHigh f Low f Medium f High 

0.2 1.0 0.0 0.0 0.0 0.0 0.0 1.0 1.0 

5.0 0.0 0.0 0.667 0.0 0.0 1.0 1.0 0.0 

2.5 0.0 0.667 0.0 0.334 0.0 0.833 0.166 1.0 

6.0 0.0 0.0 1.0 0.0 0.0 1.0 1.0 0.0 

3.2 0.0 1.0 0.0 0.0 0.0 1.0 0.0 1.0 

3.0 0.667 0.0 0.0 0.0 0.0 0.0 1.0 1.0 

Fig. 3. A comparison between the fuzzy classifier and the NRCS classifier. (a) tri- 

angular membership function with two classes, (b) fuzzy classifier, (c) neutrosophic 

truth component, (d) neutrosophic falsity component, (e) neutrosophic indetermi- 

nacy component. 
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lass A (see Table 3 ) is converted to < 1.0, 0.0, 0.0 > , < 0.0, 0.0 > ,

 0.0, 1.0, 1.0 > 

3 
3 More details about how to calculate how to calculate the values of t, i , and f are 

n the Appendix. 

(  

s  

a  

t  

r  
In the rule generation phase (third phase), the training and test-

ng rules are generated from the data in the neutrosophic space

see Table 4 ). The training rules are used later for classifying un-

een/testing data. In this example, the generated training rules are

s follows: 

[ 1 , 0 , 0][3 , 0 , 0] → class A 

[ 2 , 4 , 7][3 , 0 , 0] → class A 

[ 2 , 0 , 0][1 , 0 , 0] → class A 

[ 2 , 0 , 0][2 , 0 , 0] → class B 

[ 2 , 0 , 0][3 , 0 , 0] → class B (1) 

The first rule can be read as: if f 1 is [ Low , 0, 0] and f 2 is [ High ,

, 0] then the class label for this sample is A , and similar interpre-

ations for the other rules. The testing rules are as follows: 

[ 1 , 0 , 0][1 , 0 , 0] 

[ 1 , 0 , 0][1 , 0 , 0] 

[ 3 , 0 , 0][1 , 0 , 0] 

[ 3 , 0 , 0][1 , 0 , 0] 

[ 3 , 0 , 0][3 , 0 , 0] (2) 

In the last phase in the NRCS model, i.e. the classification phase,

ach rule in the testing data is matched with all the training rules

see Fig. 1 ). In this phase, we used the Euclidean distance for

easuring the distance between the testing rule and the train-

ng rules. The testing rule belongs to the class which has the

raining rule that has the minimum distance to the testing rule.

n other words, we assigned the class label of the training rule

hich has the minimum distance to the testing rule. For exam-

le, the distance between first rule in testing data (i.e. first test-

ng rule) and the first rule in the training data (i.e. first train-

ng rule) is calculated as follows, 
√ 

(1 − 1) 2 + (0 − 0) 2 + (0 − 0) 2 +
 

(1 − 3) 2 + (0 − 0) 2 + (0 − 0) 2 = 2 . Similarly, the distances from

his testing rule to all the training rules are calculated. The nearest

raining rule to this testing rule was the third training rule which

eans that this testing rule belongs to the class A . Hence, the class

abel of the first testing rule is A. In our example, three samples

ere correctly classified and the third and fourth testing samples

ere misclassified. 

.3. GNRCS: Hybrid classification system based on neutrosophic logic 

nd genetic algorithm 

The proposed Genetic Neutrosophic Rule-Based Classification

ystem (GNRCS) is a hybridization of the NRCS model and the Ge-

etic Algorithm (GA). In the GNRCS model, the GA is used for re-

ning the neutrosophic “IF-THEN” rules as shown in Fig. 4 . Hence,

n this model, a new phase is added and it is called Genetic-

ased machine learning phase based on the Michigan approach

 Elhoseny, Tharwat, & Hassanien, 2018; Metawa, Hassan, & Elho-

eny, 2017 ). The GNRCS algorithm uses the same steps of the NRCS

lgorithm for generating the training and testing rules. In NRCS,

he rules are generated automatically and may include redundant

ules; here the GA is used for generating new rules and hence GA
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Fig. 4. Block diagram of the proposed GNRCS model. 
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explores the rules space to find the most effective rules and re-

move the redundant rules. 

The GA parameters such as crossover probability ( P c ), mutation

probability ( P m 

), population size ( N ), number of iterations ( T ), and

stopping condition(s) are first initialized. In the proposed model,

the population size is the number of generated rules from the

NRCS classifier. As shown in Fig. 4 , the solutions are evaluated by

calculating the misclassification rate which is the ratio between

the number of misclassified samples ( N e ) to the total number of

testing samples ( N ), as follows: 

min F = 

N e 

N 

(3)

The GA generates new rules if the termination criteria are not

satisfied. In each round of the GA, the rules with misclassification

rate higher than 50% are removed; this is inspired from the Ad-

aboost classifier ( Schapire, Freund, Bartlett, Lee et al., 1998 ). 

In the GA, when the termination criteria are satisfied, the oper-

ation ends; otherwise, we proceed with the next generation oper-

ation. In the proposed model, the GA is terminated when the best

solution is not modified for a given number of iterations or when

a maximum number of iterations are reached. In our experiments,

the maximum number of repetitions of the best solution was five.

Algorithm 1 summarizes the steps of the GNRCS model. 

Algorithm 1 GNRCS model. 

1: Parameters initialization: number of rules ( N), the crossover

probability ( P c ), the mutation probability ( P m 

), and the stopping

condition. 

2: Generates the initial population from the data using NRCS. 

3: Evaluate the fitness value for all rules in the current popula-

tion. 

4: while stopping condition is not satisfied do 

5: Using GA for finding new population through crossover and

mutation processes. 

6: Evaluate the fitness value for each rule in the current popu-

lation. 

7: Select the rules/solutions which obtain the minimum fitness

values. 

8: Remove the rules which have misclassification rate higher

than 50%. 

9: end while 

3.4. Feature selection using rough set theory 

The Rough set (RS) theory is one of the mathematical ap-

proaches that is used to deal with imprecision and uncertainty

( Inbarani, Azar, & Jothi, 2014 ). Information System (IS) represents
ata as a table where each row represents one object and each

olumn indicates one feature. Mathematically, IS can be defined as

ollows, I = (U, A, V, f ) , where U is a non-empty finite set of ob-

ects, A represents a non-empty finite set of features, V = ∪ a ∈ A V a 
epresents the union of the features domain, and a function f a :

 → V a , where V a is the set of values of feature a . The Decision

ystem (DS) has the same structure as the IS, but each object has

ts own decision. For example, in our toxicity dataset, each ob-

ect/row has a set of features and a decision of that object, such

s whether this object is toxic or not. Hence, the decision system

 = (U, A ∪ d, V, f ) , where A is the condition features and d repre-

ents a decision feature ( Chen, Miao, & Wang, 2010; Chen, Zhu, &

u, 2015; Pawlak, 1982; Wang, Yang, Teng, Xia, & Jensen, 2007 ). 

Each non-empty subset P ⊆A determines an equivalence relation

s follows: 

IND (P ) = { (x, y ) ∈ U × U|∀ a ∈ P, f a (x ) = f a (y ) } . (4)

If ( x, y ) ∈ IND ( P ), then x and y are indiscernible by attributes

rom P . The partition of U generated by P is as follows, U/P =
 [ x ] P | x ∈ U} , where [ x ] P indicates the equivalent class of the P -

ndiscernibility relation ( Chen et al., 2015; Wang et al., 2007 ). The

ower and the upper approximations of the set X ⊆U are denoted by

 X = { x ∈ U| [ x ] P ⊆ X} and P X = { x ∈ U| [ x ] P ∩ X 
 = φ} , respectively. 

Let P 1, P 2 ⊆A be equivalent relations over U , the positive,

egative, and boundary regions are defined, respectively, as

ollows: P OS P1 (P 2) = 

⋃ 

x ∈ U/P2 P 1 X, NEG P1 (P 2) = U − ⋃ 

x ∈ U/P2 P 1 X,

ND P1 (P 2) = 

⋃ 

x ∈ U/P2 P 1 X −
⋃ 

x ∈ U/P2 P 1 X, where POS P 1 ( P 2) indicates

he positive region of the relation U / P 2 with respect to P, NEG P 1 ( P 2)

epresents the negative region, and BND P 1 ( P 2) represents the

oundary region. The set is called rough if it has a non-empty

oundary region ( Chen et al., 2015; Wang et al., 2007 ). 

Measuring dependencies between a set of features is one of the

ost important tasks of the data analysis. Given P, Q ⊆A , and all

eatures from the relation P are determined by the features from Q

nd hence if there is a relation between P and Q then P depends

otally on Q ( IND ( P ) ⊆IND ( Q )), this dependency is denoted by Q ⇒ P .

he degree of dependency is denoted by k and is calculated as fol-

ows, k = γ (Q ) = 

| POS P (Q ) | 
| U| , where | U | is the cardinality of U and 

• If k = 1 , then P depends totally on Q , 
• if k = 0 , then P does not depend on Q , 
• if 0 ≤ k ≤ 1, then P depends partially on Q ( Chen et al., 2015;

Wang et al., 2007 ). 

The main goal of the feature reduction methods is to remove

edundant features so that the reduced set achieves the same clas-

ification performance as the original features. The reduct is a min-

mal subset R of the original features C such that γR (D ) = γC (D ) ,

here R is the minimal subset if γR −a (D ) 
 = γR (D ) , ∀ a ∈ R . This

eans that there is no features could be removed from R without

ffecting the dependency degree. Rough sets are used in finding

he reduct with the smallest cardinality that represents the global

inimum ( R min = { R ∈ R all , ∀ Y ∈ R all , | R | ≤ | Y |} ) ( Chen et al., 2015;

ang et al., 2007 ). 

In this paper, three different rough set-based methods are uti-

ized for feature selection, namely, Quick Reduct Feature Selection

QRFS) ( Jensen & Shen, 2003 ), Discernibility Matrix-based Feature

election (DMFS) ( Wang, Miao, & Hu, 2006 ), and Entropy-based

election (EBFS) ( Jensen & Shen, 2003 ). We have selected these

ethods because each method has different strategy to find the

inimal reduct. The DMFS method, is one of the original rough

et-based methods and it was introduced by Pawlak (1991) . The

BFS method is based on the entropy heuristic employed by a ma-

hine learning algorithm such as C4.5. The QRFS method tries to

nd the minimal reduct without exhaustively generating all possi-

le subsets. Due to paper length restrictions, we will not describe
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Table 5 

The detailed settings. 

Name Detailed settings 

Hardware 

CPU Core (TM) i5-2400 

Frequency 3.10 GHz 

RAM 4G 

Hard Drive 160 GB 

Software 

Operating system Windows 7 

Language Java (Version 8) with NetBeans IDE 8.0.2 
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hese algorithms here; more details can be found in the related

eferences. However, these algorithm obtained competitive results. 

.5. Imbalanced datasets 

The problem of imbalanced datasets appears when the num-

er of samples of one class (majority class ( S maj )) is significantly

igher than the samples of the other class (minority class ( S min ))

 He & Garcia, 2009; Sun, Wong, & Kamel, 2009 ). This problem is

ound frequently in the classification problems and it decreases the

lassification performance, and this is due to many reasons, (1) it

s difficult for a learning algorithm to learn from a minority class;

ence, the minority class samples are misclassified frequently; (2)

sing global assessment methods to evaluate learning algorithms

ay provide an advantage to the majority class ( López, Fernández,

arcía, Palade, & Herrera, 2013 ). 

There are many methods used to handle the imbalanced data

roblem such as sampling methods ( He & Garcia, 2009 ), Kernel-

ased methods ( He & Garcia, 2009 ), and Cost-Sensitive methods

 Sun et al., 2009 ). In this paper, the sampling methods are used to

btain more balanced samples in each class. 

The cost-sensitive methods are not easy to implement and

here are some learning algorithms such as C4.5 do not directly

andle costs in the learning process ( Weiss, McCarthy, & Zabar,

007 ). Moreover, the performance of the cost-sensitive methods

s highly affected by the evaluation metrics ( Weiss et al., 2007 ).

he kernel functions are used in many machine learning tech-

iques. For example, using SVM, the kernel functions are used to

ransform the nonlinearly separable data into a higher dimensional

pace where the data can be linearly separable. With the imbal-

nced data, the SVM learning model classifies the majority class

amples better than the minority class samples. In this case, the

ernel can be used and the optimal hyperplane will be biased to-

ards the majority class. However, the sampling methods are sim-

ler than the cost-sensitive and the kernel-based methods. 

In the sampling methods, the goal is to modify the prior distri-

ution of the majority and the minority classes to obtain more bal-

nced samples in each class. There are three well-known sampling

ethods: Random Under-sampling (RUS), Random Over-sampling 

ROS), and Synthetic Minority Over-sampling Technique (SMOTE). In

he RUS method, the goal is to extract a small set of the majority

lass samples for training a classifier while preserving all the mi-

ority class samples. As a consequence, the training data becomes

ore balanced and smaller and hence the required computational

ime is less. However, the removed samples may have useful infor-

ation and hence RUS may decrease the classification performance

 He & Garcia, 2009 ). In the ROS method, the goal is to replicate the

inority class samples. Hence, this method improves the minority

lass recognition. However, making exact copies of minority class

amples increases the learning time and may lead to the overfit-

ing problem ( He & Garcia, 2009; Sun et al., 2009 ). In the SMOTE

ethod, the minority samples are created based on the similari-

ies between existing minority samples. For each minority sample

 x i ∈ S min ), k nearest samples are selected and a synthetic sample

an be generated as follow, x new 

= x i + r i j × δ = x i + ( ˆ x i j − x i ) × δ,
here x i ∈ S min is one of the minority class samples, ˆ x i j is one

f the k -nearest samples for x i : ˆ x i j ∈ S min , j = 1 , 2 , . . . , k, k is the

umber of selected neighbors, δ ∈ [0, 1] is a random number, and

 new 

is a sample along the line joining x i and ˆ x i j ( Chawla, Bowyer,

all, & Kegelmeyer, 2002; He & Garcia, 2009 ). 

. Experimental results and discussions 

In this section, four experiments were conducted. The first

xperiment (in Section 4.1 ) has four goals (1) Testing the pro-

osed NRCS model for predicting the toxicity of the biotransformed
rugs, (2) Testing the power of this system to deal with uncer-

ain data without using any feature selection or any pre-processing

ethod, (3) Comparing NRCS with conventional classifiers such

s Multi-Layer Perceptron (MLP) ( Yamany et al., 2015 ), k-Nearest

eighbors ( k -NN) ( Tharwat, Mahdi, Elhoseny, & Hassanien, 2018 ),

nd Linear Discriminant Analysis (LDA) ( Tharwat, 2016 ) classifiers,

nd finally, (4) Comparing the proposed models (NRCS and GNRCS).

Different runs were conducted for finding the optimal or near

ptimal parameters for k -NN and MLP classifiers. Based on these

uns we found that the value of k in k -NN was five and in MLP, the

idden layer with 15 nodes and 10 0 0 epochs were used. The op-

imal values of the GNRCS parameter were found to be: N = 200 ,

 c = 0 . 9 , and P m 

= 0 . 1 for the number of iterations, the crossover

robability, and the mutation probability, respectively. 

The aim of the second experiment (in Section 4.2 ) is to obtain

alanced data for improving the sensitivity of the proposed model.

n this experiment, three sampling methods were used, namely,

US, ROS, and SMOTE algorithms. The aim of the third experi-

ent in Section 4.3 is to reduce the number of features and hence

educe the required computational time by using three different

ough set-based feature selection algorithms. The goal of the fourth

xperiment is to compare the NRCS and GNRCS algorithms using

tandard datasets. Moreover, in this experiment, we compared the

erformance of the NRCS and GNRCS algorithms with conventional

lassifiers such as MLP, k -NN, and LDA classifiers. In this experi-

ent, the optimal parameters of the k -NN and MLP classifiers were

btained during the training phase. 

In all experiments, the results were obtained with a 5 × 10-fold

ross-validation. The samples of the dataset were randomly divided

nto k = 10 subsets of equal size, and the experiment was run 10

imes. For each run, one subset was used for testing the model, and

he other subsets were used for training the model. This process

s repeated five times. The results are the average of these 5 × 10

xperiments. 

All experiments are performed using the same PC with the

roperties settings in Table 5 . Moreover, all the algorithms in this

esearch are self-coded using java. 

.1. Toxicity classification using the NRCS and GNRCS models 

The aim of this experiment is to test the two proposed mod-

ls NRCS and GNRCS for predicting the toxicity of biotransformed

rugs. In this experiment, all attributes were used, i.e., without any

eature selection method. In other words, in this experiment, the

riginal data was used without any preprocessing steps. This ex-

eriment has two sub-experiments. 

.1.1. NRCS Vs. conventional classifiers 

The aim of this comparison is to test the NRCS system against

he imprecision, incompleteness, vagueness, and inconsistency in

ata. This experiment has two sub-experiments. In the first sub-

xperiment, we compared the results of NRCS with three well-

nown learning algorithms, MLP ( Yamany et al., 2015 ), k -Nearest
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Table 6 

A comparison between the results (accuracy, sensitivity, specificity, F1-Score, and GM) of the proposed model using NRCS and the results obtained from MLP, LDA, 

and k -NN classifiers. 

Metrics Mutagenic effect Tumorigenic effect Irritant effect Reproductive effect 

NN LDA KNN NRCS NN LDA KNN NRCS NN LDA KNN NRCS NN LDA KNN NRCS 

Accuracy 81.82 83.64 76.36 87.27 76.36 81.81 74.55 85.46 83.64 85.46 76.36 87.27 78.18 74.55 70.91 78.18 

Sensitivity 28.57 33.33 20.00 50.00 20.00 36.36 18.18 4 4.4 4 33.33 33.33 18.18 42.86 71.43 64.29 56.25 68.75 

Specificity 89.58 89.80 88.89 91.48 88.89 93.18 88.6 93.48 93.48 91.84 90.91 93.75 80.49 78.05 76.92 82.05 

F 1 -Score 28.57 30.77 23.53 46.15 23.53 4 4.4 4 22.22 50.00 40.00 33.33 23.53 46.15 62.50 56.25 52.94 64.71 

GM 50.59 54.71 42.16 67.76 42.16 58.21 40.14 64.46 55.18 55.33 40.66 63.39 75.82 70.83 65.78 75.11 

Table 7 

A comparison between the results (accuracy, sensitivity, specificity, F1-Score, and GM) of the proposed model using NRCS and the results obtained from Bagging (Bag), 

AdaBoost (Ada), and Random forest (RF) ensemble. 

Metrics Mutagenic effect Tumorigenic effect Irritant effect Reproductive effect 

Bag Ada RF NRCS Bag Ada RF NRCS Bag Ada RF NRCS Bag Ada RF NRCS 

Accuracy 84.50 84.00 86.64 87.27 84.10 83.56 85.00 85.64 88.00 86.45 87.00 87.27 73.00 64.50 76.28 78.18 

Sensitivity 38.57 40.27 46.87 50.00 42.78 41.52 43.75 4 4.4 4 43.15 39.54 41.98 42.86 64.05 53.45 66.48 68.75 

Specificity 87.54 88.47 90.25 91.48 91.25 90.75 93.17 93.48 93.95 92.75 93.56 93.75 78.56 75.25 81.34 82.05 

F 1 -Score 36.78 40.54 42.98 46.15 46.57 45.19 48.97 50.0 0 0 47.36 43.46 45.25 46.15 60.36 58.61 62.48 64.71 

GM 57.89 60.57 64.67 67.76 90.48 88.97 92.97 64.46 64.05 59.97 62.74 63.39 69.54 63.25 73.46 75.11 
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Neighbors ( k -NN) ( Tharwat et al., 2018 ), and Linear Discriminant

Analysis (LDA) ( Tharwat, 2016 ). 

The ensemble methods, which have received much attention in

recent years, have been known to be accurate and robust to any

noise in data. They introduced a nice idea for combing weak ma-

chine learning algorithms to produce a stronger one. The learned

model of this ensemble is a collection of the underlying models

capturing the best of them. This new model lacks explanations

and hence transparency of its results ( Al Iqbal, 2012; Friedman,

Popescu et al., 2008 ). Examples of these ensembles are the bagged

ensemble ( Breiman, 1996 ), the Random forests ( Breiman, 2001 ),

and the AdaBoost ( Freund, Schapire et al., 1996 ). Hence, in the sec-

ond sub-experiment, we applied the ensemble methods such as

Bagging, Random Forest, and AdaBoost, and we compared the re-

sults of the NRCS with their results. 

The results of this experiment in terms of accuracy, sensitivity,

specificity, F 1 -score, and GM 

4 are summarized in Tables 6 and 7 . 

From Table 6 the following remarks can be drawn. 

• In the mutagenic effect, the NRCS obtained the best results, and

the LDA classifier obtained the second-best results. While the

k -NN classifier achieved the worst results. 
• In the Tumorigenic effect, the NRCS classifier obtained the best

results and the LDA classifier obtained competitive results. As

shown in Table 6 , the NRCS and LDA classifiers obtained the

same specificity; however, the NRCS classifier obtained better

sensitivity score than LDA. While the k -NN classifier obtained

also the worst results. 
• In the irritant effect, the NRCS algorithm achieved the best re-

sults and the MLP and LDA classifiers obtained competitive re-

sults. The specificity of the MLP and NRCS classifiers was better

than the other two classifiers. 
• In the reproductive effect, the NRCS and MLP classifiers ob-

tained the best accuracy and GM results. However, MLP has

achieved sensitivity results better than NRCS, while NRCS ob-

tained specificity and F 1 -Score better than MLP. 

The results of the second sub-experiment in Table 7 show that

the proposed NRCS obtains overall the best results. In the muta-

genic effect, the NRCS obtains the best results and the random for-

est classifier obtains the second best results. In the Tumorigenic
4 More details about these classification metrics are in ( Tharwat, 2018 ). 

t  

T  

R

ffect, also the NRCS achieves the best results and the random for-

st classifier obtains the second best results. In the irritant effect,

he bagging classifier obtains the best results and the NRCS obtains

he second best results while the random forest obtains competi-

ive results. Finally, in the reproductive effect, the NRCS obtains the

est results. 

Therefore, the proposed NRCS achieves overall the best results

nd the LDA and MLP classifiers have competitive results in the

rst sub-experiment, and the ensemble methods obtains also com-

etitive results. And it is a natural result - after using the inde-

erminacy term in the neutrosophic logic - to have the NRCS de-

ermines the more significant, neutral and non-significant features

ithout using any feature selection method. Also, it is clear that

he sensitivity results were much lower than the specificity results.

his is because the data was imbalanced; and from Table 2 , the re-

roductive effect has the minimum imbalance ratio. Which is also

he reason why the sensitivity results of the reproductive effect

ere much higher than the other toxicity effects. 

.1.2. NRCS vs. GNRCS 

The aim of using the hybrid classification system (GNRCS) is

o improve the results obtained from the first sub-experiment for

redicting the toxicity of the biotransformed drugs. As in the first

ub-experiment, all attributes were used, i.e., without any feature

election method. The results of this experiment were compared

ith the result of the first sub-experiment in terms of accuracy,

ensitivity, specificity, F1-Score, and GM and were summarized in

able 8 . It is worth mentioning that the results of the GNRCS

odel represent the best results obtained. 

From Table 8 it can be noted that in terms of accuracy, sensitiv-

ty, F 1 -Score and GM metrics, the proposed GNRCS algorithm out-

erformed the NRCS algorithm in most cases. Moreover, in terms

f specificity, the GNRCS and NRCS algorithms obtained compet-

tive results. In other words, the GNRCS algorithm improved the

ensitivity more than the specificity. This is because GA in the

NRCS algorithm searches for the optimal or near optimal rules

nd removes redundant rules; hence, the GA refines the gener-

ted neutrosophic rules. Additionally, in this experiment, we ob-

ained high prediction accuracy with less number of training rules.

able 9 shows the number of training rules for both NRCS and GN-

CS models. 



S.H. Basha, A. Tharwat and A. Abdalla et al. / Expert Systems With Applications 121 (2019) 142–157 151 

Table 8 

A comparison between the results (accuracy, precision, sensitivity, specificity, F1-Score, and GM) of 

the proposed model using GNRCS and the results obtained from NRCS. 

Metrics Mutagenic effect Tumorigenic effect Irritant effect Reproductive effect 

NRCS GNRCS NRCS GNRCS NRCS GNRCS NRCS GNRCS 

Accuracy 87.27 89.09 85.46 87.27 87.27 89.09 78.18 80.00 

Sensitivity 50.00 57.14 4 4.4 4 50.00 42.86 50.00 68.75 70.59 

Specificity 91.48 93.75 93.48 93.62 93.75 93.88 82.05 84.21 

F 1 -Score 46.15 57.14 50.00 53.33 46.15 50.00 64.71 68.67 

GM 67.76 73.19 64.46 68.42 63.39 68.51 75.11 77.10 

Table 9 

Number of training rules of the proposed models (NRCS and GNRCS) with all datasets. 

Mutagenic effect Tumorigenic effect irritant effect Reproductive effect 

# NRCS rules 304 282 269 279 

# GNRCS rules 277 229 267 250 

Table 10 

A comparison between the proposed algorithms (NRCS and GNRCS) and two from the state-of-the-art 

approaches (DA + SVM ( Tharwat, Gabel et al., 2017 ) and WOA + SVM ( Tharwat, Moemen et al., 2017 )) 

with different sam pling algorithms in terms of sensitivity, specificity, and GM metrics using muta- 

genic effect. 

Classifier Metrics Orig. RUS ROS SMOTE 

DA + SVM ( Tharwat, Gabel et al., 2017 ) Sensitivity 48.00 54.19 86.49 89.43 

Specificity 86.60 75.43 82.46 86.55 

GM 64.47 63.93 84.45 88.00 

WOA + SVM ( Tharwat, Moemen et al., 2017 ) Sensitivity 50.00 57.23 85.43 89.74 

Specificity 88.50 76.84 83.24 87.27 

GM 66.52 66.31 84.33 88.50 

NRCS Sensitivity 50.00 55.56 88.64 91.11 

Specificity 91.48 77.78 85.71 89.58 

GM 67.76 65.73 87.16 90.34 

GNRCS Sensitivity 57.14 62.50 86.96 91.36 

Specificity 93.75 80.00 87.23 91.49 

GM 73.19 70.70 87.10 91.40 

Table 11 

A comparison between the proposed algorithms (NRCS and GNRCS) and two from the state-of-the-art 

approaches (DA + SVM ( Tharwat, Gabel et al., 2017 ) and WOA + SVM ( Tharwat, Moemen et al., 2017 )) 

with different sampling algorithms in terms of sensitivity, specificity, and GM metrics using tumori- 

genic effect. 

Classifier Metrics Orig. RUS ROS SMOTE 

DA + SVM ( Tharwat, Gabel et al., 2017 ) Sensitivity 42.41 60.74 90.84 90.05 

Specificity 91.62 67.67 85.66 86.57 

GM 62.33 64.11 88.21 88.29 

WOA + SVM ( Tharwat, Moemen et al., 2017 ) Sensitivity 46.24 60.49 89.28 90.49 

Specificity 94.65 68.84 84.54 87.64 

GM 66.16 64.53 86.88 89.05 

NRCS Sensitivity 4 4.4 4 62.50 91.11 91.30 

Specificity 93.48 70.00 87.50 89.36 

GM 64.46 66.14 89.29 90.33 

GNRCS Sensitivity 50.00 66.67 93.33 91.49 

Specificity 93.62 77.78 89.58 91.30 

GM 68.42 72.01 91.44 91.40 
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.2. Obtaining balanced data 

In this experiment, the goal is to obtain balanced data in both

lasses. To do this, three sampling algorithms were used: RUS, ROS,

nd SMOTE. In this experiment, (1) in the ROS algorithm, minor-

ty class samples were randomly oversampled until the number

f minority class samples matched the number of majority class

amples, (2) in the RUS algorithm, the majority class samples were

andomly undersampled until their number matched the number

f minority class samples, (3) in the SMOTE algorithm, the num-

er of synthetic samples is a parameter in the SMOTE algorithm.

n this experiment, samples of minority class were synthesized to

qualize the two classes. The results of this experiment are sum-

 

arized in Tables 10–13 . From these tables many findings can be

ummarized as follows: 

• In terms of sensitivity, all sampling methods obtained high sen-

sitivity than the original data (Orig.). This is because, in our

experiments, the positive class is the minority class. Hence,

the sensitivity results of the original data were much lower

than the specificity results (see the results of the first exper-

iment). However, all sampling algorithms obtained balanced

data and hence improves the sensitivity results. Moreover, the

SMOTE algorithm achieved the best sensitivity results. This

is because (1) the RUS algorithm randomly removes major-

ity class samples; hence, important or discriminative data may

have been removed, (2) ROS replicates minority samples in the
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Table 12 

A comparison between the proposed algorithms (NRCS and GNRCS) and two from the state-of-the-art 

approaches (DA + SVM ( Tharwat, Gabel et al., 2017 ) and WOA + SVM ( Tharwat, Moemen et al., 2017 )) 

with different sampling algorithms in terms of sensitivity, specificity, and GM metrics using repro- 

ductive effect. 

Classifier Metrics Orig. RUS ROS SMOTE 

DA + SVM ( Tharwat, Gabel et al., 2017 ) Sensitivity 64.58 68.21 78.24 81.73 

Specificity 81.33 67.88 80.27 86.54 

GM 72.47 68.05 79.25 84.10 

WOA + SVM ( Tharwat, Moemen et al., 2017 ) Sensitivity 63.42 69.21 79.93 82.91 

Specificity 79.98 67.31 80.54 87.00 

GM 71.22 68.25 80.23 84.93 

NRCS Sensitivity 68.75 70.59 81.68 84.21 

Specificity 82.05 70.00 83.78 88.89 

GM 75.11 70.29 82.42 86.52 

GNRCS Sensitivity 70.59 77.78 86.49 87.18 

Specificity 84.21 78.95 89.19 94.29 

GM 77.10 78.36 87.83 90.66 

Table 13 

A comparison between the proposed algorithms (NRCS and GNRCS) and two from the state-of-the-art 

approaches (DA + SVM ( Tharwat, Gabel et al., 2017 ) and WOA + SVM ( Tharwat, Moemen et al., 2017 )) 

with different sampling algorithms in terms of sensitivity, specificity, and GM metrics using irritant 

effect. 

Classifier Metrics Orig. RUS ROS SMOTE 

DA + SVM ( Tharwat, Gabel et al., 2017 ) Sensitivity 40.19 38.67 80.05 81.32 

Specificity 91.48 49.11 80.23 84.28 

GM 60.64 43.58 80.14 82.79 

WOA + SVM ( Tharwat, Moemen et al., 2017 ) Sensitivity 41.28 39.18 79.94 84.63 

Specificity 90.87 47.28 82.41 83.24 

GM 61.25 43.04 81.16 83.93 

NRCS Sensitivity 42.86 42.86 81.63 83.67 

Specificity 93.75 50.00 83.33 85.42 

GM 63.39 46.29 82.48 84.54 

GNRCS Sensitivity 50.00 50.00 85.42 89.36 

Specificity 93.88 60.00 85.71 87.76 

GM 68.51 54.78 85.57 88.56 
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same positions of the original samples and hence the minority

class cannot extend its decision boundary. On the other hand,

the SMOTE algorithm generates samples in different positions

around the minority samples; thus, the SMOTE algorithm ex-

tends the decision boundary of the positive class into the nega-

tive class which improves the sensitivity of the proposed model.

Tables 10–13 show that the sensitivity of the RUS algorithm is

significantly better than the original data; on the other hand, in

Table 12 , the RUS algorithm obtained sensitivity approximately

equal to the original data. This is because (1) the imbalance

ratio of the reproductive data was not high (see Table 2 ) and

hence the number of removed samples were much smaller than

the other cases, i.e., mutagenic, tumorigenic, and irritant, (2)

the number of minority samples in the irritant data is 67 sam-

ples; this means that 486 − 67 = 419 samples were removed

which has a negative influence on the overall results as shown

in Table 13 . In other words, removing a large number of sam-

ples makes the dataset small which is not sufficient for training

the model. 
• In terms of specificity, the results of RUS were lower than the

original data. This is due to the samples that were removed

from the majority class. ROS also obtained results lower than

the original data in some cases. This is because in ROS, new mi-

nority samples were created and hence the two classes became

balanced. As a result, the sensitivity increased as we mentioned

before while the specificity has decreased. In most cases, the

SMOTE algorithm obtained the best specificity results than the

original data or the other two sampling algorithms. Further, the

sensitivity and specificity goals are often conflicting; this is the

reason why the results of the sampling methods improved the

fi  
sensitivity but reduced the specificity. It is worth noticing that

the SMOTE algorithm improved the sensitivity with a small re-

duction in the specificity results. 
• In terms of GM, the results depend on both sensitivity and

specificity results. As a consequence, all sampling algorithms

obtained GM results better than the original data. Moreover, the

SMOTE algorithm obtained the best results and the RUS algo-

rithm has recorded the worst GM results. 

Tables 10–13 show also a comparison between our pro-

osed models and two from the state-of-the-art approaches

WOA + SVM ( Tharwat, Moemen et al., 2017 ) and DA + SVM

 Tharwat, Gabel et al., 2017 )). It is interesting to note from the ta-

les that the GNRCS model obtained the best results in most cases.

his is because the two state-of-the-art approaches were based on

tochastic nature. Therefore, there is no guarantee for finding the

ptimal solution. Moreover, the indeterminacy term in our pro-

osed models makes the neutrosophic-based models able to de-

ermine the more significant, neutral and non-significant features

ithout using any feature selection method. This is the reason why

he GNRCS and NRCS models obtained better results than the other

wo models. 

For more evaluation, a comparison between the sampling algo-

ithms (RUS, ROS, and SMOTE) in terms of (between and within)

lass variances was conducted. The within-class variance is the dif-

erence between the mean and the samples of each class and it

s defined as follows, S W i 
= 

∑ n i 
j=1 

(x i j − μi )(x i j − μi ) 
T , where x ij is

he j th sample in the i th class, S W i 
is the within-class variance of

he i th class, n i is the number of samples in the class i , and μi 

s the mean of the i th class. The total within-class variance is de-

ned as follows, S W 

= 

∑ C 
i =1 S W i 

, where C is the number of classes
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Table 14 

A comparison between the QRFS, DMFS, and EBFS features selection algorithms with the 

two proposed algorithms (NRCS and GNRCS) in terms of sensitivity, specificity, and GM 

metrics using mutagenic effect. 

Metrics NRCS GNRCS 

Orig. DMFS EBFS QRFS Orig. DMFS EBFS QRFS 

Sensitivity 91.11 91.30 93.33 93.33 91.36 91.11 93.38 93.48 

Specificity 89.58 91.49 91.62 91.67 91.49 89.58 91.67 93.62 

GM 90.34 91.40 92.50 92.50 91.40 90.34 92.50 93.55 

Table 15 

A comparison between the QRFS, DMFS, and EBFS features selection algorithms with the 

two proposed algorithms (NRCS and GNRCS) in terms of sensitivity, specificity, and GM 

metrics using tumorigenic effect. 

Metrics NRCS GNRCS 

Orig. DMFS EBFS QRFS Orig. DMFS EBFS QRFS 

Sensitivity 91.30 93.33 89.58 93.48 91.49 89.30 93.33 93.62 

Specificity 89.36 91.67 93.48 93.75 91.30 91.49 91.67 95.75 

GM 90.33 92.50 91.51 93.61 91.40 90.42 92.50 94.68 

Table 16 

A comparison between the QRFS, DMFS, and EBFS features selection algorithms with the 

two proposed algorithms (NRCS and GNRCS) in terms of sensitivity, specificity, and GM 

metrics using reproductive effect. 

Metrics NRCS GNRCS 

Orig. DMFS EBFS QRFS Orig. DMFS EBFS QRFS 

Sensitivity 84.21 86.62 86.84 89.47 87.18 86.49 87.18 89.74 

Specificity 88.89 91.43 91.67 94.44 94.29 89.19 94.29 97.14 

GM 86.52 87.96 89.22 91.93 90.66 87.83 90.66 93.37 
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 Tharwat, Gaber, Ibrahim, & Hassanien, 2017 ). The between-class

ariance is the distance between two or more classes, and it can be

alculated by calculating the distance between the mean of each

lass ( μi ) and the total mean of all classes ( μ). Our experiment

hows that the SMOTE algorithm reduced the within-class variance

nd increased the between-class variance more than the other two

ampling methods or the original data. This is because SMOTE gen-

rates samples around the minority class and hence SMOTE (1)

educes the distance between the samples of the minority class,

.e., reduces the within-class variance, (2) increases the distance

etween the generated samples and the samples of the majority

lass, i.e., increases the between-class variance. However, due to

he randomness in the SMOTE algorithm, we still cannot guaran-

ee that it must perform well with different datasets. Hence, the

esults of the SMOTE algorithm are affected if the original data is

oisy, has many outliers, or the discrimination between classes is

mall (the classes are overlapped). 

.3. Feature selection using rough set 

The aim of this experiment is to improve the results obtained

rom the first and the second experiments by using rough set-

ased methods. In this experiment, three different rough set-based

ethods, namely, QRFS, DMFS, and EBFS, were applied. More-

ver, the three feature selection algorithms were tested with the

RCS and GNRCS algorithms. To obtain balanced data, we used the

MOTE algorithm which has achieved the best results in the sec-

nd experiment. The results of this experiment are summarized in

ables 14–17 . 

Fig. 5 shows the selected features using all feature selection

ethods. As shown, many features were removed, and there is a

ig intersection between all feature selection algorithms. This in-

ersection represents the most important features which have use-

ul discrimination information. As shown, the twelfth and nine-
eenth features were selected by the three feature selection meth-

ds in all cases, which reflect the importance of these two fea-

ures. Fig. 6 shows the scatter plot for each dataset using only the

2 th and 19 th features. Also, it is clear that the two classes are

mbalanced because we used in this figure the original data. This

esulted in low sensitivity and high specificity because in all ex-

eriments the positive class is assigned to the minority class. 

From Tables 14–17 , many remarks can be noticed. First, GNRCS

btained better results than NRCS in most cases, and this agrees

ith the conclusion of the first experiment. Second, all feature

election methods obtained better results than the original data,

hich also reduces the required computational time. Third, in most

ases, the QRFS algorithm achieved better results than the other

wo feature selection algorithms. 

In terms of computational time, the EBFS and QRFS algorithms

equired computational time lower than the DMFS algorithm. This

s because the complexity of DMFS method is O ((N + logM ) M 

2 ) ,

here N and M indicate the number of features and samples, re-

pectively. Thus, the DMFS algorithm needs a significant amount

f time for the computation of the discernibility matrix, and the

ime was increasing fast by increasing the number of samples of

he dataset. The complexity of EBFS and QRFS is O (N 

2 + N) / 2 . In

his paper, the number of features is N = 31 and the dataset has

 = 553 samples; thus, QRFS and EBFS need computational time

ower than DMFS. 

.4. NRCS vs. GNRCS using standard datasets 

The goal of this experiment is to evaluate the performance of

RCS and GNRC using different standard datasets. In this experi-

ent, we compared the NRCS and GNRCS algorithms with three

onventional classifiers such as MLP, k -NN, and LDA classifiers. We

sed three widely used standard classification datasets obtained

rom the University of California at Irvin (UCI) Machine Learning
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Table 17 

A comparison between the QRFS, DMFS, and EBFS features selection algorithms with the 

two proposed algorithms (NRCS and GNRCS) in terms of sensitivity, specificity, and GM 

metrics using irritant effect. 

Metrics NRCS GNRCS 

Orig. DMFS EBFS QRFS Orig. DMFS EBFS QRFS 

Sensitivity 83.67 85.71 89.36 89.80 89.36 89.36 89.80 91.84 

Specificity 85.42 87.50 88.00 91.67 87.76 88.00 91.49 93.62 

GM 84.54 86.60 88.68 90.73 88.56 88.68 90.64 92.72 

Fig. 5. Selected features of the three feature selection methods. (a) Mutagenic, (b) Tumorigenic, (c) Reproductive, (d) Irritant. 

Fig. 6. Scatter plot for all datasets (a) Tumorigenic, (b) Irritant, (c) Reproductive, (d) Mutagenic. The scatter plot demonstrates the values of two of the most important 

selected features ( 12 th and 19 th features) which are highlighted in Fig. 5 . 
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Repository ( Blake, 1998 ). The descriptions of all datasets are as fol-

lows: 

• The iris dataset has four features, three classes, and 150 sam-

ples, 
• The wine dataset has 13 features, three classes, and 178 sam-

ples, and 

• The Breast Cancer Wisconsin (Diagnostic) dataset (WDBC) has

32 features, two classes, and 569 samples. 

The results of this experiment are listed in Table 18 . 

Table 18 shows that the GNRCS algorithm obtained the best re-

sults, and the NRCS and LDA algorithms achieved competitive re-
ults. Moreover, the k -NN classifier achieved the worst results, and

hese results are in agreement with the results of the first experi-

ent. 

To conclude, the results of this paper indicate that the pro-

osed algorithm (GNRCS) obtained better results than some con-

entional classifiers. This is because the NRCS model gives a good

olution for the overlapped classes by generating three different

omponents, and two of these components deal with the falsity

nd indeterminacy in the data. Moreover, in the proposed algo-

ithm, the SMOTE algorithm obtained balanced data and hence im-

roved the sensitivity of our model without sacrificing the speci-

city. Finally, the most discriminative features are selected us-
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Table 18 

A comparison between the NRCS, GNRCS, MLP, k -NN, and LDA classifiers 

using standard datasets. 

Dataset Metric NRCS GNRCS MLP k -NN LDA 

Iris Accuracy 96.40 99.30 95.40 90.20 96.50 

Sensitivity 100.0 100.0 99.50 90.53 91.04 

Specificity 90.57 99.33 90.43 90.53 91.04 

F1-Score 95.32 99.54 95.04 90.19 95.41 

GM 95.17 99.65 94.86 90.93 95.42 

Wine Accuracy 93.20 97.00 92.50 89.90 94.20 

Sensitivity 91.54 99.03 90.03 88.76 93.41 

Specificity 92.68 94.64 91.89 88.14 94.32 

F1-Score 92.84 94.54 90.95 89.64 94.12 

GM 92.11 96.76 89.57 88.45 93.86 

WDBC Accuracy 94.40 96.10 92.80 88.70 93.60 

Sensitivity 96.30 96.43 92.86 86.21 93.31 

Specificity 93.33 96.55 90.84 89.29 93.74 

F1-Score 94.55 96.43 89.86 87.72 92.86 

GM 94.80 96.49 91.42 87.74 93.53 
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ng the QRFS algorithm which improved the classification perfor-

ance and reduced the computational time. Overall, the proposed

NRCS with SMOTE algorithm and the QRFS feature selection al-

orithm obtained competitive results: sensitivity (89–93%), speci-

city (91.0–97.0%), and GM (90–94%). These results are better than

he results obtained in ( Tharwat, Moemen et al., 2017 ) (sensitiv-

ty (93.5 ± 8%), specificity (91.5 ± 7.7%), and GM (91.5 ± 7.7%)) and

n ( Tharwat, Gabel et al., 2017 )(sensitivity (90.3 ± 7.6%), specificity

92.0 ± 8.3%), and GM (90.3 ± 6.8%)). From the results, it is clear

hat due to the stochastic nature of the Whale algorithm and the

ragonfly algorithm in ( Tharwat, Gabel et al., 2017; Tharwat, Moe-

en et al., 2017 ), the variation, i.e., standard deviation, of the re-

ults are high; on the other hand, our proposed model has no pa-

ameters that need to be tuned which makes our model more sta-

le as mentioned in Section 1 . 

. Conclusions and future work 

This paper proposes a novel model for predicting drug toxi-

ity risks. We used a dataset that has 553 drugs that biotrans-

ormed in the liver, and the data has four toxic effects, namely,

utagenic, tumorigenic, irritant and reproductive. The proposed

odel has three main phases. First, in the feature selection phase,

hree rough set-based algorithms (Quick Reduct Feature Selection

QRFS), Discernibility Matrix-based Feature Selection (DMFS), and

ntropy-based Selection (EBFS)) were used for selecting the most

iscriminative features. This step is important for removing the

edundant features and hence reduces the computational efforts.

econd, three data sampling algorithms, namely, Random Under-

ampling, Random Over-Sampling, and Synthetic Minority Over-

ampling Technique (SMOTE) were used for obtaining balanced

ata. This step is important, as well, because the data that we

sed in our experiments was imbalanced. Third, in the classifi-

ation phase, two novel classification algorithms were proposed,

amely, Neutrosophic Rule-based Classification System (NRCS) and

enetic NRCS (GNRCS). Both models depend on generating neutro-

ophic rules and the goal is to classify an unknown drug into toxic

r non-toxic. Different experiments were conducted for evaluating

ur model and the obtained results were promising. Moreover, the

esults proved that the proposed model obtained high sensitivity

o all toxic effects. Overall, the results of the proposed model indi-

ate that it could be utilized for the prediction of drug toxicity in

he early stages of drug development. 

Since the NRCS and the GNRCS classifiers have shown to be

ompetitive with state-of-the-art classical classifiers, a promising

uture work would be applying the hybridization of the GA and

he neutrosophic systems on ensemble-based classifiers. 
ppendix 

The value of I is calculated as follows: 

i Low Medium 

(x ) = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎩ 

0 if x ≤ a or x ≥ c 
x − a 

m 

4 

if a < x ≤ b 

c − x 
m 

4 

if b < x < c 

(5) 

nd 

i Medium High (x ) = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

0 if x ≤ e or x ≥ f 
x − d 

m 

4 

if d < x < e 

f − x 
m 

4 

if e < x < f 

(6) 

here m = 

max −min 
5 , a = min + 2 m − m 

2 , b = min + 2 m − m 

4 , c =
in + 2 m, d = min + 3 m, e = min + 3 m + 

m 

4 , f = min + 3 m + 

m 

2 ,

in and max represent the minimum and maximum of the at-

ribute, respectively. The points a, b, c, d, e , and f are shown in

ig. 7 . As shown, the triangles represent the intersections between

ifferent classes. Moreover, the value of I is zero when the input

alue is outside the triangle (see Eqs. (5) and (6) ). This means that

f there is no intersection between the classes, the value of I is

ero; otherwise, I > 0. Additionally, the value of I increases by in-

reasing the intersection between classes. 

Fig. 7. Visualization of how the indeterminacy ( I ) value is calculated. 

The value of T is calculated according to Eqs. (7–9) . 

t Low 

(x ) = 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

1 if x ≤ a 
b − x 

3 m 

4 

if a < x < b 

0 if x ≥ b 

(7) 

t Medium 

(x ) = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

0 if x < b or x > e 
x − b 

m 

4 

if b ≤ x < c 

e − x 
m 

4 

if d < x ≤ e 

1 if c ≤ x ≤ d 

(8) 

t High (x ) = 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

0 if x < e 
x − e 

3 m 

4 

if e ≤ x < f 

1 if x ≥ f 

(9) 

here m = 

max −min 
5 , a = min + m, b = min + 2 m − m 

4 , c =
in + 2 m, d = min + 3 m, e = min + 3 m + 

m 

4 , and f = min + 4 m .

ig. 8 shows that the value of T decreases when there is an

ntersection between the classes, and the value of T reached to the
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maximum value when there is no any intersection between the

classes. 

Fig. 8. Visualization of how the truth ( T ) value is calculated. 

Similarly, value of F is calculated as follows: 

f Low 

(x ) = 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

0 if x < a 
x − a 

m 

2 

if a ≤ x ≤ b 

1 if x > b 

(10)

f Medium 

(x ) = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

0 if b < x < c 
b − x 

m 

2 

if a ≤ x ≤ b 

x − c 
m 

2 

if c ≤ x ≤ d 

1 if x < a or x > d 

(11)

f High (x ) = 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

0 if x > d 
d − x 

m 

2 

if c ≤ x ≤ d 

1 if x < c 

(12)

where a = min + 2 m − m 

2 , b = min + 2 m, c = min + 3 m, and d =
min + 3 m + 

m 

2 . Fig. 9 can be used for calculating the value of f . As

shown, when x < a the value of f Low 

is zero while the value of t Low 

is one (see Fig. 8 ). Moreover, if x > b , the values of t Low 

and f Low 

are

zero and one, respectively. 

Fig. 9. Visualization of how the falsity ( F ) value is calculated. 

Eqs. (5) –(12) are used to calculate the values of t Low 

, t Medium 

,

t High , i LowMedium 

, i MediumHigh , f Low 

, f Medium 

, and f High as shown in

Table 4 . To generate a rule, the value of each feature ( x ) must be

represented into only three values < T, I, F > , where: 

• T is the maximum of t Low 

, t Medium 

, and t High , 
• I is the maximum of i LowMedium 

and i MediumHigh , 
• F is the minimum of f Low 

, f Medium 

, and f High . 

In Eq. (1) , the values 1, 2, 3, 4, 5, 6, 7, 8, and 9 represent t Low 

,

t Medium 

, t High , i LowMedium 

, i MediumHigh , f Low 

, f Medium 

, and f High , respec-

tively. Hence, instead of using symbols we used numbers. 
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